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Abstract—An optimization algorithm for image recovery is a
core issue in the field of compressive sensing (CS). This paper
deeply studied the CS reconstruction algorithm based on split
Bregman iteration with ℓ1 norm, which enables the ℓ1 norm to
approximate the original ℓ0 norm during the optimization process.
Consequently, we proposed another novel algorithm improving
the precision and the convergence speed based on split quadratic
Bregman iteration (SQBI) with ℓ0 norm. Besides, we analyzed its
convergence by proving two monotonically decreasing theorems.
Inspired by previous researches, we applied smoothed ℓ0 norm
for the optimization problem to replace the traditional ℓ0 norm in
CS. The improvement is made by using a Gaussian function to
approximate the ℓ0 norm, transforming it into a convex
optimization problem, and eventually achieved a convergent
solution by the steepest descent method. The experimental results
show that under the same conditions, compared with other state-
of-the-art algorithms, the reconstruction accuracy of the CS
reconstruction algorithm based on the SQBI with smoothed ℓ0
norm is improved significantly, and its convergence rate is also
accelerated as well.

Keywords—Compressive sensing, sparse representation, image
recovery, split qradratic Bregman iteration, convex optimization

I. INTRODUCTION
Compressive sensing theory overcomes the drawback of

traditional Shannon sampling theory such as large sample size,
sampling time and data storage space wasted a lot of resources.
Therefore, it has important theoretical value and widely future
application [1]. Image reconstruction is an significant part of
compressive sensing theory, and its key issue is how to
recover the original high-dimensional data from compressed
low-dimensional data as much as possible. According to the
theory of compressive sensing, the sparsity of images plays a
crucial role in image reconstruction: signals with higher
sparsity can better be recovered. However, natural images tend
to have lower sparseness in the pixel domain. Therefore, the
main approach of natural image reconstruction is to find a
suitable transform domain to sparsely represent it, and then
implement inverse image transformation to achieve high-
probability image recovery [2]. The sparsity of an image can
reflect the essential characteristics of the image, and it is also
an important prior knowledge for obtaining the original image
in the process of compressive sensing reconstruction. In fact,
sparsity is a very important basic theory in the field of image
processing and computer vision, for example, approximation,
estimation, compression, and dimensionality reduction are all

having a good performance based on sparsity [3]. In order to
further improve sparsity, algorithms such as redundant
dictionary, multi-dictionary, global sparse representations, and
local sparse representation have been proposed by researchers
[4,5]. Although these methods have kinds of limitations and
need to be improved in theoretical aspects, they also made
contributions to the development of compressed sensing
theory.

At present, algorithms for compressed sensing
reconstruction are mainly divided into two research directions
based on making the ℓ0 norm minimum or the ℓ1 norm
minimum. The minimum ℓ0 norm based reconstruction
algorithm does not require too much calculation and has a
good performance. However, it is a non-convex NP-hard
problem and cannot be solved directly. The general method to
solving this problem is using the ℓ1 norm gotten from the
convex optimization solution instead of the ℓ0 norm [1-4].
Compressive sensing theory shows that the ℓ0 norm based
optimization problem and the ℓ1 norm based optimization
problem are equivalent under certain conditions [5]. However,
these conditions are not necessarily met in practice. Therefore,
this paper focuses on the sparse reconstruction based on the
minimum ℓ0 norm, and the algorithms of compressive sensing
recovery using the ℓ0 norm commonly include Gradient
Pursuit (GP), Subspace Pursuit (SP), Orthogonal Matching
Pursuit (OMP), and Iteratively Reweighted Least Squares
(IRLS) [6]. In order to overcome the defects of the ℓ0 norm
based compressive sensing reconstruction algorithm, we
proposed an approach based on the split quadratic Bregman
iteration (SQBI) which use the minimum smoothed ℓ0 norm.
The main idea is to divide the original optimization model into
two sub-models (sub-model x and sub-model α) and to
optimize them respectively to obtain a better approximation.
A large number of experiments show that the split quadratic
Bregman iterative algorithm optimized by the smoothed ℓ0
norm has better reconstruction accuracy and higher
convergence speed.

The main organization of this paper is as follows: Section
II describes the split quadratic Bregman iteration algorithm ,
Section III gives an application of split quadratic Bregman
iterative algorithm to image reconstruction in Compressive
Sensing, Section IV gives the experimental methods and the
complete algorithm flow chart, Section V depicts the
experiments results and analysis of image sparse
representation, Section VI is the conclusion.
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II. SPLIT QUADRATIC BREGMAN ITERATION

A. Bregman iteration
For the convenience of the following illustration, we first give
a brief review of Bregman algorithm. Considering a
constrained minimization problem:

    0..,min uHtsuJ
u

  2

22
1 qQuuH 

(1)

where J(u) is convex functions with u belonging to Rn×1, and
H(u)=0.5||Qu-q||2 is a quadratic function with Q belonging to
Rm×n, q belonging to Rm×1, and then the problem can be solved
by Bregman iteration [7] as follows:

   uHuuDu k
p
Juk
k  ,min1

 11   kkk uHpp
(2)

where λ is a positive number, pk is the subgradient of J at uk,
and

represents Bregman distance [8]. When u is a scalar,
Bregman distance be shown in Fig. 1. The convergence of
Bregman iteration has been amply analyzed in [7].

Fig.1 Bregman Distance

B. Quadratic Bregman iteration
It is obvious that Bregman iteration only works when J(u)

is convex, but it does not apply when J(u) is non-convex.
Motivated by it, we proposed a novel quadratic Bregman
iteration (QBI) to approach the latter problem.
We begin with defining “quadratic Bregman distance”. The

quadratic Bregman distance related with a non-convex and
twice differentiable function J at the point v is:

     ufuJvuD vJJ 2,,2, ,  (4)

where 2,,vJf is a quadratic function defined as:

  vJ
T
vJ

T
vJvJ cubuuauf ,,,2,,  (5)

the coefficients Ra vJ , , 1
,

 n
vJ Rb and Rc vJ , are

uniquely decided by function J and the point v. For simplicity,
during following discussion we will omit the subscript J and v
of them without confusion.

1)  vuDJ ,2, is convex for variable u ;
2)  vvDJ ,2, is the minimum of quadratic Bregman

distance;
3) The minimum of  vuDJ ,2, is 0 .

then we can get that:
1)     aIuJvuDJu 2, 2

2,
2  is positive semidefinite

matrix;
2)     02,2,  bavvJvvDJu ;

3)     0,2,  cvbvavvJvvD TT
J .

Here, in order to obtain the value of coefficients a, b and c,
quadratic Bregman distance is required to satisfy the following
criterion (*):

So we can derive the value of coefficients a, b and c by:
1) a is the minimum value to ensure that   aIuJ 22  is

positive semidefinite matrix (we can notice that a<0, and for
the same function J we can fix a unchanged a);

2)   avvJb 2 ;

3)   vbvavvJc TT  .
When u is a scalar, quadratic Bregman distance can be shown
in Fig. 2.
Similarly, when function J is convex and differentiable, we

can also rewrite Bregman distance as another form which also
satisfies the criterion (*):

Where 1,, kuJ
f is a linear function decided by function J and

the point ku . Then, simulating Bregman iteration, we can
derive QBI shown in Eq.(7) and Fig.2:

Fig.2 Quadratic Bregman Distance

C. Convergence analysis
Motivated by [9], we now study the convergence properties

of the iteration. We show two monotonically properties of the
constrained function and the quadratic Bregman distance.
THEOREM 1. Under the above assumptions, the sequence

)( kuH obtained from QBI is monotonically nonincreasing:

 
   
   ufuJ

uupuJuJ
uuD

k

k

u

kkk

k
p
J



 ,
,

(3)

       ufuJuuDuuD
k

k
uJkJk

p
J 1,,1, ,,  (6)

  111111   k
T

kk
T

kkk ubuauuJc

  111 2   kkk auuJb

   uHuuDu kJuk  ,min 2,1

(7)
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   kk uHuH 1 (8)

Proof. Let      uHuuDug kJk  ,2, .Then, from QBI we

can notice that 1ku is the minimizer of the convex function

kg , we can get that:

     
     kkkkJ

kkkkk

uHuHuuD
uguguH





 

,2,

11
(9)

which implies theorem 1.
THEOREM 2. Under the same assumptions as THEOREM 1,
let û be the minimizer of the function H , then we can derive
another monotonically nonincreasing property that:

   kJkJ uuDuuD ,ˆ,ˆ 2,12,  (10)

Proof. According to the proof of THEOREM 1, we can derive
that:
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
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then we get that:

 11   kkk uHbb  (12)

then we can derive a further formula motivated by the identity
of Bregman distance [10]:
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then we get that:

 
   
        
 kJ

kkkJkJ
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112,12,

12,12,

12,














(14)

which implies theorem 2.
These two theorems result to a general convergence
conclusion. We can also see the convergence result with
experiment in Section 4.

Based on the proof, we can see that since the coefficient c is
a constant for every step of each iteration, we actually do not
need to calculate its value. Besides, based on the coefficient
b we derived above, we can rewrite QBI as the following
form:

   uHuuDu kJuk  ,min 2,1

 11   kkk uHbb 
(15)

Noticing that   2

22
1 qQuuH  , according to [9], this

complicated iteration is trickily equivalent to a more
simplified form:

  2

22
min k

T

uk qQuuauuJu 


kkk Quqqq 1

(16)

D. Split quadratic Bregman iteration
Based on the above illustrations and motivated by [7], we

can briefly derive Split Quadratic Bregman iteration (SQBI)
algorithm. Considering the optimized model with following
constrained conditions:

(17)

where KNRQ  , RRg N 1
1 : is a convex function, and

RRg K 1
2 : is non-convex, then SQBI procedure is

formulated as follows:
1) Set initial values:

;,0,0,0,0,0 000 aqudn  

2)

3)

4) );( 111   nnnn Guqdd
5) ;1 nn
6) Repeat , if the condition is satisfied, then finish the

iteration, if not return to step 2.
Experiment results show that SQBI converges quicker

and takes up less memory when it is applied to solving large-
scale optimization problems.

III. RECONSTRUCTION ALGORITHM BASED ON SPLIT
QUADRATIC BREGMAN ITERATION (SQBI)

A. Optimized Model
According to the compressive sensing theory, signal

intrinsic properties show sparsity in some transform domains.
When a projection matrix is used to map a signal to a space
which has lower dimension, the signal can be reconstructed
with high probability. Suppose a signal 1 NRx , projection
matrix NMR  satisfying NM  , after linear projection we
have xy  , where 1 MRy . For x has no sparsity in pixel
domain, it means that most of the elements in x are not zero or
don’t approximate to zero, thus we are applying sparse

qQutsugqg
KN RuRq


 

..),()(min 21
, 11

;
2

)(minarg 2

2121 nn
T

u
n dQuquauugu  



;
2

)(minarg 2

211 nn
q

n dQuqqgq 

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decomposition to x to find a proper space making x ,
where 1 KR , KNR  , KN  , and most of the elements in α
are zero or approximate to zero. Then we assume that x is
sparse in transform space  and the effect of sparse
representation can be measured by the number of the elements
which are zero or approximate to zero. The sparsity is higher
and the reconstruction performance is better.

More generally, we have a model as follows:

(18)

where 0 . The purpose of reconstruction algorithm is to
recover the original signal x from a few observed
signals y with a certain compression rate NMS / .
Noticing that it is difficult to handle ℓ 0 norm directly,

motivated by [11,12], we use smoothed ℓ0 norm to replace it.
Here we use Gaussian function as a smoothed function.
Let 




K

i
ih

1
0

)( ， Ri  is the ith value of  , and then

we have:










01
00

)(
i

i
ih




 (19)

To obtain an approximation of this function by using Gaussian
function, we have

2

2

21)( 


 
i

eh i



 (20)

where 0 . Thus we have:









 01

00
)(lim

0
i

i
ih





(21)

Approximately, we have

)()( ii hh   (22)

hence





K

i
i

K

i
i hh

11
0

)()(   (23)

Then the reconstruction model (18) can be rewritten as:

(24)

where    



K

i
ihh

1

~  
, η is the correction parameter.

B. Reconstruction Algorithm Based on Quadratic Split
Bregman Iteration
If we want to reconstruct the original signal using Split

Bregman iteration, a transformation for Eq. (18) is necessary:

  


 xtshxy
x

ˆ..,~
2
1min 2

2ˆ,
(25)

Let ，then begin Split Bregman

iteration. The 2nd step above is transformed as

2

2ˆ
1 ˆ

2
)(minargˆ nn

x
n dxxfx  

(26)

The 3rd step transformed as

2

211 2
)(minarg nn

T
n dxag   


(27)

Therefore, the initial model is transformed into two sub-
models by Split Bregman iteration. In the next discussion,
subscript n will be neglected to make our states more simple.

C. Sub-model x
With Eq. (26), x model can be expressed as

2

2ˆ1ˆ 22
1min)ˆ(min dxxyxQ

xx
 

(28)

It is a strict convex function. The derivation of it is

)]([)(
ˆ
)ˆ(1 dyxI

x
xQ TT 


  (29)

where I is unit matrix. Eq. (29) can obtain a precise solution
by a few of iterations using gradient descent method.

D. Sub-model α
With Eq. (27), α model can be represented as

(30)

Solving such kind of problems directly is impossible, thus
we assume: )( bx   ， for all image blocks,  obeys
individual Gaussian distribution with average 0, variance 2 .
This assumption is reasonable in some way according to the
simulation experiments. With this assumption, we consider

bx  as a coarse estimation of signal x . Therefore we can
transform this model into a simpler one.

 


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
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xtsxy  


..
2
1min

0

2

2

  xtshxy  


..~
2
1min 2

2

0

2

2
)(,

2
1)(   gxyxf

  





TahdxQ 
~)(

2
1min)(min 2

22

2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS)

229



where .0 This model can be solved by the gradient descent
method effectively.

IV. COMPLETE ALGORITHM PROCEDURE

Completed algorithm procedure are as follows:
1) Let

,,0,0
,0,0

000

0

Od
xn







be initiating every parameter;
2) Calculate 1nx using gradient descent method:

)]()[(11 nnn
T

n
T

nn dyxIsxx  
3) nnn dur   11

4) Calculate
1n
using K-SVD algorithm;

5) Calculate using gradient descent method ;
6) )( 1111   nnnnn xbb  ；

7) 1 nn ；

8) Repeat, if the condition is satisfied or the iterations
run out, then finish the iteration, if not return to step 2.

N
Note that there adopted K-SVD method because it allows

to solve all the ℓ0 norm problem using MP or OMP.

V. EXPERIMENTAL RESULTS AND ANALYSIS

To illustrate the performance of improved algorithm, a large
number of experiments have been carried out on MATLAB
R2014a, the experiment results demonstrated that split
quadratic Bregman iteration compressive sensing
reconstruction algorithm using the minimum smoothed ℓ0
norm is superior to the other state-of-the-art algorithms. The
algorithm we proposed is compared with two representative
Compressive Sensing recovery methods in literature, multi-
hypothesis (MH) method [13] and collaborative sparsity (CoS)
method [14], which deal with image signals in the random
projection residual domain, and the hybrid space-transform
domain. It is worthy to recognize that both of MH and CoS
methods are known as the current state-of-the-art algorithms
for image CS recovery.
To evaluate the quality of the image after reconstruction, in

addition to Peak Signal to Noise Ratio (PSNR, unit: dB),
which is used to evaluate the objective image quality, a
recently proposed powerful perceptual quality metric Feature
SIMilarity (FSIM) [15] is calculated to evaluate the visual
quality. The higher FSIM value of a image always means the
better visual quality.
Compare the reconstruction performance. Apply all the

algorithms to test image “zelda”, “barbara” and “camera” with
size 512*512*8 BMP format and the results are shown below.
Visual performance shows that improved algorithm has better
performance, as follows.

(a) MH (b) CoS (c) SQBI
Fig.5 barbara with different algorithms

(a) MH (b) CoS (c) SQBI
Fig.6 camera with different algorithms

TABLE I. PSNR COMPARISON AMONG THREE ALGORITHMS

PSNR/dB zelda woman peppers man1024 lena goldhill

MH 38.1273 32.3356 34.5889 32.1322 33.3328 31.0359
CoS 37.8470 32.9203 35.2212 32.1835 33.3268 31.4048
SQBI 38.7904 33.2174 35.3380 32.8340 33.7968 31.4865

TABLE II. FSIM Comparison among Three Algorithms

PSNR/dB elain camera boat barbara baboon airplane

MH 34.0252 36.8456 32.5623 34.1854 23.9912 34.0277
CoS 32.8793 36.4567 33.8180 28.7188 23.5590 34.5178
SQBI 34.5868 40.3767 34.9115 35.2767 23.7920 35.5760

FSIM zelda woman peppers man1024 lena goldhill

MH 0.9905 0.9721 0.9834 0.9917 0.9817 0.9665
CoS 0.9885 0.9797 0.9857 0.9913 0.9798 0.9678
SQBI 0.9910 0.9808 0.9862 0.9933 0.9828 0.9708

1n

(g) elain (h) camera (i) boat (j) barbara (k) baboon (l)airplane

Fig.3 Test Images

(a) MH (b) CoS (c) SQBI
Fig.4 zelda with different algorithms

(a) zelda (b) woman (c) peppers (d) man1024 (e) lena (f) goldhill
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Fig.7 Evolution of PSNR and FSIM, Convergence Result

There are 11 different images with size 512*512 and 1
image with size 1024*1024 , 8 bit depth, BMP format,
grayscale images listed in TABLE I and TABLE II. We
apply the different algorithms to all the images, and
accomplish the objective evaluation using both the Peak-
Signal to Noise Ratio (PSNR) and Feature Similarity (FSIM)
Index for Image.
A visual comparison of test image “zelda”, “barbara” and

“camera” in Fig. 3, we can see that the performance of
reconstruction image algorithm proposed in this paper is
superior to other state-of-the-art algorithms.
An objective comparison of test images respectively and

results are shown in TABLE I and TABLE II. We can see
that PSNR and FSIM are both improved. From Fig. 4-6, we
can see that SQBI is superior to the CoS and MH algorithm.
Compare the convergence rate. Apply the algorithms

mentioned above to all the images respectively and results are
shown in Fig. 7. We can see that our algorithm has a general
converges result.
The experiments demonstrated above that the split quadratic

Bregman iteration with a minimum smoothed ℓ0 norm has
effectively improved the reconstruction performance and the
convergent rate in compressive sensing recovery than other
state-of-the-art algorithms. Simultaneously, earlier researches
stated briefly that the reconstruction algorithm based on
Bregman iteration is superior to algorithms such as GP, SP,
OMP and IRLS. Therefore, our approach proposed in this
paper is superior to a large part of the other algorithm.

VI. CONCLUSIONS
Benefited from the deep studies of the reconstruction

algorithm of compressive sensing based on the split quadratic
Bregman iteration, this paper proposed an approach which
uses a minimum smoothed ℓ0 norm to further solve the
optimization problem for the lack of solving precision and the
parameters’ setting. Moreover, the reconstruction accuracy
and convergence speed are improved effectively compared
with other state-of-the-art algorithms. Experiments have
shown the our approach is superior to other state-of-the art
reconstruction algorithms for image recovery using the
compressive sensing such as MH and CoS.
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