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Abstract—This paper designs a traffic scene recognition
module for the agent’s perception system. First, we enabled the
output features of the convolutional neural network to be the
descriptor of the traffic scene and adapted to the cost function
of the image sequence to construct the observation module of
the agent. Second, we assumed that the movement of the agent
would be recursively updated and wouldn’t jump dramatically,
which simultaneously possesses the Markov property, so the
Markov localization algorithm was used to improve overall
robustness. Third, the Kalman filter method was adopted to
represent the probability distribution of the entire system
using the first and second moments of the Gaussian
distribution, so that the loop iteration in the state estimation
can be transformed into a linear operation, and the penalty
term in the standard variance of the observation probability
can also be added to describe the reliability of the observation.
Experimental results show that the agent can efficiently
remove unreliable observations and achieve robust recognition
accuracy of the traffic scene in all weather conditions.
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I. INTRODUCTION

Currently, we still rely on GPS + Lidar to realize the real-
time positioning of an unmanned vehicle. However, the cost
of high-precision radar is too expensive, and the amount of
information obtained is not as sufficient as that of human
vision. Furthermore, people rely on vision alone to obtain
robust information about traffic scene for navigation of
driving cars.

We know that the traffic scene recognition problem is
how to overcome the influence of changes in appearance,
such as illumination and seasonal changes. The problem is
how to enable the unmanned auto agent to obtain basic
information that is not interfered by illumination and
appearance factors. Besides, it is difficult to find the visual
feature descriptors with high robustness to appearance.
Fortunately, in recent years, such a problem can be solved
from another way of thinking: deep learning. A
convolutional neural network (CNN) has been the most
representative method in deep learning. This method, also
known as end-to-end learning, is realized by a CNN with a
large number of convolution layers. Therefore, we can sue a
CNN model to automatically find the above-mentioned

essential information in the robust recognition of traffic
scenes.

In addition, unmanned vehicles as agents generally work
in a relatively large and unfamiliar environment and this
scene will vary as time passes. Therefore, the purpose of this
paper is to solve the problem of dynamic traffic scene
recognition under consideration of contextual relations,
including (a) how to capture essential features such as
dynamic scene information that does not change with
appearance in the traffic scene, thereby constructing the
scene description of the traffic environment; (b) how to use
the above information to express the correlation between
dynamic scenes; and (c) how to convert the features of the
above basic information into accurate confidence after
overcoming the impact of scene changes on the recognition
process.

Finally, this paper proposes a new method to realize the
robust recognition of dynamic traffic scene by combining
both AlexNet model and Markov localization algorithm.
Furthermore, we carried out experiments on open data sets to
verify the recognition accuracy and robustness of our
approach.

II. THE PROPOSED METHOD

A. A CNN Representation for the Traffic Scene
The traffic scene is represented by a CNN model.

Sunderhauf et al. [1] and Dai et al. [2] show that the CNN
features trained by the scene classification data set have
strong robustness for dynamic recognition of the traffic scene.
Therefore, in this paper, we train AlexNet [4] using the
scene-directed data set Places365 [3], and we use the output
of the fully connected layer as the image description. In
addition, Garg et al. [5] adopted a normalization method of
feature descriptors, which significantly improved the
robustness of fully-connected layers to changes in
appearance, which can be expressed as:
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 represents the output of feature descriptors in the
fully-connected layer FC6, imv  and is
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and variance of the image descriptor in the entire map
database, respectively, while '

if
r

 denotes the normalized set
of descriptor (NSD). Here, we use the NSD to represent
essential information of the traffic scene.

B. Coherent Matching Costs for Scene Sequences
Here, we use the framework of SeqSLAM [6] to achieve

the matching between scene image sequences. First, we need
to construct the cost matrix as follows:
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where '
if
r

is the image Ii∈M， '
jf
r

is the image Ij∈Q，and
they are the normalized descriptors of the coherent images in
the FC6 layer.

Here, we perform the matching within sequences by
summing the cosine distances, as shown in Eqs. 2.4 -2.6:
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where ST,j represents the matching costs of the scene
sequences, Dk,t represents the cosine distances between the
image obtained by the agent at time t and the image K on the
map, T denotes the present time, j denotes the j frame
selected from maps, v denotes the matching slope.
Furthermore, we restrict the range of velocity v to prevent
the occurrence of outliers. Then, by regulating the velocity
values v, we can obtain the best matching ST,j and and vTesti,
where vTesti is the estimation value of the agent's current
velocity, as expressed in Eq. (2.5). After that, the position of
the agent can be predicted at the next time T+1 based on the
previous estimate. Therefore, the best matching result
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z S  is the output of the observation at time T.

The matching process is shown in Fig. 1.
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Figure 1. Schematic diagram of sequence matching algorithm

C. Measurement of Probability Distribution Estimation
After obtaining the results of sequence matching, this

section will discuss how to convert the above values into a
probability distribution, that is, a likelihood distribution

),|(~ Mxjzp TT == , so that we can use the probability-
based Markov localization method. Thus, the Softmax
function is used to map these values to the probability in the
(0,1) range, and also adopts a sliding window with a length
of N, W=[zT-N/2,zT+N/2] to calculate the probability
distribution in N candidate frames close to the optimal
matching result, as follows:
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After the matching cost value t is turned into probability,
we further assume that the probability conforms to a
Gaussian distribution. In this paper, we use the least squares
method to estimate the Gaussian Distribution.

D. Markov Localization under Gaussian Distribution
Markov localization under Gaussian distribution is

actually a Kalman filter.
In the process of navigation and positioning, people

cannot only estimate the current state through the current
observation, but also infer with their own memory. Hence,
we use a hidden Markov chain to represent the above-
mentioned process, as shown in Figure 2.
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Figure 2. Markov chain diagram

As shown in the Markov localization algorithm in
Algorithm 2.1, we have to calculate the confidence level of
each state in the entire state space for each state update in the
algorithm, so the complexity of the algorithm is O(n).

ALGORITHM 2.1 MARKOV LOCALIZATION ALGORITHM

In this paper, the first and second moments of the random
variables are used to parameterize the probability distribution.
Here, we use the Gaussian distribution to describe the above-
mentioned probability. Therefore, the Markov localization
algorithm can be transformed into the Kalman filter
localization algorithm, as shown in algorithm 2.2.

ALGORITHM 2.2 KALMAN FILTER LOCALIZATION ALGORITHM

Input: 1m -i , 1s -i , iu , iz
Output: mi , si
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Here, we use the square of the difference between the
predicted result and the observed result as a penalty term to
evaluate whether the observation is reliable, thereby
preventing the jump in the observed value from affecting the
final recognition result, as shown in Eq. 2.8.
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E. Algorithm Flowchart
First of all, the algorithm flowchart of the present study is

shown in Figure 3.

Figure 3. The algorithm flowchart

In the first step, CNN AlexNet is used to obtain the
descriptor of the current image, calculate the values of
coherent matching costs ST,j, estimate the current velocity
value vTesti, and obtain the observed likelihood probability
distribution ),|(~ Mxzp ii ; the second step is to update the

current confidence level )( ixbel based on the likelihood

probability distribution ),|(~ Mxzp ii and the previously

predicted confidence level )( ixbel
----

; the third step is to
obtain the probability distribution of the state transition

),,|(~
1 Mvxxp esti

iii+ by using the current velocity viesti, and

using ),,|(~
1 Mvxxp esti

iii+  and the previously confidence

level )( ixbel  to predict the confidence level of the next

state )( 1+

----

ixbel .

III. EXPERIMENT AND ANALYSIS

A. Experimental Data Set
In this paper, we use the RobotCar data set of Oxford

University [5], which has collected data for nearly a year on
a fixed route in Oxford, as shown in Figure 4 and Figure 5,
thereby being very suitable for the robust traffic scene
recognition in this paper.

This experiment is based on the work of SeqSLAM [6]
and NSD-SeqSLAM [7] as a benchmark for comparative
experiments. This experiment takes the data from cloudy
days in spring as the benchmark, and takes cloudy days in
autumn, sunny days in autumn, rainy days in autumn, cloudy
days in winter and sunny days in spring as experimental data,
as shown in Figure 5. We use GPS navigation information as
the real value of the quantitative analysis of recognition
results.

Input: 1( )-tbel x , tu , iz , M
Output: ( )tbel x

for all tx do

1 1 1|( ) ( , , ) ( )- - -¬ ò Mt t t t t tbel x p x u x bel x dx

)|( ) ( , ) (h¬t t t tbel x p z x m bel x

end for
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Figure 4. Path of experimental data set

Figure 5. Some samples in the RobotCar dataset

B. Experimental Analysis Index
The first index of the performance evaluation of our

approach is the precision-recall curve (PR curve). The
correct match is called "true positive (TP)", the incorrect
match is called "false positive (FP)", and the match discarded
by the algorithm is "false negative (FN)". Precision is
defined as the proportion of the selected match being a true
positive. In addition, the recall rate is the ratio of the true
positive to the total number of correct values.

TP TPPrecision , Recall
TP FP TP FN

= =
+ +

 (3.1) 

We use variance as a threshold to construct the PR curve.
Another important index is the area under the PR curve
(AUC curve) with threshold radius, which is calculated as
follows:
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where N is the number of matched images, pi is the precision
at point i, and ri is the recall rate at point i.

C. Experimental Results and Analysis
The matching results based on our experiments are

shown in Figure 6. It can be seen that the matching results
are more stable and form a smooth curve through Kalman
filtering, and the variance of the Gaussian distribution is also
effectively suppressed.

Figure 6. Schematic diagram of matching results, where the blue is from
our method, red is from SeqSLAM using NSD-FC6 features, and the green
is from the original SeqSLAM. It can be seen that using our method can
filter out unstable matching results and make the matching results more
stable.

Figure 7. The matching results of the PR curve. Blue is from our method,
red is from SeqSLAM with NSD-FC6 features, and green is from the
original SeqSLAM. By using our method, we can see that the matching
results are more stable and most of the curves are at the top compared to
the other method.
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Through the analysis of the matching results, the PR
curve can be obtained, as shown in Figure 7.

From Fig. 7, we can see that the overall matching results
are improved, the stability is more obvious, and the precision
is significantly improved under a certain recall rate.

Finally, the AUC curve varies with the threshold of the
location matching radius, as shown in Figure 8.

Figure 8. Matching results of the AUC curve. Blue is from our method,
red is from SeqSLAM with NSD-FC6 features, and green is from original
SeqSLAM. It can be seen that after using the Kalman filtering, the
matching result is more stable and the overall matching effects are
improved. However, when the matching radius is 5 - 25 m, the
improvement effect is not obvious, and in some cases, the matching
performances will drop.

From the above experimental results, it can be seen that
the overall matching performances were improved after
adding Kalman filtering, and there are better results within
the threshold radius of 30 - 100 m. However, the localization

matching within the radius threshold of 5 – 25 m is still
insufficient.

IV. CONCLUSION

In this paper, based on the SeqSLAM recognition method
of the dynamic traffic scene, the normalized descriptors
extracted from the AlexNet model were adopted, and the
Markov localization algorithm was also added under a
Gaussian distribution. Moreover, a more robust scene
recognition and localization approach under all-weather
conditions was constructed without increasing the overall
complexity of the algorithm. The experimental results show
that the proposed method possesses a better recognition
performance compared to SeqSLAM.
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