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PAPER

Multi-Layer Perceptron with Pulse Glial Chain

Chihiro IKUTA†a), Nonmember, Yoko UWATE†b), Yoshifumi NISHIO†c), Members,
and Guoan YANG††d), Nonmember

SUMMARY Glial cells include several types of cells such as astrocytes,
and oligodendrocytes apart from the neurons in the brain. In particular, as-
trocytes are known to be important in higher brain function and are there-
fore sometimes simply called glial cells. An astrocyte can transmit signals
to other astrocytes and neurons using ion concentrations. Thus, we expect
that the functions of an astrocyte can be applied to an artificial neural net-
work. In this study, we propose a multi-layer perceptron (MLP) with a
pulse glial chain. The proposed MLP contains glia (astrocytes) in a hidden
layer. The glia are connected to neurons and are excited by the outputs
of the neurons. The excited glia generate pulses that affect the excitation
thresholds of the neurons and their neighboring glia. The glial network pro-
vides a type of positional relationship between the neurons in the hidden
layer, which can enhance the performance of MLP learning. We confirm
through computer simulations that the proposed MLP has better learning
performance than a conventional MLP.
key words: multi-layer perceptron, glial chain, classification

1. Introduction

The adult human brain and the rest of the central nervous
system comprise up to one trillion nerve cells, including ex-
citable nerve cells and synapses. The cells in the central ner-
vous system are classified into two types, namely, neurons
and glia, including astrocytes and oligodendrocytes. Many
studies have investigated the biological features of neurons
and their functions. Neurons can transmit and gather elec-
trochemical signals from each other, thereby accomplish-
ing such brain tasks as thinking and memory. So far the
astrocytes of the glia had not been investigated deeply be-
cause the functions of astrocytes in the brain were difficult
to investigate. Hence, these cells were long considered to be
merely support cells for the neurons. Recently, researchers
discovered that an astrocyte can transmit signals by adjust-
ing the concentration of ions in the glia [1]–[3]. In addition,
an astrocyte has many receptors for ions such as adenosine
triphosphate (ATP), glutamic acid (Glu), and calcium ions
(Ca2+). These ions are important for brain function because
neurons also use ATP and Glu in synapses, and astrocytes
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generates Ca2+ concentration wave [4], [5]. Among them,
we have focused on Ca2+ because astrocytes induce ATP, D-
serine, etc. in accordance with changes in Ca2+ concentra-
tion [6]–[9]. ATP and D-serine directly influence the mem-
brane potentials of neurons. A Ca2+ concentration wave is
transmitted to the astrocytes in a wide range of the brain.
The neurons are also influenced by the Ca2+ concentration
wave through the ions emitted from the astrocytes. Thus, as-
trocyte functions relate closely to brain functioning. There-
fore, on the basis of the astrocyte functions, we consider the
modeling of astrocyte functions in an artificial neural net-
work (ANN).

Recently, many kinds of ANN models have been pro-
posed and widely applied in modern technology. A multi-
layer perceptron (MLP) is a feed forward ANN compris-
ing layers of neurons. In an MLP, the neurons comprise the
neuron layers, and a neuron in one layer connects only with
neurons in other layers. Then, we can obtain the ideal input-
output relation of an ANN by setting up weights of network
connections. In general, a backpropagation (BP) algorithm
is used for determining connection weights [10]. Using the
BP algorithm, an MLP can be used for various tasks such
as pattern recognition, machine learning, and data mining.
However, MLPs involve two problems. First, an MLP is
trapped in a local minimum because the BP algorithm uses
the steepest decent method. Second, an MLP does not have
connections between neurons in the same layer. Further-
more, the neurons in a layer do not have position depen-
dency in an MLP. Simulated annealing (SA) [11] can be
used to improve the BP algorithm [12], [13]. In SA, the net-
work searches a wide range with the objective function, and
the searching range decreases with time. In this way, the SA
can find a global solution. Moreover, a modeling of glial
functions in an ANN was reported by A.B. Porto-Pazos, A.
Alvarellos, and others [14]–[16]. These studies showed that
glia improved the performance of a feed forward neural net-
work. That work drew attention to the relationship between
glia and neurons. In our model, we focus on the relationship
among glia. We consider that a glial network can provide
position relationships to neurons.

In this study, we propose a new MLP with a pulse glial
chain∗ (PGC) inspired by the functions of astrocytes. All

∗We reported the concept and the basic investigation of a ran-
dom glial network in an IEICE letter [18]. In the previous study, a
glial cell generated a uniform random noise, whose amplitude was
changed by the output of the connected neuron.
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glia are individually connected to the neurons in the hid-
den layer of the MLP and have an interactive effect in the
glial network. A neuron output is greater than a glial exci-
tation threshold, hence it can excite a glial cell. The excited
glial cell generates a pulse, and the pulse influences the ex-
citation threshold of the neuron and the states of the neigh-
boring glia. The glial pulse is attenuated exponentially and
induces a pulse chain. The neighboring glia are excited and
generate pulses subsequent to those of the first excited glial
cell, thereby propagating the pulse in the glial network. The
generated pulse is transmitted to the connected neuron and
influences the excitation threshold of this neuron. This pulse
accelerates the convergence of the weight update of the con-
nected neuron because the pulse retains the large value of
the neuron. A neuron output greater than the glial excitation
threshold almost converges to a local optimum value, which
is therefore retained by the pulse. The neighboring neurons
obtain energy from the pulses propagated by other glia. The
influence of a pulse is independent of the states of the neigh-
boring neurons. Therefore, the neighboring neurons deviate
from the local optimum values of their neighboring neurons.
We consider that the pulse glial chain (PGC) accelerates the
learning of the entire MLP network. This study confirms
that the MLP with PGC has better performance than the
standard MLP in learning time series, solving the Proben1
[17], and solving the two-spiral problem (TSP).

2. Proposed Method

In this study, we propose a PGC inspired by the features of
astrocytes. The glia are individually connected to neurons
in the hidden layer and influence neighboring glia. We con-
nect glia only to the neurons in the hidden layer, because the
number of neurons in the input and output layers depends
on the simulation tasks. In addition, we consider that hav-
ing connections within the same layer is important for the
MLP. The conventional MLP already has connections be-
tween different layers. For the reasons stated above, we con-
nect glia to neurons only to compare the glial effects in sev-
eral different tasks. The proposed MLP with PGC is shown
in Fig. 1.

Fig. 1 MLP with PGC.

2.1 Glial Pulse Chain

All glia are connected to the nearest neurons in the hidden
layer of an MLP and generate pulses according to the out-
puts of the connected neurons. Here, we define the glial
output function as in Eq. (1).

ψi(t + 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1, {θn < yi ∪ ψi+1(t − D) = 1∪

ψi−1(t − D) = 1)} ∩ (t − τi > θg)
γψi(t), else,

, (1)

where ψ is the output of a glial cell, i is the position num-
ber of a glial cell in the hidden layer, y is the output of the
connected neuron, θn is the excitation threshold of the glial
cell, D is the delay time of a glial effect, τ is the time of
the previous pulse generation, θg is the period of inactivity,
and γ is the attenuation parameter. In the excitation con-
dition of Eq. (1), yi > θn indicates that the neuron excites
the glial cell when the neuron output is greater than θn and
has a constant value; thus, it is not changed with iteration.
The glial cell is also excited by receiving a glial pulse from
its neighboring glial cell, because the glial pulse requires
time D to be transmitted to its neighboring glia, a condi-
tion described by ψi+1(t − D) = 1 and ψi−1(t − D) = 1.
The glial cell has an inactivity period θg; hence, t − τi > θg
must be satisfied to generate a glial pulse. The glias do not
learn based on the BP algorithm, even though the neurons
are trained based on that algorithm. The generation pattern
of glial pulses changes dynamically during MLP learning;
an example pattern is shown in Fig. 2. In the figure, the first
glial cell is excited and generates its corresponding pulse
with the excitation condition of yi > θn as shown in Eq. (1).
The first glial cell receives neuron output greater than θn,
and a pulse is propagated to the neighboring glial cells such
that the transmitted pulse of the first glial cell excites the
neighboring glial cells according to ψi+1(t − D). Thus, the
neighboring glial cells generate the pulse with a delay from
the first glial cell. Furthermore, the tenth glial cell is excited
at a time similar to that of the first glial cell, and the effect of
the tenth glial cell is also propagated to the neighboring glia.
Finally, the seventh glial cell is excited independently of the
influences of the tenth and first glial cells. The seventh glial
cell receives the pulse of the tenth glial cell; however, it is
not excited by using these pulses, because the seventh had
already begun the period of inactivity (i.e., to t − τi > θg.).
The change in the generation pattern of pulses depends on
the neurons’ outputs, which are changed by BP learning,
and the generation pattern Fig. 2(b) is also different from
Fig. 2(a). From this example, we see that the generation pat-
tern of pulses changes dynamically during learning.

Next, we focus on the responses of two glial cells. The
outputs of the connected neurons and the responses of two
neighboring glial cells are shown in Fig. 3. In this figure,
glial cells one and two are connected to neurons one and
two, respectively. Glial cell one neighbors glial cell two;
thus, they influence each other. During the data iterations,
the input learning data are switched in sequence with the
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Fig. 2 An example of glial pulses (D = 5).

Fig. 3 Different patterns of the two glia excitations (θn = 0.9, D = 5,
γ = 0.8, and α = 0.5).

iterations; thus, the output of a neuron changes dynamically
with the iterations. The output of neuron one is greater than
the excitation threshold of the connected glial cell one, and
meanwhile, glial cell one is also excited by the output of
neuron one. Actually, we just observe the pulse generation
in glial cell one, because the output of neuron two is less
than the excitation threshold of the connected glial cell two.
However, glial cell one influences the state of glial cell two,
and glial cell two is excited by glial cell one. Thus, glial cell
two generates the pulse with a delay.

2.2 Neuron Updating Rule

A neuron is multi-input and single-output, and we can
change its output by tuning connection weights between
neurons. The standard updating rule for a neuron is defined
as in Eq. (2).

yi(t + 1) = f

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

wi j(t)x j(t) − θi(t)

⎞⎟⎟⎟⎟⎟⎟⎠ , (2)

where y is the output of the neuron, w is the weight of the
connection, x is the input of the neuron, and θ is the excita-
tion threshold of the neuron. In this equation, the weight of
the connection and the excitation threshold of the neuron are
learned based on the BP algorithm. Next, we show our pro-
posed neuron updating rule. Because glia may increase the
membrane potential of a neuron in a biological system, we
add the glial effect ψ to the inner state of the neuron. (Glu,
ATP, etc.) [19], [20], and these ions influence the mem-
brane potential of the neuron. The inner state of the neuron
increases as a result of the glial effect. In this study, this up-
dating rule is used only for the neurons in the hidden layer.
Since we emphasize the position relationship of neurons in
the same layer, we arrange the glias in one dimension to en-
able observation of the position relationship of neurons. The
updating rule proposed in this study is described by Eq. (3).

yi(t + 1) = f

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

wi j(t)x j(t) − θi(t) + αψi(t)

⎞⎟⎟⎟⎟⎟⎟⎠ , (3)

where α is the weight of the glial effect. The peak of the
generated pulse changes according to α. In this study, we
choose an optimal value of α using heuristic search. In
this expression, the weight of connection and the excitation
threshold of the neuron are obtained based on the BP algo-
rithm just as in the standard neuron updating rule. However,
the glial effect is independent of learning. ψ is updated using
Eq. (1). Equations (2) and (3) are used as sigmoidal func-
tions to a neuron activating function expressed as in Eq. (4).

f (a) =
1

1 + e−a
, (4)

where a is the inner state of the neuron. Several activating
functions, such as tangent hyperbolic, using absolute value
have been proposed for modeling MLP performance [21].
In this study, we use the sigmoidal function as the activating
function. This function is basic and is used frequently [22]
[23] because the derivative can easily be calculated, and it
can easily be applied to the BP algorithm. In our method, the
activation function does not have an essential role; therefore,
we can change the sigmoidal function to other functions.

3. Simulations

In this section, we show our experimental results based on
computer simulation of three different tasks. We use six
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Fig. 4 Network structures of five MLPs.

types of MLP for the performance comparison.

(1) Conventional MLP
(2) MLP with random noise
(3) MLP with SA noise
(4) MLP with randomly timed pulses
(5) MLP with glial pulse
(6) MLP with PGC

The network structures for the six types of MLP models are
shown in Fig. 4. A conventional MLP (1) does not have an
external unit. An MLP with random noise (2) has a uniform
random noise that influences the excitation threshold of neu-
rons in the hidden layer. An MLP with SA noise (3) has
a normally distributed noise that influences the excitation
threshold of neurons in the hidden layer and whose ampli-
tude decreases exponentially with iteration. An MLP with
randomly timed pulses (4) has pulses at random times in the
neurons in the hidden layer. In such an MLP, the neurons
in the hidden layer have a pulse that influences the excita-
tion threshold of the neuron, and this pulse is generated at
random. In an MLP with a glial pulse (5), the glia respond
to the output of the connected neuron in the same manner
as the proposed MLP with PGC (6); however, the generated
pulse is not propagated to neighboring glia. Thus, the gen-
erated pulse only increases the excitation threshold of the
connected neuron. In the simulations, the optimal noise and
pulse amplitude of each method is decided heuristically. In

addition, we obtain the proper parameters of the PGC based
on a large number of simulation experiments with various
parameter values. Thus, the parameters are determined as
θn = 0.9, D = 1, θg = 45, and γ = 0.8.

Here we use the mean square error (MSE) described by
Eq. (5) as the error evaluation.

MS E =
1
N

N∑

n=1

(Tn − On)2, (5)

where T is the target value, O is the output of MLP, and
N is the number of learning data. In this study, we use the
average, the minimum, the maximum, the standard devia-
tion, and the accuracy of the MSE to evaluate the validation
accuracy of the experimental result. MLP performance is
better when the MSE is smaller and the validation accuracy
is larger. We calculate the validation accuracy using a k-
fold cross-validation estimate. Here, we fix the value of k to
ten, and obtain the validation accuracy for each simulation,
and we also apply a Wilcoxon signed-rank test to the exper-
imental results. The Wilcoxon signed-rank test is one of the
nonparametric tests. We compare two results obtained from
different methods and obtain a sampling probability. If the
sampling probability is less than 0.05, we conclude that the
results have a broad distinction. In contrast, if the sampling
probability is greater than 0.05, we are not sure whether two
results are good or not.

3.1 Task 1: Learning Time Series

For the first task, we use successive chaotic time series as
data sets, with the skew tent map for the generation of the
time series described by Eq. (6).

φi(t + 1) =

⎧⎪⎪⎨⎪⎪⎩

1
Ai
φi(t) (0 ≤ φi(t) ≤ Ai)

1
1−Ai

(1 − φi(t)) (Ai < φi(t) ≤ 1)
, (6)

We use A1 = 0.45 and A2 = 0.55. The generated chaotic
time series vary with the value of A. The data set includes
the two successive chaotic time series obtained with A1 and
A2. An example of the successive chaotic time series is
shown in Fig. 5. In this simulation, the MLP comprises three
layers (connected 4-40-1), and the simulation conditions are
as shown in Table 1. The column headings in the table in-
dicate the following: the number of inputs is indicated for
one round of learning, the number of classifications is for
the Boolean classification of the input data, the training data
sets are for the number of data sets used for learning, the un-
learned data sets are for the number of data sets used to show
the performance of unlearning data sets, and the validation
is for the number of data sets used for validation obtained
from ten-fold cross-validation.

We input four successive chaotic time series (φi(t),
φi(t + 1), φi(t + 2) and φi(t + 3)) to the neurons in the in-
put layer, and the MLP learns the correlating classification.
And also, φ1(t)-φ1(t + 3) and φ2(t)-φ2(t + 3) are switched
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Fig. 5 Successive chaotic time series obtained by skew tent map.

Table 1 Conditions of chaotic time series.

Num. of Num. of Training Unlearned Validation
inputs class. data sets data sets

4 2 200 200 20

Table 2 Learning performance of time series.

Average Minimum Maximum Std. Dev. Accuracy
(1) 0.02868 0.00008 0.14008 0.02650 89.836
(2) 0.02464 0.00000 0.12016 0.02172 90.054
(3) 0.02841 0.00009 0.14011 0.02516 88.758
(4) 0.02804 0.00001 0.14003 0.02548 89.906
(5) 0.02840 0.00007 0.14010 0.02629 89.821
(6) 0.00756 0.00007 0.11087 0.01347 94.319

with time. We prepare ten data sets with each data set in-
cluding 200 successive chaotic time series, obtained from
ten different initial values. We use ten fold cross-validation
for validation accuracy; thus, 180 and 20 data are used for
learning and validation, respectively. We obtain the simula-
tion results from 100 trials for each data set; thus, the total
number of trials is 1,000, with each trial having 50,000 iter-
ations.

Table 2 shows the statistical results from 1,000 trials. In
this simulation, the validation accuracies are approximately
90 in the MLPs. From Table 2, we can see that the MLP
with PGC (6) has the best average. For the maximum, the
MLP with PGC (6) obtains the best value of 0.11087, and its
standard deviation 0.01347, the smallest of all. However, for
the minimum, the MLP with random noise (2) obtains the
best value of 0.00000, though the other MLPs also obtain
adequate results.

Table 3 shows the Wilcoxon signed-rank test for the
MLPs. The sampling probability values are less than 0.05;
thus, we can be sure of the differences in the average perfor-
mance of the MLPs in Table 2.

Table 4 shows a classification performance of unlearn-
ing time series. We prepare the unlearning time series by
using different initial values, with the number of data sets
for unlearning time series being the same as for the learning
data sets. We also provide the unlearning time series to the
trained MLPs and compare the output of the MLPs with the
true classification of the chaos generated using Eq. (6).

In this result, the validation accuracy becomes approxi-

Table 3 Wilcoxon signed-rank test of learning performance of time se-
ries.

(1) (2) (3) (4) (5) (6)
(1) - 0.000 0.009 0.000 0.000 0.000
(2) 0.000 - 0.000 0.011 0.000 0.000
(3) 0.009 0.000 - 0.000 0.006 0.000
(4) 0.000 0.011 0.000 - 0.000 0.000
(5) 0.000 0.000 0.006 0.000 - 0.000
(6) 0.000 0.000 0.000 0.000 0.000 -

Table 4 Classification performance of unlearning time series.

Average Minimum Maximum Std. Dev. Accuracy
(1) 0.10164 0.00013 0.26408 0.06479 86.361
(2) 0.09946 0.00000 0.28116 0.06759 87.768
(3) 0.10164 0.00013 0.26408 0.06479 86.225
(4) 0.10094 0.00004 0.26800 0.06745 87.637
(5) 0.10179 0.00002 0.25382 0.06386 86.668
(6) 0.05681 0.00009 0.24771 0.05097 89.683

Table 5 Wilcoxon signed-rank test of classification performance of time
series.

(1) (2) (3) (4) (5) (6)
(1) - 0.258 1.000 0.417 0.959 0.000
(2) 0.000 - 0.258 0.724 0.154 0.000
(3) 0.000 0.000 - 0.417 0.959 0.000
(4) 0.000 0.011 0.000 - 0.386 0.000
(5) 0.000 0.000 0.006 0.000 - 0.000
(6) 0.000 0.000 0.000 0.000 0.000 -

mately 87 for every MLP. The proposed MLP with PGC (6)
has the best average, maximum, and standard deviation. The
MLP with random noise (2) has the best minimum. These
results are similar to those for learning performance.

Table 5 shows the Wilcoxon signed-rank test for the
classification performance. The value of the sampling prob-
ability of the MLP with PGC (6) is less than 0.05 as com-
pared with the others. We can be sure our method has better
performance than the others, because average of the pro-
posed MLP with PGC (6) in Table 4 is less than the others.
Although the value of the sampling probability of the MLP
with random noise (2) is smaller than the value of the con-
ventional MLP, this value is larger than the others. There-
fore, we cannot say that the MLP with random noise (2) is
better than the others.

3.2 Task 2: Proben1

In this simulation, we use Proben1, the benchmark prob-
lems for ANNs [17]. We choose Cancer, Card, and Glass
from the data sets of Proben1. Every data set has multivari-
able inputs and a Boolean supervised signal. The number of
input dimensions and classifications of each task is shown
in Table 6.

Here, the numbers of input dimensions and classifica-
tions for each task depends on the number of input and out-
put neurons, respectively. In addition, the number of neu-
rons in the hidden layer is 40, and the MLP comprises 9-40-
2, 51-40-2 and 9-40-6 for solving Cancer, Card, and Glass,
respectively. The data sets are as in Table 6. Thus, we obtain
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Table 6 Data sets of Proben1.

Num. of Num. of Training Unlearn. Validation
Data inputs class. data sets data sets

Cancer 9 2 350 174 35
Card 51 2 345 172 34
Glass 9 6 107 53 10

Table 7 Learning performance of Proben1.

Average Minimum Maximum Std. Dev. Accuracy
Cancer (1) 0.00569 0.00286 0.01429 0.00132 93.891

(2) 0.00592 0.00287 0.01429 0.00164 94.095
(3) 0.00523 0.00001 0.00858 0.00129 94.404
(4) 0.00578 0.00286 0.01429 0.00141 93.963
(5) 0.00561 0.00286 0.02001 0.00207 93.983
(6) 0.00492 0.00000 0.00858 0.00177 94.255

Card (1) 0.01856 0.00581 0.03479 0.00653 83.553
(2) 0.01886 0.00581 0.03479 0.00638 83.614
(3) 0.01839 0.00581 0.03479 0.00657 89.195
(4) 0.01864 0.00581 0.03479 0.00668 83.556
(5) 0.01886 0.00294 0.03193 0.00610 83.606
(6) 0.01769 0.00002 0.03189 0.00702 83.741

Glass (1) 0.01058 0.00019 0.02942 0.00625 91.169
(2) 0.01091 0.00177 0.02373 0.00547 91.452
(3) 0.00952 0.00010 0.02245 0.00552 92.344
(4) 0.01081 0.00022 0.02411 0.00584 91.476
(5) 0.00903 0.00031 0.05939 0.00755 91.540
(6) 0.00892 0.00031 0.02814 0.00628 91.750

the simulation results from 100 trials for each benchmark
problem, and each trial has 50,000 iterations. Table 7 shows
the learning performance of the MLPs for each benchmark
problem.

In this simulation, the validation accuracies are approx-
imately 94, 83, and 91, in Cancer, Card, and Glass, respec-
tively. On an average, the proposed MLP with PGC (6) is
the best of all for every benchmark task. In the minimum
and maximum results, the proposed MLP with PGC (6) is
the best for Cancer and Card, whereas the MLP with SA
noise (3) has the best minimum and maximum results for
Glass.

Tables 8–10 show results of the Wilcoxon signed-rank
test for each model. In the learning of Cancer, the resulting
evaluation of the proposed MLP with PGC (6) is less than
0.05. We can be sure the our method has better performance
than the others, because average of the proposed MLP with
PGC (6) in Table 7 is less than the others. In contrast, in the
learning of Card, the experimental result of our method is
greater than 0.05. Although we cannot verify the accuracy
of the average, the average result of the proposed method is
better than that of the others. In the evaluation of Glass, the
value of the sampling probability of the MLP with PGC (6)
is less than 0.05 as compared with the conventional MLP
(1), the MLP with random noise (2), and the MLP with ran-
domly timed pulses (4); however, these values are greater
than 0.05 for the MLP with SA noise (3) and the MLP with
a glial pulse (5).

Moreover, we show the classification performance of
the unlearning data sets in Proben1. We input the unlearn-
ing data sets to the trained MLPs and compare outputs of

Table 8 Wilcoxon signed-rank test of learning performance of Cancer.

(1) (2) (3) (4) (5) (6)
(1) - 0.000 0.490 0.000 0.000 0.000
(2) 0.000 - 0.000 0.000 0.000 0.000
(3) 0.490 0.000 - 0.062 0.000 0.004
(4) 0.000 0.000 0.062 - 0.000 0.000
(5) 0.000 0.000 0.000 0.000 - 0.000
(6) 0.000 0.000 0.004 0.000 0.000 -

Table 9 Wilcoxon signed-rank test of learning performance of Card.

(1) (2) (3) (4) (5) (6)
(1) - 0.026 0.086 0.981 0.022 0.795
(2) 0.026 - 0.008 0.075 0.562 0.731
(3) 0.086 0.008 - 0.073 0.006 0.999
(4) 0.981 0.075 0.073 - 0.062 0.631
(5) 0.022 0.562 0.006 0.062 - 0.255
(6) 0.795 0.731 0.999 0.631 0.255 -

Table 10 Wilcoxon signed-rank test of learning performance of Glass.

(1) (2) (3) (4) (5) (6)
(1) - 0.199 0.274 0.102 0.003 0.028
(2) 0.199 - 0.056 0.630 0.000 0.000
(3) 0.274 0.056 - 0.106 0.130 0.211
(4) 0.102 0.630 0.106 - 0.000 0.002
(5) 0.003 0.000 0.130 0.000 - 0.655
(6) 0.028 0.000 0.210 0.002 0.655 -

Table 11 Classification performance of unlearning data set of Proben1.

Average Minimum Maximum Std. Dev. Accuracy
Cancer (1) 0.01686 0.01275 0.01896 0.00110 98.195

(2) 0.01662 0.01312 0.01875 0.00119 98.211
(3) 0.01757 0.01325 0.02202 0.00094 98.220
(4) 0.01671 0.01268 0.01904 0.00111 98.210
(5) 0.01679 0.01358 0.02023 0.00118 98.207
(6) 0.01501 0.01193 0.01872 0.00130 98.280

Card (1) 0.08501 0.07414 0.10364 0.00599 91.431
(2) 0.08498 0.07453 0.10399 0.00592 91.441
(3) 0.08502 0.07411 0.10342 0.00604 91.437
(4) 0.08499 0.07418 0.10365 0.00599 91.433
(5) 0.08500 0.07395 0.10367 0.00593 91.435
(6) 0.08284 0.07044 0.10400 0.00595 91.457

Glass (1) 0.08837 0.08151 0.10872 0.00401 88.255
(2) 0.08889 0.08235 0.10983 0.00430 90.996
(3) 0.08609 0.08284 0.10279 0.00322 91.212
(4) 0.08817 0.08161 0.10847 0.00394 91.074
(5) 0.08709 0.08205 0.10814 0.00405 91.049
(6) 0.08342 0.08073 0.10770 0.00409 91.033

the MLPs with the ideal classifications. In this simulation,
the validation accuracies are approximately 98, 91, and 91,
in Cancer, Card, and Glass, respectively. The classification
performance is shown in Table 11, and the trend of the re-
sults is similar to that of Table 7. In every simulation, the
MLP with PGC (6) obtains the best performance on aver-
age and the minimum for Cancer, Card, and Glass. The
MLP with PGC (6) obtains the best maximum result only
for Cancer; however, the MLP with SA noise (3) obtains the
best maximum result for Card and Glass.

Tables 12–14 show the results of the Wilcoxon singed-
rank test in the classification of Cancer, Card, and Glass,
respectively. The value of the sampling probability of the
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Table 12 Wilcoxon signed-rank test of classification performance of
Cancer.

(1) (2) (3) (4) (5) (6)
(1) - 0.001 0.000 0.000 0.001 0.000
(2) 0.001 - 0.000 0.149 0.034 0.000
(3) 0.000 0.000 - 0.000 0.000 0.000
(4) 0.000 0.149 0.000 - 0.209 0.000
(5) 0.001 0.034 0.000 0.209 - 0.000
(6) 0.000 0.000 0.000 0.000 0.000 -

Table 13 Wilcoxon signed-rank test of classification performance of
Card.

(1) (2) (3) (4) (5) (6)
(1) - 0.436 0.667 0.009 0.145 0.004
(2) 0.436 - 0.293 0.634 0.511 0.008
(3) 0.667 0.293 - 0.561 0.321 0.017
(4) 0.009 0.634 0.561 - 0.370 0.010
(5) 0.145 0.511 0.321 0.370 - 0.026
(6) 0.004 0.008 0.017 0.010 0.026 -

Table 14 Wilcoxon signed-rank test of classification performance of
Glass.

(1) (2) (3) (4) (5) (6)
(1) - 0.000 0.057 0.000 0.045 0.065
(2) 0.000 - 0.001 0.000 0.000 0.021
(3) 0.057 0.001 - 0.360 0.411 0.036
(4) 0.000 0.000 0.360 - 0.862 0.014
(5) 0.045 0.411 0.411 0.862 - 0.063
(6) 0.065 0.036 0.036 0.014 0.063 -

MLP with PGC (6) is less than 0.05 compared with the oth-
ers in Cancer and Card. We can be sure that of the MLP
with PGC (6) has better classification performance than the
others. For Glass, the value of the sampling probability of
the MLP with PGC(6) is less than 0.05 compared with the
MLP with random noise (2), the MLP with SA noise (3),
and the MLP with randomly timed pulses (4); however, the
value of the sampling probability of this MLP is greater than
0.05 compared with the conventional MLP (1) and the MLP
with a glial pulse (5).

3.3 Task 3: Two-Spiral Problem

For the next simulation, we use the two-spiral problem
(TSP), a well-known highly nonlinear task for ANNs [24],
[25]. This task has two sets of different spiral points. For
learning, we input the coordinates of the spirals to the neu-
rons in the input layer, and the MLPs learn the classifica-
tion of two spiral points. Here, we use two different spi-
rals comprising 98 and 130 points, respectively, as shown
in Fig. 6. In the classification performance, we input coor-
dinates between zero and one after learning. We obtain the
output of the network, and determine which coordinates fits
into which spirals. The simulation conditions of each spi-
ral are as in Table 15. Figure 7 shows the ideal results of
the classification of coordinates. We change the coordinates
from zero to one in increments of 0.01 and input the coor-
dinates to the trained MLP. Thus, the number of generated
test data for the analyses of the classification performance is

Table 15 Conditions of TSP.

Data Num. of Num. of Training Unlearn. Validation
inputs class. data sets data sets

98 2 2 98 98 9
130 2 2 130 130 13

Fig. 6 Supervised points. (a) 98 spiral points. (b) 130 spiral points.

Fig. 7 Ideal classification results of two spirals. (a) 98 spiral points. (b)
130 spiral points.

101× 101. Moreover, we ensure the ideal result by calculat-
ing a norm between coordinates and spiral points. Note that
in this simulation, the MLP comprises 2-40-1 neurons.

3.3.1 Spirals Consisting of 98 Points

First, we show the experimental results from learning 98
points in Table 16. In this simulation, the validation accura-
cies are approximately 67; however, the validation accura-
cies of the MLPs are more decentralized than in the previous
simulations. From Table 16, the performance of the conven-
tional MLP (1) is the worst among all for the average error,
because the conventional MLP (1) is often trapped in a local
minimum. In the case of the MLP with PGC (6), the average
error is the smallest of all. Energy is provided to the MLPs
from several sources, and the noise providing energy to the
MLP can generally escape from the local minimum. In ad-
dition, we can see the difference in the performance of the
MLPs from this table.

Table 17 shows the evaluation of the Wilcoxon signed-
rank test in the learning of 98 spiral points. The evaluation
of the MLP with PGC (6) is less than 0.05 compared with
the others; thus, we can be sure of the result of the MLP
with PGC (6) for solving this task. The MLP with SA noise
(3) has a better performance in Table 16; however, the eval-
uation of the Wilcoxon signed-rank test is greater than 0.05.
Hence, we cannot say from this simulation that the MLP
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Table 16 Learning performance for 98 points.

Average Minimum Maximum Std. Dev. Accuracy
(1) 0.04153 0.00017 0.18387 0.02637 73.573
(2) 0.03711 0.00006 0.17352 0.02946 66.674
(3) 0.02957 0.00018 0.09213 0.02080 67.513
(4) 0.03666 0.00015 0.08208 0.02195 66.512
(5) 0.03249 0.00019 0.16390 0.02147 66.948
(6) 0.02072 0.00011 0.08192 0.01782 69.345

Table 17 Wilcoxon signed-rank test of learning performance of 98
points.

(1) (2) (3) (4) (5) (6)
(1) - 0.085 0.001 0.008 0.008 0.000
(2) 0.085 - 0.173 0.592 0.592 0.000
(3) 0.001 0.173 - 0.211 0.211 0.002
(4) 0.446 0.375 0.010 - 0.225 0.000
(5) 0.008 0.592 0.211 0.225 - 0.000
(6) 0.000 0.000 0.002 0.000 0.000 -

Table 18 Classification performance of 98 spiral points.

Average Minimum Maximum Std. Dev. Accuracy
(1) 0.15029 0.08085 0.21127 0.02434 76.811
(2) 0.13966 0.08083 0.20378 0.02879 77.574
(3) 0.13664 0.07611 0.21963 0.02837 81.971
(4) 0.14702 0.07965 0.20083 0.02553 77.171
(5) 0.13805 0.07529 0.20362 0.02468 78.740
(6) 0.12233 0.08140 0.17042 0.01939 80.434

Table 19 Wilcoxon signed-rank test of classification performance of 98
points.

(1) (2) (3) (4) (5) (6)
(1) - 0.005 0.001 0.329 0.001 0.000
(2) 0.005 - 0.370 0.084 0.710 0.000
(3) 0.001 0.370 - 0.006 0.747 0.000
(4) 0.329 0.084 0.006 - 0.016 0.000
(5) 0.001 0.710 0.747 0.016 - 0.000
(6) 0.000 0.000 0.000 0.000 0.000 -

with SA noise (3) has better performance.
We show the classification results in Table 18. The

results show a trend similar to that in Table 16. In gen-
eral, the MLP has an overlearning problem when the MLP
learns more than required, losing its generalization capabil-
ity. However, the proposed MLP with PGC (6) can still ob-
tain better approximation and classification performances.

Table 19 shows the evaluation of the Wilcoxon signed-
rank test as the classification results of the 98 spiral points,
and the trend of the evaluation is similar to that shown in
Table 17. In addition, the evaluation of the MLP with PGC
(6) ensures classification performance.

Figure 8 shows examples of the classification results.
We can see from Fig. 8 that the MLP with PGC (6) draws
only the two spirals; in contrast, the others are decoupled in
some parts.

3.3.2 Spirals Consisting of 130 Points

Here, we show the results of the MLP learning 130 spiral
points. For the TSP, simulation difficulty increases with in-

Fig. 8 Classification results of unlearned coordinates.

creasing number of points. Table 20 shows the approxima-
tion results. In this simulation, the validation accuracy be-
comes approximately 60. The validation accuracies of the
MLPs decrease from the results in Table 16. From this ta-
ble, the differences of the performances are greater than for
Table 16. The conventional MLP (1) falls into the local min-
imum more often than in the learning of 98 spiral points.
Moreover, the MLP with random noise (2), the MLP with
SA noise (3), the MLP with randomly timed pulses (4), and
the MLP with glial pulse (5) have performance similar to
the conventional MLP (1). We often hope that noise is ef-
ficient for highly nonlinear problems; however, we observe
little improvement in learning performance by the methods
of (2)–(5). The proposed MLP with PGC (6) also obtains
energy from the glias; however, this MLP has a performance
twice as good as the others for the average, the maximum,
and the standard deviation. For the minimum, the MLP with
random noise (2) obtains the best results. The minimum of
the MLP with the PGC (6) is almost the same as that of the
MLP with random noise (2). From these results, we can
confirm that the proposed PGC is efficient improving MLP
performance.

Table 21 shows the evaluation of the Wilcoxon signed-
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Table 20 Learning performance of 130 points.

Average Minimum Maximum Std. Dev. Accuracy
(1) 0.12269 0.00831 0.23857 0.05554 61.194
(2) 0.10847 0.00047 0.24278 0.05742 62.847
(3) 0.09735 0.00107 0.24355 0.05356 64.960
(4) 0.11439 0.00740 0.26349 0.05742 59.386
(5) 0.09393 0.00130 0.25378 0.05544 59.386
(6) 0.03830 0.00063 0.12190 0.02589 62.368

Table 21 Wilcoxon signed-rank test of learning performance of 130
points.

(1) (2) (3) (4) (5) (6)
(1) - 0.091 0.001 0.541 0.001 0.000
(2) 0.091 - 0.173 0.514 0.106 0.000
(3) 0.001 0.173 - 0.071 0.682 0.000
(4) 0.541 0.514 0.071 - 0.012 0.000
(5) 0.001 0.106 0.682 0.012 - 0.000
(6) 0.000 0.000 0.000 0.000 0.000 -

Table 22 Classification performance of 130 points.

Average Minimum Maximum Std. Dev. Accuracy
(1) 0.21782 0.10565 0.29477 0.03858 71.968
(2) 0.19278 0.10460 0.33065 0.04434 72.701
(3) 0.19671 0.13272 0.28846 0.03166 75.660
(4) 0.20432 0.12082 0.31958 0.03851 72.451
(5) 0.19397 0.12303 0.29973 0.03730 74.182
(6) 0.14731 0.08792 0.23723 0.02826 75.870

Table 23 Wilcoxon signed-rank test of classification performance of 130
points.

(1) (2) (3) (4) (5) (6)
(1) - 0.091 0.000 0.017 0.000 0.000
(2) 0.000 - 0.403 0.057 0.667 0.000
(3) 0.000 0.403 - 0.186 0.543 0.000
(4) 0.017 0.057 0.186 - 0.051 0.000
(5) 0.000 0.667 0.543 0.051 - 0.000
(6) 0.000 0.000 0.000 0.000 0.000 -

rank test for the learning performance of 130 spiral points.
The evaluation of the MLP with PGC (6) becomes zero;
thus, we can be sure of the result in Table 20.

Table 22 shows the classification results for learning
130 spirals points, and the MLP with PGC (6) is the best
of all by nearly every measure; therefore, we conclude that
pulse propagation is important for MLP performance.

Table 23 shows the evaluation of the Wilcoxon signed-
rank test of classification performance of 130 spiral points.
The evaluation of the MLP with PGC (6) is less than 0.05
compared to the others; thus we can be sure of the differ-
ences in the average results in Table 22.

Figure 9 shows dependencies of learning and classi-
fication performances for the weight of glial effect α in the
proposed MLP with PGC (6). In addition, we show a change
in the performances of the MLP with random noise (2) and
in the MLP with SA noise by changing the amplitudes of the
uniform random and a SA noises, respectively. Note that we
change the weight of the glial effect α and the amplitude
of the uniform random noise from zero to one, and when
α is equal to zero, the proposed MLP with PGC (6) is the

Fig. 9 Dependency of the learning and classification performances for
the weight of glial effect α.

same as the conventional MLP (1). Generally, the learning
performance corresponds with changes in the classification
performance in the proposed MLP with PGC (6). The pro-
posed MLP with PGC (6) has the best result for α equal to
0.5. In contrast, the MLP with random noise (2) has the
best result with the amplitude of the uniform random noise
equal to 0.2 in learning performance. In the case of the MLP
with SA noise (3), the results are nearly unchanged with the
amplitude of the noise at any time. We consider that the
normal distribution noise rarely generates a large value in
the transient state; thus, the dependency of the amplitude
of the noise is lower with SA. From the difference in the
results between the proposed MLP with PGC (6) and the
MLP with random noise (2), the proposed MLP with PGC
(6) can with a larger α than the MLP with random noise
(2), because the glia provide energy to the network instanta-
neously through the generated pulse. Furthermore, we can
use the large noise amplitude for the MLP with SA noise
(3); however, the normal distribution noise is minimally ef-
fective for MLP performance. Thus, the MLP can reduce
the error even if it receives a pulse of large amplitude from
the glia. From this result, we conclude that the proposed
PGC is more suitable for difficult tasks. In fact, our model
improves MLP performance more in more difficult tasks.

Next, we show the dependency of learning perfor-
mance on the number of neurons in the hidden layer of the
MLPs in Fig. 10. We know that the performance of each
MLP improves with the number of neurons, but once the
number of neurons in the hidden layer is greater than 50,
the learning performance decreases or remains on the same
level, because the MLP requires long iterations for conver-
gence when it contains many neurons. In the case of the
MLP with PGC (6), the learning performance is similar to
that of the others when the number of neurons is small. In
addition, when the number of neurons increases, the differ-
ence in performance between the MLP with PGC (6) and the
others increases. Thus, we can consider that the effect of the
glia increases with the number of neurons. In the PGC, the
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Fig. 10 Dependency of learning and classification performance for the
number of neurons in the hidden layer.

pulse is propagated to the other glia. If the number of neu-
rons is small, the pulse propagation finishes instantaneously;
therefore, PGC has no effect on the MLP.

Finally, we show examples of the classification of un-
learned coordinates results in Fig. 11. The conventional
MLP (1) cannot represent the two spirals, and in the MLP
with random noise (2) and the MLP with randomly timed
pulses (4), the spirals are divided into several parts. The spi-
rals of the MLP with SA noise (3) have a false area in the
center of the image. The MLP with glial pulse (5) draw a
part of spirals; however, there exists many errors in the up-
per area of the figure. The spirals of the MLP with PGC (6)
are divided in only one part.

4. Discussions

In this section, we discuss the effects of the PGC on the
MLP.

Firstly, we discuss the updating rule of the weights
based on the BP algorithm. The updating rule of the weights
between the hidden and output layers is as follows.

Δwk j = η(Tk − Ok)Ok(1 − Ok)Hj, (7)

where T is the target point, O is the output of the neuron
in the output layer, H is the output of the neuron, and η is
the learning coefficient in the hidden layer. The updating
rule of the weights between the input and hidden layers is
expressed by Eq. (8).

Δw ji = ηXiHj(1 − Hj)
n∑

k=1

wk j(Tk − Ok)Ok(1 − Ok), (8)

where X is the output of the neuron in the input layer. Equa-
tions (7) and (8) are proportional to H and H(1 − H), re-
spectively. The glial excitation depends on the outputs of
neurons in the hidden layer; hence, we consider the rela-
tionships between the two equations and a neuron’s output
in the hidden layer. The weight update between the hidden
and output layers, and the weight update between the input

Fig. 11 Classification results of unlearned coordinates.

Fig. 12 Input-output characteristics of H(1 − H).

and hidden layers depend on H and H(1 − H), respectively.
The descriptions of H and H(1−H) are illustrated in Fig. 12.
We can see from this figure that the weight update between
the hidden and output layers increases with H and the weight
update between the input and hidden layers decreases when
H becomes greater than 0.5.

Next, we show total updates of the weights and the ra-
tio of the number of pulse generations in each glial cell to
the total iteration in Figs. 13 and 14. We obtain the ratios
of number of iterations and the number of neurons whose
output is greater than the excitation threshold of the glia to
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Fig. 13 Comparison of the total updated weights between the hidden
layer and the output layer and the generated pulse. (a) The conventional
MLP. (b) The proposed MLP.

the total number of iterations.
Figure 13 compares the characteristics of the hidden

and output layers in the conventional and the proposed MLP.
We can see that there is a positive correlation between the to-
tal updates of weights and the number of pulse generations
in Figs. 13 (a) and (b). The characteristics relating to the hid-
den and output layers are in accordance with Eq. (7); how-
ever, the correlation between the total updates of weights
and the number of pulse generations of the proposed MLP
is much weaker than that of the conventional MLP. The cor-
relation coefficient of the conventional MLP is 0.84, while
the correlation coefficient of the proposed MLP is 0.65.

Figure 14 compares the characteristics of the input and
hidden layers in the conventional and the proposed MLP.
We can see that there is a negative correlation between the
total updating weights and the number pulse generations in
Figs. 14(a) and (b). The characteristics relating the input and
hidden layers are in line with Eq. (8); however, the correla-
tion between the total updates of weights and the number of
pulse generations of the proposed MLP is much weaker than
that of the conventional MLP. The correlation coefficient of
the conventional MLP is −0.65, whereas the correlation co-
efficient of the proposed MLP is −0.21.

In the characteristics of the proposed MLP, we can see
the position dependency of the total updates of the weights
at the 20th and 35th neurons. The generated pulse increases

Fig. 14 Comparison of the total updated weights between the input layer
and the hidden layer and the generated pulse. (a) The conventional MLP.
(b) The proposed MLP.

the connected neuron output, and this pulse is propagated
to the neighboring glia. The propagated pulse increases the
outputs of the neighboring neurons irrespective of the in-
ner state of the neighboring neurons, thereby displacing the
learning points of the neighboring neurons. Thus, the up-
dates of the weights in the neighboring neurons are changed,
and the correlation coefficient of the proposed MLP is de-
creased. Therefore, we conclude that the neurons influence
the neighboring neurons through the glial pulse generation,
thereby improving the learning performance of the MLP.

Finally, we investigate the updated weights in detail
when the MLPs learn chaotic time series. The updated
weights are placed into five classes according to the state
of the glial pulse. We periodically obtain the average of the
updated weights of the hidden and output layers that meet
the following requirements for a fixed period and unify the
updated weights obtained from the same requirements of the
neurons. The five types of updated weights are as follows:
(A) dwgp(τgp) is the updated weight when the pulse input to
the excitation threshold of the neuron and the glia is excited
by the connected neuron, (B) dwgp(τgp − 1) is the updated
weight when the pulse is generated, (C) dwrp(τrp) is the up-
dated weight when the neuron receives another glial pulse,
(D) dwrp(τrp − 1) is the updated weight when another glial
pulse was propagated previously, and (E) dwnp(τnp) is the
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Fig. 15 Updated weights at pulse generation and received pulse in the
conventional MLP (1).

updated weight when the connected glial pulse becomes sta-
tistically small. Figures 15 and 16 show the updated weight
in the conventional MLP (1) and the MLP with PGC (6),
respectively, during the iteration.

In Fig. 15, we assume the pulse generation of glia based
on the proposed method; however, this pulse is not input
to the neuron. dwgp(τgp) overlaps with dwgp(τgp − 1), and
dwrp(τrp) overlaps with dwrp(τrp − 1) and dwnp(τnp). Ac-
cording to this characteristic, the updated weight is not in-
fluenced for a short time. Moreover, the updated weight in-
creases when the glia generate the pulse for the connected
neuron because dwgp(τgp) and dwgp(τgp − 1) are larger than
dwrp(τrp), dwrp(τrp − 1), and dwnp(τnp). In the error curve
shown as MSE, the error reduction converges earlier.

In contrast, the error curve oscillates in Fig. 16, and ev-
ery updated weight is different in comparison with Fig. 15.
In particular, we can observe three characteristics, as fol-
lows.

1. dwgp(τgp) is smaller overall than dwgp(τgp − 1). This
means that the updated weight when the glial cell gen-
erates a pulse from the connected neuron is smaller
than that when the neuron receives a pulse from a con-
nected glial cell. As a result of this characteristic, the
glial pulse by which the glial cell is excited by the con-
nected neuron decreases the updated weight, because
the glial pulse increases the output of the connected
neuron. The output of the connected neuron is already
greater when the neuron receives the pulse of the con-
nected glial cell; thus, the output of the connected neu-
ron becomes closer to one as a result of the pulse. Ac-
cording to Fig. 12, the updated weight decreases when
the neuron output is close to one.

2. dwrp(τrp) is larger overall than dwrp(τrp − 1). This
means that the updated weight when the neuron re-
ceives the propagated pulse from another glial cell is
greater than when another glial pulse was previously
propagated. As a result of this characteristic, the other
glial pulse increases the updated weight because this

Fig. 16 Updated weights at pulse generation and received pulse in the
MLP with PGC (6).

pulse increases the output neuron irrespective of the
previous output of this neuron.

3. dwnp(τnp) is similarly small to dwrp(τrp − 1). As a re-
sult of this characteristic, the weight is slowly updated
when the glial pulse becomes statistically small.

Overall, we conclude that the MLP with PGC (6) can
find the various solutions because the updated weights are
changed in various ways by the glial pulse. Moreover, the
updated weight becomes small when the glial pulse becomes
statistically small. Then, the MLP with PGC (6) can search
specifically for the solution. In fact, the error curve shows
that the MLP with PGC (6) obtains various solutions during
the iteration and finds a better solution at the end of learning.

5. Conclusions

In this study, we proposed an MLP with PGC. The PGC was
inspired by the biological features of glia, and we connected
the glia to hidden layer neurons. Glial cells generate a pulse
depending on the output of a connected neuron. The pulses
affect the neighboring glial cells and the excitation thresh-
old of the connected neuron. For updating weights, we also
found that the position relationships depend on the gener-
ation of the pulses. Finally, we confirmed through three
different simulations that the proposed MLP had better ap-
proximation and classification performance than the conven-
tional and other MLPs. In our future works, we will verify
the correlation between the position of the neuron in the hid-
den layer and the pulse generation.
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