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A new approach for designing the Biorthogonal Wavelet Filter Bank (BWFB) for the
purpose of image compression is presented in this paper. The approach is broken into
two steps. First, an optimal filter bank is designed in the theoretical sense, based on
Vaidyanathan’s coding gain criterion in the SubBand Coding (SBC) system. Then, the
above filter bank is optimized based on the criterion of Peak Signal-to-Noise Ratio

(PSNR) in the JPEG2000 image compression system, resulting in a BWFB in practical
application sense. With the approach, a series of BWFBs for a specific class of applica-
tions related to image compression, such as gray-level images, can be quickly designed.
Here, new 7/5 BWFBs are presented based on the above approach for image compression
applications. Experiments show that the 7/5 BWFBs not only have excellent compres-
sion performance, but also easy computation and are more suitable for VLSI hardware
implementations. They perform equally well with respect to 7/5 filters in the JPEG2000
standard.
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1. Introduction

The Discrete Wavelet Transform (DWT) has been widely applied in the domain
of image compressions.1 For its excellent performance, DWT was selected as a
core algorithm for the new standard, JPEG2000,2,3 where its implementation was
accomplished based on the lifting scheme4–7 using the two-channel Biorthogonal
Wavelet Filter Banks (BWFB).8 The BWFB can perform well in removing aliasing
distortion, amplitude distortions, and phase distortions in the reconstructed image;
thus, they are highly suitable for image compression applications. The evaluation
criteria for a filter bank which tests its impulse response and step response in
addition to regularity were also derived by Villasenor et al.9 In addition, based on
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these criteria, several filters that belong to the BWFB were proposed by Villasenor
et al. for implementing the DWT. Furthermore, based on the theoretical results,
the Peak Signal-to-Noise Ratio (PSNR)10 of reconstructed images is then taken
into account as a criterion for finding the optimal BWFB in the practical sense.
Although numerical wavelet filters are available, there are still great difficulties in
finding an optimal one for image compression applications. Many algorithmic issues
aiming at these are not solved yet. The early studies in this field mostly focused
on selecting a wavelet basis in the time domain.11–13 However, the wavelet filter
design in the frequency domain (z transform) is simpler than that based on the
time domain design,14–16 and the obtained wavelet filter can immediately be used
to implement the DWT in an image compression system using the lifting scheme.

However, the majority of the referred design approaches for finding the opti-
mal filter are from the view of theoretical investigation; they are based on one
criterion or tradeoff among several criteria generally, i.e. they do not consider the
PSNR criterion of the reconstructed image in the image compression system. A
new design approach is proposed here which is based on the PSNR criterion to find
the optimal BWFB for extending the JPEG2000 image compression system. In
the approach, first, the one-dimensional functional relation between general BWFB
and their lifting scheme is derived with respect to a free lifting parameter. Next,
in the SBC system, an optimal value is drawn for the lifting parameter based on
Vaidyanathan’s coding gain criterion, which at the same time decides a series of
filter banks with their lifting parameters. Then, Daubechies’ regularity theorem is
employed to determine the compact interval in which the free lifting parameter
can be included. Finally, these filter banks are integrated into the Jasper1.701.0,
which is a verification system provided by JPEG2000, resulting in an expandable
multi-kernel system for image compression. The system integrates an independent
quantization algorithm and EBCOT coding. At the same time, the lifting param-
eter is quantized with the interval of 0.01 for generating a series of filter banks,
which are then used for the compression task. The compression results are then
used for determining the best filter bank.

The paper is devoted to finding a suitable wavelet kernel for image compres-
sion with the requirement that its performance is at least equal to the 7/5 filters
provided by JPEG2000. At the same time, the suitable wavelet kernel must be
decided with all rational parameters, which results in a computational advantage
and ease of VLSI implementation superior to that in the current JPEG2000 stan-
dard. The paper is organized as follows. In Sec. 2, the one-dimensional functional
relation between general BWFB and their lifting scheme is derived with respect to
a free lifting parameter. In Sec. 3, a theoretical approach for designing the BWFB is
presented using the image model of first-order Markov process as input and based
on the Vaidyanathan coding gain criterion in the SBC system. In Sec. 4, an opti-
mization approach for the BWFB designed in Sec. 3 is presented using actual gray-
level image samples and based on PSNR criterion in the expandable multi-kernel
JPEG2000 image compression system, as well as the new 7/5 BWFB are proposed
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using our approach that is applied to image compression. Finally, in Sec. 5, we
conclude the paper.

2. Wavelet Lifting Scheme

The wavelet lifting scheme has been introduced for an efficient computation to the
DWT because its computation speed is two times that of the convolution-based
Mallat algorithm. Its main advantage with respect to the classical BWFB structure
rests within its better computation efficiency, and in fact it enables us to use the
new approach for designing the BWFB.

2.1. Lifting scheme of the BWFB

We consider a two-channel filter bank and suppose a symmetric FIR compactly
supported BWFB {H0(z), H1(z), G0(z), G1(z)}. H0(z) and G0(z) denote low-pass
filters. H1(z) and G1(z) denote high-pass filters for analysis and synthesis stages,
respectively. They are as follows:



H0(z) = h0 +
n∑

i=1

hi(zi + z−i)

G0(z) = g0 +
m∑

j=1

gj(zj + z−j).

(2.1)

The coefficients of low-pass filters H0(z) and G0(z) are denoted by hi (i =
1, 2, . . . , n) and gj (i = 1, 2, . . . , m), respectively. Let the BWFB satisfy the Perfect
Reconstruction (PR) condition, so H1(z) and G1(z) denoting high-pass filters for
analysis and synthesis stages are respectively given by{

H1(z) = z−1G0(−z−1)

G1(z) = z−1H0(−z−1).
(2.2)

The polyphase representations of both low-pass filters H0(z) and G0(z) are
expressed as {

H0(z) = H0e(z2) + z−1H0o(z2)

G0(z) = G0e(z2) + z−1G0o(z2).
(2.3)

By using the Euclidian algorithm, the polyphase matrix of the BWFB can be
represented as

P̃ (z) =

[
H0e(z) G0e(z)

H0o(z) G0o(z)

]
=

q∏
i=1

[
1 Si(z)

0 1

][
1 0

Ti(z) 1

]
K 0

0
1
K




=
r/2∏
i=1

[
1 α2i−1(1 + z−1)

0 1

][
1 0

α2i(1 + z) 1

]K 0

0
1
K


 (2.4)
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where r is the smallest number for which H0o(z) = 0 while calculating the Greatest
Common Divisor (GCD) to H0e(z) and H0o(z), and q = r/2+1, where q represents
the total lifting steps required. Moreover, K is a normalization constant, Si(z)
and Ti(z) denote primary and dual lifting polynomials, and α2i−1 and α2i denote
primary and dual lifting parameters, respectively. Generally, a lifting scheme starts
with low-pass filtering, but in the case of n of Eq. (2.1) being an odd number,
α1 is zero, and then it starts with high-pass filtering. According to Eq. (2.4), we
can establish one functional relation between the coefficients of the BWFB and the
lifting parameters of the lifting scheme. We assemble them as{

hi = fhi(α1, α2, . . . , αr)

gj = fgj (α1, α2, . . . , αr).
(2.5)

In addition, from wavelet properties and their normalization conditions we can get


h0 + 2
n∑

k=1

hk = 1

g0 + 2
m∑

k=1

gk = 1,

(2.6)




h0 + 2
n∑

k=1

(−1)khk = 0

g0 + 2
m∑

k=1

(−1)kgk = 0.

(2.7)

Finally, we derive all the coefficients of the BWFB and the lifting parameters of the
lifting scheme according to Eqs. (2.5)–(2.7), which are the functions with respect
to one parameter α1 as below


αi = fαi(α1)

hj = fhj (fαi(α1))

gj = fgj (fαi(α1)).

(2.8)

Therefore, the design and optimization procedure of the BWFB are greatly sim-
plified by using Eq. (2.8). In particular, Eq. (2.8) is very convenient for analyzing
the coding gain of the SBC system, the PSNR of the reconstructed images, and the
computational complexity and suitability of VLSI hardware implementations.

2.2. Regularity property of the BWFB

To find the BWFB {H0(z), H1(z), G0(z), G1(z)} for image compression, the regu-
larity condition of the BWFB must be satisfied. Let N1 and N2 denote the num-
bers of the vanishing moments of low-pass filters on analysis and synthesis stages,
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respectively. We employ Daubechies’ theorem to determine the interval that the
free lifting parameter α1 can be included, and then we have{

H0(z) = [(1 + z−1)/2]N1F (z)

G0(z) = [(1 + z−1)/2]N2Q(z)
(2.9)

where F (z) and Q(z) are both trigonometric polynomials for free lifting parameter
α1. By using Daubechies’ theorem, we have the following inequalities


sup

t∈R,|z|=1

|F (z)F (z2) · · ·F (zk1−1)|1/k1 < 2N1−1/2

sup
t∈R,|z|=1

|Q(z)Q(z2) · · ·Q(zk2−1)|1/k2 < 2N2−1/2
(2.10)

where k1 and k2 are integers. Thus we can determine the interval with respect to the
free lifting parameter α1 to design and optimize the BWFB respectively for image
compression applications. In general, Eq. (2.10) also indicates restriction conditions
in the design of the BWFBs for image compression.

3. Design of the BWFB

This section will design the BWFB based on the coding gain criterion in the SBC
system. We adopt two-channel filter banks to implement the subband coding with
an input image of model, which is the first-order Markov process with an input
signal of Gaussian white noise. From Ref. 17, the Power Spectral Density (PSD)
function of the first-order Markov process is expressed as

Sxx(ejω) =
1

1 + ρ2 − 2ρ cosω
. (3.1)

The SBC system is shown in Fig. 1. The subband noises are uncorrelated and
remain after passing through the synthesis filter, then from Ref. 18 the output
noise variance on the SBC system can be written as

σ2
SBC =

C

M

M∑
k=1

2−2bk
1
2π

∫ π

−π

|Gk(ejω)|2 dω · 1
2π

∫ π

−π

Sxx(ejω)|Hk(ejω)|2 dω (3.2)

H0(z) G0(z)

H1(z) G1(z)

HM-1(z) GM-1(z)
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Fig. 1. M -channel SBC system for implementing the DWT.
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where C is some constant which depends on the statistics of each bank signal,
M is the band number of filter banks and equals 2, and Hk(z), k = 0, 1 denotes
both H0(z) and H1(z), which are low-pass and high-pass filters on the analysis
stage. Similarly Gk(z), k = 0, 1 denotes both G0(z) and G1(z), which are low-pass
and high-pass filters on synthesis stages, respectively. Sxx(ejω) denotes the PSD
function given by Eq. (3.1). bk are the numbers of bits allocated to the kth channels,
to which we quantize the input signal. Without any subband decomposition, that
is, with just Pulse Coding Modulation (PCM), the noise variance can be written as

σ2
PCM = C2−2bσ2

x = C2−2b 1
2π

∫ π

−π

Sxx(ejω) dω (3.3)

where b is the average bit rate. Therefore we can obtain the coding gain which was
defined as the ratio of the above variances as follows:

G =
σ2

PCM

σ2
SBC

=
[
2−2b 1

2π

∫ π

−π

Sxx(ejω) dω

]

÷
[

1
M

M∑
k=1

2−2bk
1
2π

∫ π

−π

|Gk(ejω)|2 dω · 1
2π

∫ π

−π

Sxx(ejω)|Hk(ejω)|2 dω

]
.

(3.4)

Because one of the optimization steps is an optimal bit allocation, we can use this
step to minimize the denominator. The optimal bit allocation turns the sum in the
denominator into a product. So the following expression for the coding gain under
optimal bit allocation is derived as follows:

Gopt =
[

1
2π

∫ π

−π

Sxx(ejω) dω

]

÷

( M∏

k=1

1
2π

∫ π

−π

|Gk(ejω)|2 dω · 1
2π

∫ π

−π

Sxx(ejω)|Hk(ejω)|2 dω

)1/M

 .

(3.5)

In general, the relations of adjacent samples of the image model in horizontal and
vertical directions are supposed to be the same, and ρh = ρv = ρ = 0.95. When
we combine Eqs. (2.1), (2.2), (3.1) and (3.5), the one-dimensional function Gopt in
optimal coding gain with respect to the free lifting parameter α1 can be derived.
Moreover, according to dGopt(α1)/dα1 = 0, we obtain the optimal BWFB in terms
of the theory defined by α1 that the optimal coding gain reach the maximum
value in SBC system, thus all the coefficients and lifting parameters of the BWFB
which are calculated based on Vaidyanathan optimal coding gain criterion can be
determined by Eq. (2.8).
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4. Results and Discussion

In general, the optimal BWFB in the theoretical sense designed in Sec. 3 cannot
achieve the best performance in practical image compression applications. There-
fore, the sequential step must be taken to further optimize the above BWFB using
the PSNR criterion for practical image compression applications. For this purpose,
we establish an image compression verification system, which is based on verifica-
tion software Jasper 1.701.0 with quantization and EBCOT coding algorithm in
the JPEG2000 standard.19,20 It supports multi-kernel BWFB for image compres-
sion applications, and all the filter coefficients and their lifting parameters only
depend on the free lifting parameter α1. Thus we can select the interval according
to the result calculated in Sec. 3 and Eq. (2.10) to determine the finite number
of free lifting parameter α1 quantized by step size 0.01, and each α1 value in this
interval defines a BWFB. Finally, we take these BWFB with respect to a set of
free lifting parameters α1 to realize the image compression automatically and very
continuously in our verification system, and then obtain the optimal BWFB in
practical image compression application based on PSNR criterion. This section will
provide a new 7/5 BWFB defined by our approach applied to images, which is a
popular gray-level test image, Lena.bmp (512 × 512 pixels × 8 bits).

4.1. Design of 7/5 BWFB

In Eq. (2.1), if n = 3, m = 2, then both low-pass filters on analysis and synthesis
stages of the 7/5 BWFB are given by



H0(z) = h0 +
3∑

i=1

hi(zi + z−i)

G0(z) = g0 +
2∑

j=1

gj(zj + z−j).

(4.1)

According to Eq. (2.3), the polyphase representation of the 7/5 BWFB for both
low-pass filters on analysis and synthesis stages are as follows, respectively{

H0e(z) = h0 + h2(z + z−1)

H0o(z) = h1(z + 1) + h3(z2 + z−1),
(4.2)

{
G0e(z) = g0 + g2(z + z−1)

G0o(z) = g1(z + 1).
(4.3)

And according to Eq. (2.4), the polyphase matrix of the 7/5 BWFB is given by

P̃ (z) =

[
H0e(z) G0e(z)

H0o(z) G0o(z)

]

=

[
1 0

α2(1 + z) 1

][
1 α3(1 + z−1)

0 1

]
·
[

1 0

α4(1 + z) 1

]K 0

0
1
K


 . (4.4)
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The functional relations between coefficients of the 7/5 BWFB19–22 and their
lifting parameters of lifting scheme are as follows:



h0 = (1 + 2α3α4)K

h1 = [(1 + 2α2α3)α4 + (1 + α3α4)α2]K

h2 = α3α4K

h3 = α2α3α4K

g0 = (1 + 2α2α3)/(2K)

g1 = −α3/(2K)

g2 = α2α3/(2K).

(4.5)

Using Eq. (4.5) and a normalization condition of wavelet filter coefficients, we can
obtain that the first lifting parameter α1 is a constant and equals zero, and then
we derive all the filter coefficients for free lifting parameter α2 as follows:



h0 = (2α2 + 3)/[4(2α2 + 1)]

h1 = −(2α2
2 − 5α2 − 2)/[8(2α2 + 1)]

h2 = (2α2 − 1)/[8(2α2 + 1)]

h3 = [α2(2α2 − 1)]/[8(2α2 + 1)]

g0 = (α2 + 1)/2

g1 = 1/4

g2 = −α2/4.

(4.6)

We combine Eqs. (2.2), (3.1), (3.5), (4.1) and (4.6) to calculate the Gopt with respect
to free lifting parameter α2. Gopt(α2) is plotted in Fig. 2, and it is known that when
α2 equals −0.3142, Gopt(α2) reaches the maximum value of magnitude.

4.2. Optimization of 7/5 BWFB

In order to optimize the 7/5 BWFB designed in Sec. 4.1, we first choose the interval
of free lifting parameter α2, in which each α2 can only define a 7/5 BWFB with
step 0.01 for all the samples of this interval. We then take these 7/5 BWFBs to
realize image compression automatically and very continuously. Then, the optimal
7/5 BWFB, when being applied to practical image compressions, can be found
based on PSNR criterion. Where the vanishing moments N1 and N2 of the 7/5
BWFB are all 2, and if k1 = k2 = 20, Eq. (2.10) holds for α2 ∈ [−0.11, 0.50]. The
interval of free lifting parameter α2 can be selected by the above computational
result and Eq. (2.10), so the interval [−0.50, 0.50] is selected. In order to illustrate
conveniently, the results in parts of the interval selected are plotted in Fig. 3.

The results show that when the free lifting parameter α2 equals 0.10, the max-
imum PSNR value of the reconstructed image are obtained in terms of statistical
ideas, and this α2 uniquely defines a 7/5 BWFB by Eq. (4.6). In addition, one
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Fig. 2. Free parameter α2 for the 7/5 BWFB.

Fig. 3. Free parameter α2 for 7/5 BWFB (C.R. = 16 : 1).
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result of the objective comparison results for image compression performance using
different test images and different filters are shown in Table 1.

The coefficients of 7/5 BWFB and its lifting parameters are shown in Tables 2
and 3.

The coefficients of the 7/5 filter in JPEG2000 part II and its lifting parameters
are shown in Tables 4 and 5.

The objective comparison results for image compression performances using the
7/5 BWFB are shown in Table 6.

The subjective comparison results are excellent between 7/5 BWFB and 7/5
filter in the JPEG2000 standard as shown in Fig. 4.

Table 1. Compression performance in the reconstructed image in PSNR/dB (C.R = 16:1)

Table.I-1

Free Parameter 0.00 0.01 0.02 0.03 0.04

women.bmp 34.106045 34.176065 34.216773 34.255802 34.292583
peppers.bmp 35.522636 35.509923 35.549724 35.536380 35.558725
lena.bmp 34.653684 34.659786 34.662632 34.690112 34.664104

Table.I-2

Free Parameter 0.05 0.06 0.07 0.08 0.09

women.bmp 34.277509 34.285669 34.295206 34.300209 34.308034
peppers.bmp 35.360044 35.567384 35.558003 35.570439 35.552238
lena.bmp 34.692596 34.661845 34.628390 34.643379 34.609546

Table.I-3

Free Parameter 0.10 0.11 0.12 0.13 0.14

women.bmp 34.300399 34.281561 34.264215 34.247024 34.253355
peppers.bmp 35.522906 35.504107 35.458867 35.419809 35.430412
lena.bmp 34.581566 34.569732 34.580034 34.549179 34.500686

Table.I-4

Free Parameter 0.15 0.16 0.17 0.18 0.19 0.20

women.bmp 34.220783 34.187325 34.174147 34.129254 34.088997 34.088363
peppers.bmp 35.394931 35.381370 35.344401 35.287850 35.232024 35.183696
lena.bmp 34.452617 34.422441 34.376072 34.335217 34.285304 34.240994

Table 2. The coefficients for the 7/5 BWFB.

Analysis Filters Synthesis Filters

k Low-Pass Filter High-Pass Filter Low-Pass Filter High-Pass Filter

hk h̃k gk g̃k

0 2
3

11
20

11
20

2
3

±1 31
120

− 1
4

1
4

− 31
120

±2 − 1
16

− 1
40

− 1
40

− 1
16

±3 − 1
120

1
120
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Table 3. Lifting parameters
for the 7/5 BWFB.

Parameters Values

α2
1
10

α3 − 5
12

α4
6
25

K 5
6

Table 4. The coefficients for the 7/5 filter.

k Analysis Filters Synthesis Filters

Low-Pass Filter High-Pass Filter Low-Pass Filter High-Pass Filter

hk h̃k gk g̃k

0 79
116

27
50

27
50

79
116

±1 373
1450

− 1
4

1
4

− 373
1450

±2 − 21
232

− 1
50

− 1
50

− 21
232

±3 − 21
2900

21
2900

Table 5. Lifting parameters
for the 7/5 filter.

Parameters Values

α2
2
25

α3 − 175
406

α4
609
2500

K 25
29

Table 6. Results of comparison between 7/5 BWFB and 7/5 filter in
PSNR/dB.

Compressions 8:1 16:1 32:1 64:1 128:1
Ratios (C.R.)

7/5 BWFB 37.718118 34.581566 31.718073 28.952086 27.271790
α2 = 0.10

7/5 Filter 37.725914 34.643379 31.691242 28.951855 27.347160
α2 = 0.08

5. Conclusions

This paper presented a novel approach, which adopted both coding gain criteria
and PSNR criteria to design and optimize the BWFB, respectively. Moreover, using
the approach, 7/5 BWFB applied to image compression were proposed. The 7/5
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(a) Original (b) 7/5 BWFB C.R = 32:1

(c) 7/5 Filters C.R = 32:1

Fig. 4. Subjective comparison using 7/5 BWFB and 7/5 filter.

BWFBs not only have lower computational complexity but also are more suit-
able for VLSI hardware implementation than 7/5 filter in the JPEG2000 standard
part II.
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