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• We investigate a forestry catastrophe insurance model via metapopulation and Escape Time.
• Parameters are estimated with real data set of China.
• Probability of loss and its payment time are respectively investigated.
• An optimal payment time of insurance can be found.
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a b s t r a c t

A forestry catastrophe insurance model due to forestry pest infestations and disease
epidemics is developed by employing metapopulation dynamics and statistics properties
of Mean Escape Time (MET). The probability of outbreak of forestry catastrophe loss and
the catastrophe loss payment time with MET are respectively investigated. Forestry loss
data in China is used for model simulation. Experimental results are concluded as: (1) The
model with analytical results is shown to be a better fit; (2) Within the condition of big
area of patches and structure of patches, high system factor, low extinction rate, high
multiplicative noises, and additive noises with a high cross-correlated strength range, an
outbreak of forestry catastrophe loss or catastrophe loss payment due to forestry pest
infestations and disease epidemics could occur; (3) An optimal catastrophe loss payment
timeMETdue to forestry pest infestations and disease epidemics can be identified by taking
proper value of multiplicative noises and limits the additive noises on a low range of value,
and cross-correlated strength at a high range of value.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Insurance is designed to secure the relatively infrequent loss events in many spheres of life. Compared to other insurance
products, forestry catastrophe insurance is among the most difficult to develop. Miranda [1] built a crop yield insurance
model based on Johnson’s [2] hedgingmodel and applied it to Kentucky soybean farms. She assumed that the crop insurance
coverage levelswas the only selective choice for farmers. And farmer’s utility could bemaximized byminimizing his revenue
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variance. After that, Smith, Chouinard and Baquet [3] improved Miranda’s insurance model and implemented it to wheat
farmers in Montana and France. Skees, et al. [4] used an empirical model based on the coefficient of variation of a portfolio
of several crops, and the results showed that nearly 29% of the aggregated regional revenue risk could be reduced. The
aggregated data was used by Skees, Hazell and Miranda [5] in insurance discussion. Raushan and Gunnar combined the
mean–variance(MV) approachwith SecondDegree StochasticDominance(SSD) [6] criterion for an expectedutility consistent
empirical procedure. Areas that are affected by forestry infestations and disease epidemics are typically huge. This raises the
issue of systemic risk, or, put differently, spatial correlation of yield losses. Roberts [7] puts forth the painted apple moth
Teia (an insect)would pose a threat to New Zealand’s forest industry and forest reserves, so the need for forestry infestations
and disease epidemics mechanisms has increased dramatically. Vado Sequeira, Ligia [8] believed that forestry products are
vulnerable to random changes in weather, pest infestations and disease epidemics. The interaction between various kinds of
agricultural technologies, extreme weather risks and agricultural insurance were explored. However, the crop yield losses
are generally difficult to determine, Multi-peril Crop Insurance (MPCI) is used to protect against different causes of yield
losses [9]. MPCI calculates insured yield as a percentage of the historical average yield for insured plot. When realized yield
is under the insured yield, the difference between realized yield and insured yield is paid as an indemnity [10]. A stochastic
model with endogenous and exogenous periodicities is also to model the crop yield losses due to pests and diseases [11].

As a significant sector of Chinese economy, forestry industry and forestry reserves are seriously affected by forestry pest
infestations and disease epidemics. Pest infestations and disease epidemics were recognized as two of the most important
threats to exotic plantation forestry [12]. Su et al. [13] showed that the annual losses approximated to 88 billion Yuan,
in which the direct economic losses were about 14.5 billion Yuan and the ecological losses were about 73.5 billion Yuan,
resulting from some main forest pests infestations and disease epidemics from 1996 to 2001. Yan and Cai [14] analyzed
Chinese forestry pest infestations incidence data, and concluded that over 14.67 billion dollars losseswere caused by forestry
pest infestations anddisease epidemics. JINM-T [15] believed that forest insurance is an effectivemethod for Chinese forestry
industry development and forestry reserves. Under the consideration of China’s economic and ecological benefits, to apply
forestry catastrophe insurance in impacts of forestry pest infestations and disease epidemics should be addressed. By using
cluster analysis method Zhao andWang [14] quantified the risk of forestry pest infestations with an index. And an insurance
product for forest pest infestations was proposed on the ground of the index. Carlson [16] suggested that the increasing
availability of crop damage insurance reduced the use of pesticide in crop.

Some research convinced evident that standard finance models are for short of covering the complicities of empirical re-
search in the area of forests insurance, therefore new ideas andmodels fromPhysics are called for [17]. As an interdisciplinary
field, Econophysics [18] applies statistical physics theories, methods and models to analyze economic and financial prob-
lems. Various econophysicists have introducedmodels for price fluctuations in financial markets or proposed original points
of view on establishedmodels. What is more, several scaling lawswas found in various economic data. Exerting the strength
of quantitative analysis, Econophysics is also applied in solving insurance problems, in which uncertainty or stochastic pro-
cesses and nonlinear dynamics are used. In areas of metastable systems [19,20], bistable system [21,22], Malthus–Verhulst
stochastic model [23,24], randomly switching piece-wise metastable linear potential [25], the growth of tumor influenced
by external fluctuations and periodic treatment [26], a self-propelled Janus particle [27], a ecological system [28–32],
an energy depot model [33] and a synthetic gene circuit [34], the effects of noise on the stability of the system with the
escape time and stochastic resonance were vastly used. MET is a terminology used in Physics to describe the interval of a
particle in certain region, portrays the statistics properties of transit issues in nonlinearly system. The statistics properties of
MET were studied in market systemwith stochastic volatility, especially in analysis the stability of stock price, representing
the time of the stock price staying in a price range [35–37].

We employed the statistics properties of MET in catastrophe risk due to forestry pest infestations and disease epidemics.
This study analyzes the appraisal of loss and method for catastrophe risk characterization due to forestry pest infestations
and disease epidemics. Section 2 defines the lossmodel due to forestry pest infestations and disease epidemics and estimates
the corresponding parameters according to an empirical study on pest incidence data of 15 cities in China. The expected value
of loss payment is analyzed based on the proposed loss model in Section 3. Meanwhile, the correlation between expected
value of loss payment and deductible is estimated, in addition, the probability density function (PDF) obtained from the
sample data and the PDF based on proposed model are compared, and the full deductible and full indemnity are quantified
respectively. In Section 4, the MET of catastrophe loss payment occurring is gained lay by the mean escape time defined as
above. Conclusions and future works are presented in Section 5.

2. The loss model due to forestry pest infestations and disease epidemics

The loss caused by forestry pest infestations and disease epidemics is given based the metapopulation model proposed
by Hanski, Wahlberg and Ovaskainen [38,39]. Then the simplified model can be obtained after assuming theoretically that:
(i) the spatial structures of patches satisfy the coupledmap lattice, and (ii) these patches are possessed of identical structural
characteristics and qualities, their probabilities occupied at any time are equal to each other [38]. The loss can be defined as:

dl
dt

=
l2(1 − l)

l2 + y2/A2 −
e
Ab l − lξ (t) + η(t), l ∈ [0, 1], (1)

where l(t) is the rate that patch is occupied by forestry pest infestations and disease epidemics at time t; y = 1/(fc1/2), and
f is the structure factor of patches, f =

∑
j̸=iea

dij , 1/a gives the average migration distance and dij is the distance between
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patches i and j; A is the area of patch and b is a parameter of the system; c and e represent the colonization and extinction
rate parameters, ξ (t) and η(t) are the Gaussian white noise respectively as following properties:

⟨η(t)⟩ = ⟨ξ (t)⟩ = 0,

⟨η(t)η(t ′)⟩ = 2Dδ(t − t ′),

⟨ξ (t)ξ (t ′)⟩ = 2αδ(t − t ′),

⟨η(t)ξ (t ′)⟩ = 2λ
√
Dαδ(t − t ′), (2)

D and α denoting noise intensities and λ being a cross-correlated strength.
The potential

V (l) =
1
2
(1 +

e
Ab )l

2
− l +

y
A
arctan(

A
y
l) −

y2

2A2 ln(l2 +
y2

A2 ) (3)

corresponding to Eq. (2) has an unstable state at lu = 0 and a non-trivial equilibrium state at ls of the system in l ∈ [0, 1].
ls denotes the steady-state value of ⟨l(t)⟩ and be calculated from the equation f (ls) = 0 with ls ∈ (0, 1]. The non-trivial
equilibrium state is given by Eq. (1) with the parameters in Ref. [38]:

ls =

1 +

√
1 − 4(1 +

e
Ab
) ey2

Ab+2

2(1 +
e
Ab
)

. (4)

By the Novikov theorem and the Fox approach, the approximate Fokker–Planck equation (AFPE) [40–42] can be obtained
that:

∂P(l, t)
∂t

= −
∂

∂ l
A(l)P(l, t)dl +

∂2

∂ l2
B(l)P(l, t)dl, l ∈ [0, 1], (5)

where P(l, t) is the probability distribution function, A(l) and B(l) respectively read:

A(l) = f (l) + Dl − λ
√
Dα, (6)

B(l) = Dl2 − 2λ
√
Dαl + α, (7)

where

f (l) =
l2(1 − l)

l2 + y2/A2 −
e
Ab l. (8)

The stationary PDF of Eq. (5) is expressed as:

Pst (l) =
N
B(l)

exp(−U(l)/D), (9)

where N is a normalization constant, U(l) is the modified potential which given by :

U(l) = −

∫ l

0

z2(1−z)
z2+y2/A2

−
e
Ab
z

z2 − 2λ
√

α/Dz + α/D
dz. (10)

Parameters in Eq. (1) or (9) are estimated by minimizing the mean-square errors:
∑

l(P
Data(l)− PModel(l))2, where PData(l)

is the probability densities derived from the real loss data by using kernel density estimation, and PModel
t (l) is the probability

densities calculated from Eq. (9) or simulated from Eq. (1). Incidence data of forest pests of 15 cities in China from 2005
to 2014 are used. The data comes from China Knowledge Resource Integrated Database. The loss ratios are obtained by
dividing the yearly incidence of forest pests by the historical average yields. The data set consists of 150 samples. The mean
µ of loss is 0.09789, the standard deviation σ is 0.08325, the minimum is 0.00335, the Median is 0.06814 and the maximum
is 0.44182. The following estimates are obtained: Â = 2.30836, b̂ = 0.744386, ŷ = 0.192071, ê = 8.48628, D̂ = 8.02888,
α̂ = 0.0127618 and λ̂ = 0.944168. Based on the above parameters estimated using the sample loss data, we show the
comparison of the probability density function Pappr vs. loss between real data and theoretical result in Fig. 1. The Pappr of
real data is calculated by the kernel density estimation with the bandwidth 0.01. The analytical result is computed from
the Eqs. (9) and (10). The simulated result is obtained from Eqs. (1) and (2). Relatively agreement between real data and
theoretical results can be observed in Fig. 1.
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Fig. 1. A comparison of Pappr between real data and theoretical result.

3. The indemnity of forestry catastrophe insurance

The insurance company pays the indemnity xwhenever forest losses l due to pests exceed the deductible q. For simplicity,
the indemnity of forestry catastrophe insurance is defined as

x =

⎧⎪⎨⎪⎩
PH if l ≥ lH

PH
l − q
lH − q

if q < l < lH

0 if l ≤ q

, (11)

lH is the upper limit loss for the indemnity, PH is the upper limit of indemnity (maximum loss payment). The loss l of x can
be written as

l =
lH − q
PH

x + q, x ∈ (0, PH ). (12)

Finally, from Eqs. (9) and (12), we obtain the following PDF of x:

Px(x) = Pst (l(x))|h
′

(x)|

=
(lH − q)N

PHB(
lH−q
PH

x + q)
exp(−U(

lH − q
PH

x + q)/D), x ∈ (0, PH ). (13)

The probability of not paid is

Px(x = 0) =

∫ q

0
Pst (l)dl. (14)

After a huge disasters occur, the probability of full compensation is

Px(x = 1) =

∫ 1

lH

Pst (l)dl. (15)

Considerµ±σ range as the range of insurance indemnity, q = µ−σ and lH = µ+σ , i.e., q = 0.01464 and lH = 0.18114
based on the data of above section. Fix PH = 1 for 100%.

Fig. 2 describes different PDF of the indemnity x under various deductible q (see Eqs. (1) and (11)). We increase the
deductible q from 0.005 to 0.045, a minimum peak value of expected loss payment is gained. It indicates that a threshed
q is existed where has the worst loss payment stability. 0.025 is the threshed value of q in Fig. 2. Varying deductible q ,
and the peak of PDF of the indemnity x gradually shifts towards the left side, which means the corresponding expected
value of loss payment is reduced gradually. On one hand, the threshed q implies the existence of a catastrophe risk due
to forestry pest infestations and disease epidemics, which may trigger an extreme loss payment. We have to admit that
insurance companies are facing high loss payment risk, which is determined by the unpredictability of pest forestry pest
infestations and disease epidemics and the uncontrollability of forestry economy. On the other hand, the higher deductible
set by insurance companies, the less loss payment is required. Insurance companies might have the tendency to increase
deductible in order to reduce loss payment. Overall, Fig. 2 suggests that insurance companies should concern the catastrophe
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Fig. 2. PDF of the indemnity x of the forestry catastrophe insurance with varying the deductible q.

Fig. 3. The contour of the probability of full indemnity (Eq. (15)) vs. log(A) and log(y) in (a) and vs. log(b) and log(e) in (a).
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Fig. 4. The contour of the probability of full indemnity (Eq. (15)) vs. λ and log(D) in (a) and vs. λ and log(α) in (a).

risk when implementing this forestry catastrophe insurance product, and then optimize the deductible q as a balance
between maximum insurance revenue and minimum loss payment risk.

Fig. 3 graphs the contour of the probability of full indemnity (as given in Eq. (15)) based on the proposed insurance
model. It also shows the range of parameters, within which the catastrophe risk or catastrophe loss payment occurs. The
increase of log(A) and the decrease of log(y), and also the increase of log(b) and the decrease of log(e) lead to the rising of
the probability of full indemnity, as portrayed in Figs. 3(a) and 3(b), respectively. Based on the definitions of each parameter,
experimental results indicate that higher probability of full indemnity are determined by greater insured area of patch A,
bigger the structure factor of patches f, lower the extinction rate e, greater the system factor b. The increase of patches
area and structure factor add the systematic risk due to forestry pest infestations and disease epidemics, which demands
higher probability of full indemnity (see Fig. 3(a)). From the point of view of forestry catastrophe insurance, this implies
the existence of a catastrophic risk caused by forestry pest infestations and disease epidemics. It can also be observed from
Fig. 3(b) that with the increase of system factor b, and the decrease of extinction rate e, the systematic risk due to forestry
pest infestations and disease epidemic is raised dramatically, which requires an accelerated growth of the probability of
full indemnity. This suggests that the systematic risk is the key to reduce the catastrophe risk due to pest infestations and
disease epidemics, and then control the probability of full indemnity. In order to lower the cost of loss, insurance companies
should properly regulate the area and structure factor of insured patches, extinction rate of forestry pest, moreover, lower
the system factor.

Figs. 4(a) and 4(b) show the probability of full indemnity Eq. (15) with noise intensity D and a respectively. And both
figures take cross-correlated strength λ into consideration. Fig. 4(a) graphs that with the increase of λ and decrease of D,
the probability of full indemnity is monotonically increasing, but does not reach extreme high probability of full indemnity.
Fig. 4(b) presents that when λ is small, the probability of full indemnity is low, however, when λ is big, the probability of
full indemnity is increasing, and a threshold value of λ exists. From that threshold value on, the probability of full indemnity
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Fig. 5. The contour of the probability of zero indemnity (Eq. (14)) vs. log(A) and log(y) in (a) and vs. log(b) and log(e) in (a).

keeps growing with the increase of λ, while the increase or decrease of a cannot affect the growth trend of the probability of
full indemnity. The experimental results means the noise intensity D and the cross-correlated strength λ affect the forestry
loss payment positively, but would not trigger the catastrophe risk. As for the noise intensity a and the cross-correlated
strength λ, only when λ reaches a certain threshold value, λ causes the forestry loss payment risk to increase, however a
has no effect on forest loss payment risk, only when a is small, and λ achieves the extreme value around 1, the catastrophe
risk would happen. It proves that it is proper to consider the noise intensity D, a, and cross-correlated λ in the proposed
model. By examining the noise intensity and cross-correlated strength, a threshold value is able to recognize, which could
help insurance companies to control loss payment risk under certain realm. It indicates multiplicative noises have higher
probability than additive noises in causing catastrophe risk or catastrophe loss payment. Only under strong correlation of
multiplicative and additive noises, additive noises can trigger the happen of catastrophe risk or catastrophe loss payment.

For the completeness of this experiment and comparison, Figs. 5 and 6 addressed the case of zero indemnity, which is
different from Figs. 3 and 4 with respect to full indemnity. The contour of the probability of zero indemnity (as given in
Eq. (14)) affected by log(y) and log(A), log(b) and log(e) are graphed in Figs. 5(a) and 5(b), respectively. Fig. 5(a) shows the
lower the area of patches A, the higher the probability of zero indemnity, meanwhile, the probability of zero indemnity
is very sensitive towards smaller area range of patches. However, the change of the structure of patches y does not affect
the probability of zero indemnity. It proves that the loss cost can be achieved by set the area of patches in a small area
range. In comparison, with the increase of system factor b, and the increase of extinction rate e, the probability of zero
indemnity decreasesmonotonically (as given in Fig. 5(b)). It indicates the significance of system factor and the extinction rate
in reducing the loss cost of insurance companies. This result is similar to with the result showed in Fig. 3(b). The difference
is the structure of patches do have influence on the probability of full indemnity (see Fig. 3(a)), but not for the probability of
zero indemnity (see Fig. 5(b)).
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Fig. 6. The contour of the probability of zero indemnity (Eq. (14)) vs. λ and log(D) in (a) and vs. λ and log(α) in (a).

Figs. 6(a) and 6(b) show how the probability of zero indemnity Eq. (14) is affected by noise intensity D and a, respectively.
And cross-correlated strength λ are considered in both figures. Fig. 6(a) graphs that with the increase of both λ and D,
the probability of zero indemnity increases slightly, but under a low realm. Fig. 6(b) presents that the probability of zero
indemnity decreases gradually long with the increase of λ and reduce of a. What is more, when a is small, the probability
of zero indemnity is much higher. It indicates for insurance companies to reduce loss cost, the additive noises and cross-
correlated strength should be controlled under small numeral ranges.

4. The catastrophe loss payment time MET

From Eqs. (5) to (10), the catastrophe loss payment time MET is gained by the mean escape time [38,43]:

MET(P0 → PH ) =

∫ PH

P0

dy

B( lH−q
PH

y + q)Px(y)

∫ y

P0
Px(z)dz

=

∫ lH

P0

dy
B(l)Pst (y)

∫ y

P0
Pst (z)dz, (16)

here P0 is the initial payment. Considering the zero payment with no catastrophe loss, we usually set P0 = 0 as following
discussion.

As explained in Section 1, mean escape time is employed in our forestry catastrophe insurance. Catastrophe loss payment
time MET Eq. (16) is defined as the average time period of catastrophe loss payment occurring with respect to the variety
from zero indemnity to full indemnity. Under the presumption of invariable time period of insurance payment affected
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Fig. 7. The catastrophe loss payment time MET (Eq. (16)) vs. log(A) and log(y) in (a) and vs. log(b) and log(e) in (a).

by insurance companies side. In another word, this article excludes the time differences of loss payment due to insurance
companies claims and quality and efficiency of service. So the catastrophe loss payment time MET is also an approximate
indicator of the occurrences of forestry catastrophe risk due to forestry pest infestations and disease epidemic. How A and
y, b and e affect the catastrophe loss payment time MET is graphed in Figs. 7(a) and 7(b), respectively. Experiments are
conducted and Fig. 7(a) shows the influence of y on catastrophe loss payment time MET is limited, but positive. A has a
negative influence on catastrophe loss payment time MET, and the influence is obvious, when A is small. Fig. 7(b) graphs
system factor b influences catastrophe loss payment time MET negatively, and extinction rate has a positive influence on
catastrophe loss payment timeMET.When b is small and e is big, both influence increase significantly. From the perspective
of forestry catastrophe insurance, the area of patches should be controlled under a small range, and with the increase of
structure factor of patches and the decrease of the area of patches, a long catastrophe loss payment time MET is achieved,
which would give longer time for loss cost risk management, and in addition, the capital investment and capital turnover
derived from premium income are benefited from the extended catastrophe loss payment time MET.

Figs. 8(a) and 8(b) graph the influence of log(D) and log(a) on catastrophe loss payment time MET, respectively. Cross-
correlated strength λ is given different reading values. Fig. 8(a) describes that higher λ leads to longer catastrophe loss
payment time MET and greater noises. As an optimal control model, with the increase of D, catastrophe loss payment time
MET is optimized to maximum, and then decrease monotonically, and finally all of them converge to 0. Fig. 8(b) shows
that when a is small, higher λ causes longer MET of catastrophe loss payment, however with the increase of a, all MET of
catastrophe loss payment are monotonically decreasing, and the convergence value is 0. Based on this experimental results,
it indicates an optimal catastrophe loss payment time MET can be achieved by varying multiplicative noises and Cross-
correlated strength, also, limiting additive noise is helpful for maintaining a higher catastrophe loss payment timeMET. The
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Fig. 8. The catastrophe loss payment time MET (Eq. (16)) vs. λ and log(D) in (a) and vs. λ and log(α) in (a).

empirical meaning of optimal catastrophe loss payment time MET is profound. It gives insurance companies an quantified
reference for premium pricing and insurance clauses designing etc., for the purpose of minimizing loss cost andmaximizing
premium incomes.

The results shown in Fig. 8(a) are related to the noise enhanced stability phenomenon. For the reader to understand
the dynamics, we show the catastrophe loss payment time MET (Eq. (16)) vs. log(D) for the different initial conditions in
Fig. 9. Obviously, the nonmonotonic behavior is also found in Fig. 9. The same as in Ref. [20], as P0 → 0, the peak of the
nonmonotonic behavior increases, i.e., the noise enhanced stability phenomenon is enhanced.

In this section, we employ mean escape time to describe Catastrophe loss payment time and find some nonmonotonic
behaviors related to the noise enhanced stability phenomenon. In the proposed model of Section 2, we only consider the
Gaussian noise. However, the stochastic Langevin equation driven by the Lévy noise describes the stochastic system more
well in some condition [44]. For some real data, the proposed model with the Lévy noise can give the exact results for PDF
of loss and MET of Catastrophe loss payment. Readers can do further research on this in the future.

5. Conclusion

Various forest insects and diseases can cause tremendous losses to forests. The degree of damage is affected by forest
insect infestations and disease epidemics in a dynamic way over time. A forest loss model caused by insect infestations
and disease epidemics is developed in this paper. Metapopulation dynamics is used to model the forest catastrophe loss
caused by forest insects and diseases. The stochastic metapopulation model used is similar to Hanski, Wahlberg and
Ovaskainen’s [38,39] model. Multiplicative and additive noises are considered. The proposed model is estimated with real
data in China from 2005 to 2014. The PDF obtained from the sample loss data is compared with the PDF derived from the
proposed model. The analytical results is shown to be a better fit than simulated results.
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Fig. 9. The catastrophe loss payment time MET (Eq. (16)) vs. log(D) with different initial conditions P0. Other parameters are the same as the estimated
values in Section 2.

The probability of full indemnity and the probability of zero indemnity are studied, respectively. The experimental results
shows a higher probability of occurrences of catastrophe risk or catastrophe indemnity due to forestry pest infestations and
disease epidemics can be triggered by the bigger area of patches and structures of patches, higher multiplicative noises
and lower extinction rate. Among these ecological factors, system factor and extinction rate have greater influence on the
probability of catastrophe risk or catastrophe indemnity occurring. In comparison, the same ecological factors,multiplicative
and additive noises are employed in the probability of zero indemnity shows similar results. Howmultiplicative and additive
noises affect the probability of full indemnity and the probability of zero indemnity are discussed separately in the contours.
It implies that multiplicative noises correlates to the probability of occurrences of catastrophe risk or catastrophe indemnity
positively with the increase of the cross-correlated strength, and the influence of multiplicative noises is greater than
the additive noises. The additive noises only produce effect at a high range of cross-correlated strength value. From the
perspective of forestry catastrophe insurance, outbreaks of forestry catastrophe loss or catastrophe loss payment due to
forestry pest infestations and disease epidemics can be recognized from the following aspects: big area of patches and
structure of patches, high system factor, low extinction rate, high multiplicative and additive noises with a high cross-
correlated strength range, where insurance companies should take special notice.

Resonance of average time period of forestry catastrophe loss payment outbreak is analyzed by using the mean escape
time in this study. It can be observed that as patch size becomes larger, and the structure factor of patches become smaller, the
catastrophe loss payment timeMET decreasesmonotonically. It also showswith the increase of extinction rate and decrease
of system factor, the catastrophe loss payment time MET increases dramatically. Experimental results suggest that a long
catastrophe loss payment timeMET could be achieved by small patch size and big structure factor of patches, high extinction
rate and long system factor. Moreover, study of correlations of the catastrophe loss payment time MET with multiplicative
and additive noises are conducted when taking various value of λ (from negatively correlated to positively correlated). That
is, with the increase of D, the catastrophe loss payment time MET grows from increase to decrease. Meanwhile a maximum
catastrophe loss payment time MET is optimized with proper value of D and value of λ. The increase of value of λ does not
affect the monotonic decrease trend of catastrophe loss payment time MET. The results shows it is possible to identify an
optimal catastrophe loss payment time MET by taking proper value of D and limits a on a low range of value, and λ at a
high range of value. The optimal value is helpful for the characterization of catastrophe risk and the appraisal of catastrophe
loss due to forestry pest infestations and disease epidemics. Taking it as a meaningful reference, insurance companies could
eventually realize the goal of loss cost minimizing and premium incomes maximizing.
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