
REGULAR PAPER

Classical harmonic vibrations with micro amplitudes and low
frequencies monitored by quantum entanglement

Yong-Yi Huang1

Received: 3 July 2015 / Accepted: 31 October 2015 / Published online: 20 November 2015

� The Optical Society of Japan 2015

Abstract We study the entanglement dynamics of the

two two-level atoms coupled with a single-mode polarized

cavity field after incorporating the decoupled atomic cen-

ters of mass classical harmonic vibrations with micro

amplitudes and low frequencies. We discover a new

quantum mechanical measurement effect for the entan-

glement dynamics. We propose a quantitative vibrant fac-

tor to modify the concurrence of the two atomic states.

When the vibrant frequencies are very low, we obtain that:

(1) the factor depends on the relative vibrant displacements

and the initial phases rather than the absolute amplitudes,

and reduces the concurrence to three orders of magnitude;

(2) the concurrence increases with the increase of the initial

phases; (3) the frequency of the harmonic vibration can be

obtained by measuring the maximal value of the concur-

rence during a small measurement time. These results

indicate that the extremely weak classical harmonic

vibrations can be monitored by the entanglement of

quantum states. The effect reported in the paper always

works well as long as the internal degrees of freedom of the

system (regardless of unitary evolution or non-unitary

evolution with time) are decoupled with the external

classical harmonic vibrations of atomic centers of mass.

Keywords The vibrant factor � Micro amplitudes � Low
frequencies � Entanglement concurrence

1 Introduction

A gravitational wave is the only direct unconfirmed pre-

diction in general relativity. Because of its good coherence

and strong penetrability, the detection of a gravitational

wave is very important to the modern astronomy. From the

analysis of the gravitational waves we can obtain the inner

core variations of the supernova from in a supernova

explosion, confirm the existence of a black hole and even

research the early universe in the Big Bang [1]. A plane

gravitational wave causes a time-dependent strain in space,

with an oscillating quadrupolar strain pattern that is

transverse to the wave’s propagation direction, expanding

space in one direction while contracting it along the

orthogonal direction [2]. Although a gravitational wave is

an extremely weak wave, people attempt to detect the

gravitational waves with different methods. The gravita-

tional wave can be confirmed by Weber in 1969 through

measuring the oscillatory motions of Weber bars [3] (un-

fortunately, the results are not accepted). The observations

of the period decreasing of PSR1913 ? 16 by Hulse and

Taylor in 1974 [4] indirectly confirm the existence of a

gravitational wave. In order to directly detect a gravita-

tional wave, people are launching huge detection projects

for gravitational waves, such as LIGO [5], Virgo [6],

GEO600 [7], KAGRA [8], AIGO [9], eLISA [10, 11], etc.

An atomic interferometer is even designed for the detection

of gravitational waves [12–15].

The entanglement of quantum states discovered by

Einstein–Podolsky–Rosen (EPR) [16] and Schrödinger [17]

is one of the strangest phenomena in quantum mechanics.

Entanglement as a new resource can not only be applied to

information field [18], such as quantum state teleportation,

quantum cryptography, quantum dense coding, quantum

computing, etc., but also provide new angles of view, such
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as the emergence of classicality [19], disordered systems

[20], superconductivity [21] and superradiance [22], etc.

To meet the experimental needs, several quantitative

descriptions of entanglement have been proposed, for

instance Peres–Horodecki theorem [23, 24], Duan criteria

[25], Simon criteria [26], Wootters concurrence [27],

negativity [28, 29] and entanglement witness [30, 31], etc.

Entanglement is versatile; can it be used to detect gravi-

tational waves? A good question. A plane gravitational wave

causes a time-dependent strain in space, with an oscillating

quadrupolar strain pattern that is transverse to the wave’s

propagation direction, expanding space in one direction while

contracting it along the orthogonal direction. So we can

extract some information of a harmonic vibration from the

entanglement of a system to detect gravitational waves. In this

paper we study the influence of the classical harmonic

vibrations of atomic centers of mass on the entanglement

concurrence between the two two-level atoms in a single-

mode polarized cavity field, i.e., Jaynes–Cummings model. In

Sect. 2 Wootters concurrence of the atomic states are calcu-

lated in a toy thought system. In Sect. 3 we pay close

attention to the vibrant factor for the classical harmonic

vibrations of atomic centers of mass, which gives a modifi-

cation of the concurrence of the two atomic states. We also

discuss how classical harmonic vibrations are monitored by

entanglement concurrence. In Sect. 4 a summary is presented.

2 The calculations of Wootters concurrence

The simple thought system we study is shown in Fig. 1.

The two equal two-level atoms, A atom at zA ¼ �z0 and B

atom at zB ¼ z0, are coupled with a single-mode cavity

field polarized along y direction, which runs along z

direction. The two atoms are controlled to harmonically

vibrate along x direction by some drive, for instance the

two atoms are induced by a gravitational wave and will

harmonically vibrate in the plane perpendicular to the

gravitational wave vector. Under the rotating-wave

approximation the system Hamiltonian is written as

H ¼ H0 þ H0;

H0 ¼
1

2
�hxAr

z
A þ 1

2
�hxBr

z
B þ �hxayaþ �hXAðCyACA þ 1=2Þ

þ �hXBðCyBCB þ 1=2Þ;

H0 ¼ �hg
X

i¼A;B

½arþi expðikziÞ þ ayr�i expð�ikziÞ�:

H0 describes the energy levels of the two atoms and the cavity

and the vibrations of the atomic centers of mass, H0 describes
the atom–field interactions. In the total Hamiltonians of H0

and H0, ay; a are the bosonic operators of the single-mode

field with the frequency x; rz ¼ je[\ej � jg[\gj,
rþ ¼ je[\gj and r� ¼ jg[\ej are respectively Pauli

operator, raising and lowering operators of the two-level

atoms where je[ is the exciting state and jg[ is the

ground state; The energy level difference of atom A (atom B)

is �hxA (�hxB); C
y
A;CA and C

y
B;CB are the bosonic operators

for the harmonic vibrations of the centers of mass of atoms A

and atoms B with the frequencies XA;XB; g is the coupling

coefficient and k is the wavenumber of the cavity field. In our

thought experiment we assume that the conditions xA ¼
xB ¼ x; XA ¼ XB � X are satisfied. The vibrations of the

two atoms are assumed to have very small amplitudes, the

effect of the vibrations of the atomic centers of mass on the

atom energy levels can be neglected. The recoil motions of A

and B atoms along y direction are ignored when a photon is

absorbed or emitted by A (or B) atoms, without loss of

generality we do not take the coupling between the vibrations

of the atomic centers of mass and the single-mode polarized

cavity field into account.

Several authors have studied the question that the two

two-level atoms are coupled with a single-mode cavity

field [32–34]. Now we study the same problem after

incorporating the classical harmonic vibrations of atomic

centers of mass with micro amplitudes and low frequen-

cies. In the conditions xA ¼ xB ¼ x; we have

½H0;H
0� ¼ 0. The Hamiltonian in the interaction picture is

given by HIðtÞ ¼ eiH0t=�hH0e�iH0t=�h. After considering the

condition ½H0;H
0� ¼ 0, we get the Hamiltonian in the

interaction picture HIðtÞ ¼ H0 independent of the time t. In

order to emphasize the influence of classical vibrations on

the entanglement concurrence of the two atoms in a cavity,

we only study the unitary evolution of the system, which is

governed by von Neumann equation
dqI
dt

¼ � i
�h ½H0; qI�.

Actually the effect discussed in the following always works

well as long as the internal degrees of freedom of the

system (regardless of unitary evolution or non-unitary

Fig. 1 Schematic of a setup illustrates how the classical harmonic

vibrations of atomic centers of mass with micro amplitudes and low

frequencies affect the concurrence between two two-level atoms

coupled with a single-mode cavity field
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evolution with time) are decoupled with the external

classical harmonic vibrations of atomic centers of mass.

The solution of von Neumann equation is given by

qIðtÞ ¼ UðtÞqIð0ÞUyðtÞ; ð1Þ

where the time evolution operator is UðtÞ ¼ exp½�iH0t=�h�
and qIð0Þ is the density operator of the initial state in the

interaction picture. The reduced density operator for the

two atoms is given by

qIðtÞatoms ¼ Trcavityþvibrations½UðtÞqIð0ÞUyðtÞ�: ð2Þ

The trace in Eq. (2) includes the traces over both the cavity

field and the vibrations of the atomic centers of mass. Taken

UðtÞ ¼ exp½�iH0t=�h� into account, qIðtÞatoms is written as

qIðtÞatoms ¼ Trcavityþvibrations½e�iH0t=�hqIð0ÞeiH
0t=�h�: ð3Þ

e�iH0t=�h is exactly worked out in the atomic basis

{jee[ ; jeg[ ; jge[ ; jgg[ } similarly in ref [33], where

je[ is excited state and jg[ is ground state, i.e.,

Here C2 ¼ H�1 ¼ 2g2ð2aþaþ 1Þ and C, S are defined by

C ¼ H cosCt and S ¼ C�1 sinCt.
Without loss of generality, we study a typical initial

state and give the modification of the vibrations of atomic

centers of mass on the entanglement concurrence between

the two atomic states. The initial state is

qIð0Þ ¼ jgg[\ggj � j1[\1j � jwnwm [\wnwmj; ð5Þ

where jg[ is the ground state of an atom, j1[ and

jwnwm [ denote the one photon state and the eigenstates

of the harmonic oscillators of the two atomic centers of

mass. Considering Eq. (4) and substituting qIð0Þ from

Eq. (5) into Eq. (3), we obtain

qIðtÞatomsjDt ¼

0 0 0 0

0
sin2

ffiffiffi
2

p
gt

2

sin2
ffiffiffi
2

p
gt

2
0

0
sin2

ffiffiffi
2

p
gt

2

sin2
ffiffiffi
2

p
gt

2
0

0 0 0 cos2
ffiffiffi
2

p
gt

0

BBBBBBB@

1

CCCCCCCA

Dt

�
Z

Dt
\wnjn1 [\n1jwn [ dn1

�
Z

Dt
\wmjn2 [\n2jwm [ dn2 ð6Þ

In deriving Eq. (6) we have traced over the cavity field

and inserted the completeness
R
jn1 [\n1j � jn2 [\n2

jdn1dn2 ¼ I into Eq. (3) to trace over the vibrations, where

n1; n2 denotes the positions of the two atomic centers of

mass in x direction. The sense of the time interval Dt
subscript in Eq. (6) will be presented in what follows.

Quantum number n, m will be very large under the low

frequencies condition of X\\g;X\\x, F �
R
Dt \wnj

n1 [\n1jwn [ dn1 �
R
Dt \wmjn2 [\n2jwm [ dn2 can

be regarded as classical harmonic oscillators probabilities

[35], The integrand in the integral vibrant factor is just

right the probability density of each classical harmonic

oscillator wðn1;2Þ ¼ w�
1;2w1;2 ¼ \wjn1;2 [\n1;2jw[ .

The defined factor F is called by the vibrant factor in this

paper, because the vibrant factor comes from the trace over

classical harmonic vibrations of the atomic centers of mass

in deriving the concurrence. During a short measurement

time interval Dt less than the period T, the vibrant factor

traced over classical vibrations is less than unity, which is a

remarkable result. The vibrant factor less than unity brings

a quantitative modification on the entanglement

concurrence.

In deriving Eq. (6) with substituting from Eqs. (4) and

(5) into Eq. (3), we are sure that the vibrant factor

always occurs as long as the internal degrees of freedom

of the system (regardless of unitary evolution or non-

unitary evolution with time) are decoupled with the

external classical harmonic vibrations of atomic centers

of mass. Because of the decoupling between the external

vibrations and the internal degree of freedom of the

system, the whole system state should be the direct

product between the state of the internal degree of

freedom and the state of the external vibrations. The

states of the internal degree of freedom and the external

vibrations independently, simultaneously evolve with

time. The time evolution of the external vibrations yields

the vibrant factor. So the vibrant factor is used to char-

acterize the external independent harmonic vibrations of

the two atoms, it can not disappear by renormalization.

Please note that the vibrant factor F is less than unity

during a short measurement time Dt, the reason will be

presented as follows. The condition X\\g;X\\x can

be satisfied in laboratory. In fact the typical frequency X

e�iH0t=�h ¼
2g2aðC �HÞaþ þ 1 �igaSeikz0 �igaSe�ikz0 2g2aðC �HÞa

�igSaþe�ikz0 ðcosCt þ 1Þ=2 ðcosCt � 1Þe�2ikz0=2 �igSae�ikz0

�igSaþeikz0 ðcosCt � 1Þe2ikz0=2 ðcosCt þ 1Þ=2 �igSaeikz0

2g2aþðC �HÞaþ �igaþSeikz0 �igaþSe�ikz0 2g2aþðC �HÞaþ 1

0

BB@

1

CCA ð4Þ
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of mechanical vibration due to a gravitational wave is

about 103 Hz [36], a strong coupling coefficient g can

arrive at 106 Hz [37], and the resonant x is higher than

the coupling coefficient g.

In order to calculate the classical harmonic oscillators’

probabilities, we write the Hamiltonian of a classical

oscillator H ¼ p2=2M þMX2x2=2. Given a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MX=�h

p

and n ¼ ax we obtain the classical motion equations of the

two atomic centers of mass: n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 þ 1

p
sinðXt þ d1Þ

and n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 þ 1

p
sinðXt þ d2Þ, where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 þ 1

p
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n2 þ 1
p

are the classical amplitudes with their large

quantum numbers n, m, d1; d2 are the initial phases of the

two atomic centers of mass. The classical harmonic oscil-

lator probability density is wðnÞ ¼ \wjn[\njw[ ¼
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ1Þ�n2

p , and wðnÞ increases with the increase of the

displacement n in n 2 ½0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
�. We do not consider

n 2 ½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
; 0� because of the classical harmonic

oscillator probability density’s symmetry between

½0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
� and ½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
; 0�.

We work out
R
Dt \wnjn1 [\n1jwn [ dn1 �R

Dt \wmjn2 [\n2jwm [ dn2 during a short measurement

time Dt, i.e.,

F �
Zn10þf1

n10

wðn1Þdn1
Zn20þf2

n20

wðn2Þdn2

¼ 1

p2
arcsin

f1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 þ 1

p þ sin d1

� �
� d1

� �

� arcsin
f2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n2 þ 1
p þ sin d2

� �
� d2

� �
ð7Þ

where f1; f2 denote the absolute displacements of the two

atomic centers of mass, and d1, d2 are the initial phases,

that is, n10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 þ 1

p
sin d1,n20 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 þ 1

p
sin d2 with

n10,n20 denoting the initial displacements. Dt should meet

the condition 1=g\\Dt\\1=X. The condition guaran-

tees that the integral upper limit and lower limit in Eq. (7)

are ½n10; n10 þ f1�; ½n20; n20 þ f2� rather than ð�1;þ1Þ1;
ð�1;þ1Þ2 and that the vibrant factor F is always less

than unity. During a short measurement time Dt the relative
displacements are very small and satisfy the relationships

0\f1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 þ 1

p
\\1; 0\f2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 þ 1

p
\\1:

From Eqs. (6) and (7), we can obtain the concurrence

CðqIÞ ¼ maxð0;
ffiffiffiffiffi
k1

p
�

ffiffiffiffiffi
k2

p
�

ffiffiffiffiffi
k3

p
�

ffiffiffiffiffi
k4

p
Þ, where the

quantities ki are the eigenvalues of the matrix qIðr
y
A �

ryBÞq�I ðr
y
A � ryBÞ arranged in decreasing order. q�I is the

elementwise complex conjugation of qI in the atomic basis

fjee[ ; jeg[ ; jge[ ; jgg[ g, and ryA � ryB is the direct

product of Pauli matrix expressed in the same basis [38].

The concurrence is calculated as

CðqIÞDt¼
1

p2
arcsin

f1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1þ1

p þsind1

� �
�d1

� �

� arcsin
f2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n2þ1
p þsind2

� �
�d2

� �
�sin2

ffiffiffi
2

p
gtjDt

ð8Þ

The classical vibrations of the two atomic centers of

mass are decoupled with the intrinsic motions of the two

atomic states in a cavity field, why will the vibrations of the

centers of mass modulate the concurrence of the two atomic

states? Physically the present situation resembles the

amplitude modulation in radio. The concorrence between

the two atomic states varies periodically with time, it

resembles carrier wave with high frequency; the centers of

mass of the two atoms will simultaneously and indepen-

dently vibrate with time as well, they resemble signal wave

with low frequency. Within a period of the vibrations of the

centers of mass of the two atoms we measure the entan-

glement concurrence, we find that the vibrations of the

centers of mass of the two atoms bring a modulated vibrant

factor, it resemble the modulated amplitude, please see

Eq. (8). In a word, the reason why the vibrations of centers

of mass modulate the concurrence between the two atomic

states is that the two motions (the vibrations of centers of

mass and the intrinsic motion of the two atomic states

coupled with the cavity field) are decoupled and simulta-

neously evolve with time, the whole state is the direct

product between the state of the internal degree of freedom

and the state of the external vibrations. We should not be too

much surprised of the fact that the measurement of con-

currence has a true effect on entanglement concurrence

when the two atoms have classical harmonic vibrations. The

measurement of concurrence happens during a short time

interval Dt is less than the period of the external vibrations

of the centers of mass of the two atoms. The trace over the

vibrations is less than unity and the so-called vibrant factor

appears, the vibrant factor brings a quantitative modifica-

tion on the measured concurrence. The vibrant factor is just

one more constraint to the entanglement concurrence when

the measurement of concurrence is performed.

3 The vibrant factor and classical harmonic
vibrations monitored by entanglement
concurrence

Wootters concurrences Eq. (8) have a vibrant factor for the

classical harmonic vibrations of the atomic centers of mass

Opt Rev (2016) 23:92–99 95
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Fðd1; d2Þ ¼
1

p2
arcsin

f1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 þ 1

p þ sin d1

� �
� d1

� �

� arcsin
f2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n2 þ 1
p þ sin d2

� �
� d2

� �
ð9Þ

The factor F versus the initial phases d1, d2 is shown in

Fig. 2, which is our main result. Seen from Fig. 2 and

Eq. (9) we obtain three results: (1) The vibrant factor will

increase with the increase of the initial phases d1, d2. The
reason is that the initial phases d1, d2 correspond to the

different displacements n1; n2, the probability density wðnÞ
increases with the increase of displacement n. (2) The

vibrant factor for the vibrations of the atomic centers of

mass depends on the relative vibrant displacements

f1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 þ 1

p
; f2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 þ 1

p
and the initial phases d1, d2,

rather than the absolute vibrant amplitudesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 þ 1

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 þ 1

p
.

(3) The harmonic vibrations of atomic centers of mass

greatly reduce the concurrence to three orders of magni-

tude. Because in the condition of X\\g;X\\x the

harmonic oscillator probabilities are not normalized during

a short measurement time Dt, the probabilities within the

small relative displacements f1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 þ 1

p
; f2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 þ 1

p

are of course much smaller than unity, please see Eq. (7).

Actually the relative displacements f1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 þ 1

p
;

f2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 þ 1

p
depends on arbitrary short measurement time

Dt, which satisfies the condition 1=g 	 Dt 	 1=X. Given
f1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 þ 1

p
¼ f2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 þ 1

p
¼ 0:05 and g ¼ 106Hz,

X ¼ 103Hz, we have sin d1 ¼ sin d2 ¼ 0:95, i.e., d1 ¼
d2 ’ 1:25 maximally due to the fact f=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
þ

sin d ¼ 1. Substituting d1 ¼ d2 ’ 1:25 into Fðd1; d2Þ, we
obtain that Fðd1; d2Þ maximum is about 0.01.

Now we discuss how to monitor the classical harmonic

vibrations of the atomic centers of mass by measuring the

entanglement concurrence between the two two-level

atoms in a single mode cavity during a short measurement

time. Without considering the classical harmonic vibrations

of the atomic centers of mass, the concurrence versus time

between the two two-level atoms in a single mode cavity is

very simple, i.e., CðqIÞ0 ¼ sin2
ffiffiffi
2

p
gt. After incorporating

the harmonic vibrations of the atomic centers of mass, the

concurrence is a product between vibrant factor F and

CðqIÞ0, i.e., Eq. (8). Figure 3 vividly shows this picture.

The selection of a measurement time Dt is very subtle,

1=g\\Dt\\1=X is required. It indicates that Dt is

much less than the period 2p=X of the classical harmonic

vibrations, however, much larger than the period p=ð
ffiffiffi
2

p
gÞ

of the CðqIÞ0. Because the maximal value of CðqIÞ0 is

unity, theoretically we can obtain the vibrant factor F by

measuring the maximal value of the concurrence CðqIÞ
during a small measurement time Dt. In one period 2p=X
of the classical harmonic vibrations, once we obtain the

vibrant factor F versus the initial phases d1; d2 of the two

atomic centers of mass, i.e., the left panel F in Fig. 3, we

confirm the existence of the classical harmonic vibrations

of the two atomic centers of mass. It is very valuable that

the vibrant factor F is independent of the absolute ampli-

tudes, which implies that we can confirm the existence of

the classical harmonic vibrations with extremely micro

amplitudes.

If we keep each measurement time Dt to be constant, we

obtain the vibrant factor F as

Fðd1; d2Þ ¼ 4
Dt2

T2
; ð10Þ

where T is the frequency of the classical harmonic vibra-

tion. Equation (10) is even independent of the initial pha-

ses. In practice we should divide Eq. (10) by 4,

Fðd1; d2Þ
4

¼ Dt2

T2
; ð11Þ

because each relative vibrant displacement f1;2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1;2 þ 1

p

contains two to-and-fro processes in one-half period shown

in Fig. 3. Equation (8) in practice now reads

CðqIÞDt ¼
Dt
T

� �2

� sin2
ffiffiffi
2

p
gtjDt: ð12Þ

We can obtain the vibrant factor F by measuring the

maximal value of the concurrence CðqIÞ during a small

measurement time Dt, so we acquire the frequency of a

classical harmonic vibration even with an amplitude

tending to zero.

Fig. 2 The vibrant factor F is versus the initial phases d1, d2, with
f1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 þ 1

p
¼ f2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 þ 1

p
¼ 0:05
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4 Summary

In conclusion we have studied the entanglement dynamics

of the two two-level atoms coupled with a single-mode

polarized cavity field after incorporating the classical har-

monic vibrations of the atomic centers of mass. When the

vibrations of the two atomic centers of mass are classical

and harmonic due to some external drive and the vibrations

are decoupled with the internal degrees of freedom of the

two atoms, the entanglement concurrence of the two two-

level atoms coupled with a single-mode polarized cavity

field will be modulated by the vibrant factor during the

shorter measurement time than the period of the classical

harmonic vibrations. This is actually a new quantum

mechanics measurement effect.

Interestingly and surprisingly, when the external degrees

of freedom of the centers of mass motions are fully

decoupled with the internal degrees of freedom of the

system, in some conditions the decoupled motions of

atomic centers of mass indeed have the effects on the

internal entanglement of atoms. The conditions are that the

classical harmonic vibrations frequencies of atomic centers

of mass are very low, i.e., their period is rather large, and

that experimenters measure the entanglement concurrence

of atomic internal freedoms during a short time interval

less than one period. Of course, if experimenters measure

the entanglement during a whole period, the decoupled

motions of atoms do not have any effect on the entangle-

ment concurrence of the internal freedoms. With John A.

Wheeler’s style [39], the new quantum mechanical mea-

surement effect states interaction without interaction.

‘without interaction’ means that there are decoupling

between centers of mass motion and the internal entan-

glement of atoms, ‘interaction’ means the entanglement

concurrence between the states of the atoms depends on

their respective centers of mass motions during a shorter

measurement time interval than the period of the vibra-

tions. The effect presented in the paper always works well

as long as the internal degrees of freedom of the system

(regardless of unitary evolution or non-unitary evolution

with time) are decoupled to the external classical harmonic

vibrations of atomic centers of mass. The new quantum

mechanical measurement effect originates in nature from

the non-unity trace of a classical harmonic oscillator during

a shorter time interval than its period.

The classical harmonicvibrations of centers ofmass reduce

the concurrence to three orders of magnitude. The concur-

rence is sensitively modified by the initial phases and relative

displacements rather than the absolute vibrant amplitudes

under the condition X\\g;X\\x. The larger the initial
phases become, the larger the concurrence becomes. Mea-

suring phase-varying entanglement concurrence can confirm

Fig. 3 It is shown the process of the classical harmonic vibrations of

the atomic centers of mass monitored by the entanglement concur-

rence between the two two-level atoms in a single mode cavity. The

vibrant factor F versus the two atomic initial phases d1; d2 lies in the

left panel, with d1 ¼ d2 and f1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 þ 1

p
¼ f2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 þ 1

p
¼ 0:05

without loss of generality. The harmonic amplitude with time in the

right panel corresponds to the left vibrant factor. The inset in the right

panel is the concurrence C versus gt after considering the harmonic

vibrations of the atomic centers of mass. The maximum of the

concurrence C is the vibrant factor F, rather than unity. A dot in the

left panel corresponds to a measurement time Dt with an initial phase

D, and it takes a different time Dt at a different phase D to keep the

relative displacement f=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
to be constant. The measurement

time interval is chosen such that Dt is less than the period of the

harmonic vibration, larger than the period of the entanglement

concurrence. For instance, dot A and dot B in the left panel have

different initial phases and correspond to different displacements in

the right panel. If the relative displacement f=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
is kept to be

constant, then the measurement time in dot A is less than the time in

dot B, i.e., DtA\DtB. The vibrant factor F(A) is less than F(B) because
of the probability density in dot A is less than the probability density

in dot B seen from Eq. (7)
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the existence of micro vibrations. If we keep each measure-

ment time Dt to be constant, we even obtain the frequency of
the harmonic vibrations by measuring the maximal value of

the concurrence during a small time Dt. Besides the entan-

glement concurrence of the two two-level atoms in a single-

mode cavity modulated by the vibrant factor due to the mea-

surement effect of classical vibrations, we have found another

physical quantity, i.e., the mean number of atoms reaching an

atomic detector, modulated by the vibrant factor due to the

measurement effect with classical vibrations [40, 41]. The

motion of the atoms can be used to control the entanglement

concurrence, so the entanglement yields the information about

the harmonic motions of the atoms. Moreover the vibrant

factor F is independent of the absolute amplitudes and initial

phases, the entanglement of atoms maybe provide another

new way to detecting gravitational waves.

How does one directly measure the concurrence of two

atomic states in a cavity? Mintert et al. proposed a method

to directly measure entanglement of a pure state wj i
through a single projection measurement on it twofold

copy wj i � wj i [42]. If a state is available in a twofold

copy, the state’s concurrence is given as the expectation

value of a single, suitably defined, self-adjoint operator,

defined with respect to the twofold copy [43]. In a single

run of an experiment, if a measurement on one of the

duplicate subsystem reveals an antisymmetric or symmet-

ric state, then the other duplicate subsystem is projected

onto an antisymmetric or symmetric state. Concurrence can

be measured with a single measurement on only one of the

twin subsystems, as long as one deals with pure states.

Moreover Mintert et al. also presented observable lower

bounds of the squared concurrence for arbitrary bipartite

mixed states by suitable, local parity measurements on its

twofold copy [44].

Cavity QED can be employed for the measurement of

concurrence of a two-atom entangled state, repeatedly

produced in some experimental setup, proposed in [45, 46].

In the first step, one transfers the atomic state to a two-

mode cavity field, initially in the vacuum state 00j i. This
can be done by letting each of the atoms in the entangled

state be resonant with one of the modes, so that if the atom

enters the cavity in the upper state ej i, it leaves one photon
in the corresponding mode, exiting the cavity in the lower

state gj i,

ða eej i þ b egj i þ c gej i þ D ggj iÞ � 00j i
! ggj i � ða 11j i þ b 10j i þ c 01j i þ D 00j iÞ

Next, one sends a second set of entangled atoms, pre-

pared in the same state as the first one, through the cavity.

The aim now is to determine the probability of finding one

of the atoms, together with one of the cavity modes, in the

Bell state w�j i ¼ ð g1j i � e0j iÞ=
ffiffiffi
2

p
. This can be accom-

plished by using the technique in [47]. The result yields the

concurrence of the two-atom state.

The concurrence of two photons has been experimen-

tally directly measured by using linear optics method [48–

51]. However, the experimentally measured concurrence of

two atoms in a cavity has not been reported nowadays.
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