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Multipartite Einstein-Podolsky-Rosen (EPR) steering has been recognized as an essential resource for secure
quantum communication tasks composed of several spatially separated parties who cannot be fully trusted.
Nevertheless, this resource cannot be distributed arbitrarily over many parties; for instance, two independent
players cannot simultaneously steer the third party by two-setting measurements. This feature is referred to
as monogamy of steering, which ensures the security of quantum cryptographic protocols and is thus a very
desired property to investigate for multipartite steering. Here, we propose symmetric and asymmetric structures
of cascaded four-wave mixing of rubidium atoms to generate versatile quadripartite EPR steering and investigate
four distinct types of monogamy relations of Gaussian steering. We find that the distribution constraint described
by one of the monogamy relations can be lifted only for the quadripartite steering created by the symmetric
setup. This result paves the way for a better understanding of the distribution rules of multipartite EPR steering
and its potential applications for secure quantum communication.
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I. INTRODUCTION

Schrödinger first introduced the term “steering” [1] to
describe the “spooky action-at-a-distance” phenomenon indi-
cated in the famous Einstein-Podolsky-Rosen (EPR) paradox
in 1935 [2]. To test this paradox for continuous-variable
systems, Reid introduced an experimental criterion based
on the inferred Heisenberg uncertainty relation [3]. Later
on, the concept of steering was formalized mathematically
for mixed states through an asymmetric model called the
local-hidden-state (LHS) model [4]. The authors pointed out
that steering is an intermediate type of quantum correlations
between state inseparability and Bell nonlocality from the
quantum information perspective; that is, EPR steering allows
one to verify entanglement shared between Alice and Bob
without the assumptions of the full trust of their devices [5,6].
Due to this inherent asymmetric quantum property [7–12],
EPR steering has been recognized as an essential resource for
one-sided device-independent (1sDI) quantum cryptography
tasks [13–20], which is an asymmetric scenario between DI
quantum cryptography based on states that give violations of
a Bell inequality and device-dependent protocols (where both
sites are trusted) relying on inseparable quantum states.

*caiyin@xjtu.edu.cn

Motivated by the demand for constructing large-scale
entangled states for a quantum network, EPR steering has
been extended to multipartite scenarios [21–26]. Recently,
continuous-variable multipartite EPR steering of up to four
and eight modes was achieved by linear optics networks
composed of squeezed and vacuum modes mixed by beam
splitters [27,28], and even more, that to 16 modes was re-
alized by the optical frequency comb system [29]. Another
powerful method is applying single-pass four-wave mixing
(FWM) based on Rb vapors to generate squeezed lights
[30] and multipartite entanglement [31,32]. Recently, Jing’s
group made significant advances in developing multimode
entanglement by a cascaded regime and generated spatially
multiple quantum modes with strong correlations [33–36].
This method provides a wide phase-matching range for spatial
modes without the need for optical cavities or phase control
[37,38]. Moreover, atomic media can be used to store the en-
tangled photons with narrow bandwidth for quantum memory
effectively [39–41]. In addition, the FWM process could also
be applied for quantum information processing and quantum
metrology, such as the tunable delay of EPR entangled states
[42], a nonlinear interferometer with parametric amplifiers
such as beam splitters [43–45], a controllable graph state
[46], and the generation of high spectral brightness and purity
narrow-band single photons [47]. Therefore, it is desirable to
study how the quantum steering can be created and distributed
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FIG. 1. (a) Schematic diagram of generating quadripartite entangled states using a symmetric structure of three cascaded FWM processes.
âs0 is the seed input; âv0 , âv1 and âv2 are the three vacuum modes; âi1 and âs1 are the output idler and signal beams of FWM1; and â1,2,3,4

are the final four output modes after FWM2 and FWM3. (b)–(d) Covariance matrices of the output four-mode Gaussian states with fixed gain
factors G1 = G2 = 1.2 and variable G3 = 1.2, 1.5, 1.8, respectively. (e) Schematic diagram of the asymmetric structure. (f)–(h) Covariance
matrices of the output modes b̂1,2,3,4 with fixed G1 = G2 = 1.2 and variable G3 = 1.2, 1.5, 1.8, respectively. LO denotes the local oscillator
for homodyne detection techniques (HD1–HD4). To clearly visualize quantum correlations, the shot noises (which are unity) are subtracted
from the diagonal terms of the CMs.

by the FWM process and to investigate the different properties
of multipartite steering relying on the cascaded structures.

Here, we study the four-mode steering created by sym-
metric and asymmetric structures of three cascaded FWM
processes, as shown in Fig. 1, and analyze the difference in
steering properties created by two structures. By quantify-
ing the steerability via a measure based on the symplectic
eigenvalues of the covariance matrix (CM) [22], we study
the various properties of EPR steering shared by two, three,
four modes, which confirm four types of monogamy relations
of Gaussian steering. Interestingly, we show that one spe-
cific monogamy constraint can be lifted only for the states
generated by the symmetric structure of the cascaded FWM
scheme. The characters and the distribution of steering among
modes are determined by the structure of cascaded FWM
processes; for example, the symmetric structure generates
two idler and two signal outputs, while the asymmetric one
generates three idler and one signal beams. Since entangle-
ment can be shared only between idler and signal beams, the
asymmetric setup sets more constraints for distributing steer-
ing. Moreover, using the Bloch-Messiah reduction [48,49],
we transform the output four-mode Gaussian states into a set
of uncorrelated eigenmodes and find that the states produced
by the symmetric cascaded FWM processes are composed of
more squeezed eigenmodes. These structural differences are
helpful to gauge the availability of these states for different
quantum communication tasks.

The remainder of this paper is organized as follows. In
Sec. II, we present two structures of three cascaded FWM
processes, the produced four-mode Gaussian states, and their
CMs. In Sec. III, we recall the Gaussian steering measure
adopted in this work and investigate the steering shared by

two, three, and four modes and the corresponding monogamy
relations. In Sec. IV, we analyze the essential physics of
different steering properties created in two structures. Finally,
we summarize in Sec. V.

II. THE GENERATION OF FOUR-MODE
GAUSSIAN STATES

Within a FWM process, an intense pump beam and a weak
seed beam are focused in the center of the Rb vapor cell
with a slight angle. During a third-order optical nonlinear
process, a signal beam is amplified, and an idler beam is
generated simultaneously. In practice, the pump beam is tuned
about 0.8 GHz to the blue of the D1 line of Rb (5S1/2, F =
2 → 5P1/2), and the seed beam is red tuned about 3 GHz to
the pump beam. The two-photon detuning is about 4 MHz
[33,50]. The energy conservation and phase-matching condi-
tions must be satisfied in each FWM process whose input-
output relation can be presented by

âs1 = G1âs0 + g1â†
v0

, âii = g1â†
s0

+ G1âv0 , (1)

where G1 is the amplitude gain in the FWM1 process and g1 =√
G2

1 − 1, â†
s(v)0

and âs(v)0 are the creation and annihilation
operators of the seed (vacuum) input, and âs1 and âi1 are the
annihilation operators of the output signal and idler beams,
respectively. As shown in Figs. 1(a) and 1(e), two cascaded
networks are constructed by three FWM processes with sym-
metric and asymmetric structures, respectively. The FWM2
and FWM3 processes have the same input-output relations.
In the symmetric case, the output signal beam âs1 and idler
beam âi1 of the first cell are used to seed FWM2 and FWM3,
respectively; however, in the asymmetric structure, only the
output signal beam âs1 is used to seed FWM2, and the signal
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beam âs2 generated by FWM2 is to further seed FWM3. Based
on the cascaded FWM processes introduced above, two types
of four-mode Gaussian states â1,2,3,4 and b̂1,2,3,4 are generated.

The correlation properties of four-mode Gaussian
states are fully given by their CMs. The amplitude and
phase quadrature operators are defined as X̂ = â + â†

and P̂ = i(â† − â), respectively. The input-output

relations of symmetric and asymmetric structures are
written as �ξsym = Usym�ξin and �ξasy = Uasy�ξin, respectively,
where �ξsym = (X̂ a

1 , P̂a
1 , X̂ a

2 , P̂a
2 , X̂ a

3 , P̂a
3 , X̂ a

4 , P̂a
4 )�, �ξasy =

(X̂ b
1 , P̂b

1 , X b
2 , P̂b

2 , X̂ b
3 , P̂b

3 , X̂ b
4 , P̂b

4 )�, and �ξin = (X̂s0 , P̂s0 , X̂v0 ,

P̂v0 , X̂v1 , P̂v1 , X̂v2 , P̂v2 )�. The transform operation matrices
Usym and Uasy are written as

Usym =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1G2 0 G1G2 0 g2 0 0 0
0 −g1G2 0 G1G2 0 −g2 0 0

g1g2 0 G1g2 0 G2 0 0 0
0 g1g2 0 −G1g2 0 G2 0 0

G1g3 0 g1g3 0 0 0 G3 0
0 −G1g3 0 g1g3 0 0 0 G3

G1G3 0 g1G3 0 0 0 g3 0
0 G1G3 0 −g1G3 0 0 0 −g3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2a)

Uasy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1 0 G1 0 0 0 0 0
0 −g1 0 G1 0 0 0 0

G1g2 0 g1g2 0 G2 0 0 0
0 −G1g2 0 g1g2 0 G2 0 0

G1G2g3 0 g1G2g3 0 g2g3 0 G3 0
0 −G1G2g3 0 g1G2g3 0 g2g3 0 G3

G1G2G3 0 g1G2G3 0 g2G3 0 g3 0
0 G1G2G3 0 −g1G2G3 0 −g2G3 0 −g3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2b)

The elements of the CM of Gaussian states are defined as
Ci j = 〈�ξi�ξ j + �ξ j �ξi〉/2 − 〈�ξi〉〈�ξ j〉. The CMs with fixed G1 =
G2 = 1.2 and variable G3 = 1.2, 1.5, 1.8 for symmetric and
asymmetric structures are presented in Figs. 1(b)–1(d) and
1(f)–1(h), respectively. By adjusting the gain parameters in
two structures, one can modulate quantum correlations shared
among four output modes. Note that there are no cross corre-
lations between the amplitude and phase quadratures, so the
corresponding terms in CMs are all zero.

III. THE PROPERTIES OF EPR STEERING

Based on the CMs of the produced four-mode Gaussian
states, we are ready to quantify the EPR steering shared
among modes in two different structures. The CM of any
bipartition Gaussian state containing (nA + nB) modes can
be written as σAB = ( A C

C� B
)
, where submatrices A and B are

CMs of the reduced state of their respective subsystems. Then,
the steerability from subsystem A to subsystem B can be
quantified by [22]

GA→B(σAB) = max

⎧⎪⎨
⎪⎩0,−

∑
j:ν̄AB/A

j <1

ln
(
ν̄
AB/A
j

)
⎫⎪⎬
⎪⎭, (3)

where ν̄
AB/A
j ( j = 1, . . . , nB) are the symplectic eigenvalues

of σ̄AB/A = B− CTA−1C, derived from the Schur comple-
ment ofA in the covariance matrix σAB. Note that the criterion
ofGA→B > 0 is a sufficient and necessary condition for testing
steering of Gaussian states with quadrature measurements. In

a non-Gaussian scenario (either non-Gaussian states or non-
Gaussian measurements or both), this criterion still validates
the presence of steering, but it is not a necessary condition
[51].

A. The (1 + 1)-mode EPR steering and type-I
monogamy relation

We start with the investigation of (1 + 1)-mode EPR steer-
ing. From the analytical solutions given in Appendix 1 and
2, we find that there is no steering between modes â1 and
â3, â2 and â4, and among modes b̂1, b̂2, and b̂3 for the
states generated by the symmetric and asymmetric structures,
respectively. Moreover, in both cases the asymmetric steer-
ing is observed where the steering in one direction always
exists but the presence of steering in the other direction is
conditional on the values of gain factors [10–12]. This is
illustrated in Figs. 2(a)–2(d), where Ga4→a3 > 0 (Gb4→b3 > 0)
for all G3 > 1.0, while Ga3→a4 > 0 (Gb3→b4 > 0) only when
G3 > 1.14 (G3 > 1.23 and G3 > 1.35 for the cases of G2 =
1.2 and G2 = 2.0, respectively). Note that the value of G2

does not affect the steerability between modes a4 and a3 in
the symmetric FWM processes but does affect the steerability
between modes b4 and b3 in the asymmetric case. All those
characters are well understood from the analysis of the roles
of output beams after FWM and the asymmetrical effect of
thermal noises on the steered and steering parties in Sec. IV.

We can see that in two cases neither â4 nor b̂4 can be steered
by more than one mode simultaneously. This agrees with the
type-I monogamy relation for Gaussian steering introduced
by Reid [52] in which two distinct modes cannot steer the
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FIG. 2. The (1 + 1)-mode steering varying with G3 for fixed gain
values G1 = 1.2, G2 = 1.2 (lines with triangles), or 2 (lines with
squares). (a) Mode â4 can always steer â3, and its steerability Ga4→a3

grows with increasing G3, while neither â1 nor â2 can steer â3.
(b) Mode b̂4 can always steer b̂3, and Gb4→b3 increases with G3 and
also depends on the value of G2. Meanwhile, neither b̂1 nor b̂2 can
steer b̂3. (c) Mode â4 can be steered by mode â1 or â3 conditionally.
G2 has influence on the steerability of Ga1→a4 but not on Ga3→a4 .
(d) Mode b̂4 can be steered by mode b̂2 or b̂3 conditionally, and
their steerabilities are affected by the value of G2. The above results
validate the type-I monogamy relation described in (e).

third mode simultaneously with Gaussian measurements. In
our four-mode case, this means G j→i > 0 ⇒ Gk→i = Gl→i =
0, where i, j, k, l represent the four modes in two structures,
as sketched in Fig. 2(e).

B. The (1 + 2)- and (2 + 1)-mode steering and type-II
monogamy relation

Now we move to investigate (1 + 2)- and (2 + 1)-mode
steering where either the steered party or steering party con-
tains two modes. Since the general analytical solutions do not
have simple forms, we only give some of them for asymmetric
structure in Appendix 3. Figure 3(a) shows that the group
(â2â4) can always steer mode â3, while the remaining mode
â1 cannot steer mode â3 simultaneously. A similar observation
for the asymmetric structure is depicted in Fig. 3(b). This
agrees with a generalized form of the type-I monogamy
relation; that is, two independent groups of modes cannot
simultaneously steer the third single mode with Gaussian
measurements [53,54]. In our four-mode case, this means
G jk→i > 0 ⇒ Gl→i = 0, referred to as the type-II monogamy
relation, illustrated by Fig. 3(e).

Interestingly, when the steered party contains more than
one mode, we find that the steerabilities Ga2→(a1a3 ) > 0 and
Ga4→(a1a3 ) > 0 occur simultaneously, as shown in Fig. 3(c) for
the symmetric structure, which means the type-II monogamy
constraint can be lifted when more than one mode is steered,

FIG. 3. The (1 + 2)- and (2 + 1)-mode steerings with fixed gain
values G1 = G2 = 1.2 and variable values of G3. (a) Mode â3 can be
steered by modes (â2â4) jointly but cannot be steered by â1. (b) Mode
b̂3 can be steered by modes (b̂2b̂4) jointly but cannot be steered by b̂1.
(c) Modes (â1â3) can be steered by modes â2 and â4 simultaneously.
(d) Modes (b̂1b̂3) can be steered by b̂4 but cannot be steered by b̂2

simultaneously. The simplified schematic of the type-II monogamy
relation for which (e) the steering party contains more than one mode
and (f) the steered party contains two modes. Note that the constraint
sketched in (f) may be lifted for the states created by the symmetric
cascaded FWM processes as presented in (c).

i.e., Gk→i j > 0 � Gl→i j = 0, as sketched in Fig. 3(f). How-
ever, this lift cannot be observed in the asymmetric structure,
as shown in Fig. 3(d), where Gb4→(b1b3 ) > 0 and Gb2→(b1b3 ) =
0. The explanation will follow from the eigensqueezers coex-
isting in the system detailed in Sec. IV.

C. The (1 + 3)- and (3 + 1)-mode steering
and type-III monogamy

In this part we quantify how the EPR steering is distributed
among four modes. Figure 4(a) shows the joint steering
of mode â4 by the left three modes together and by each
individual mode. It is seen that with fixed G1 = G2 = 1.2,
Ga1a2a3→a4 > 0 for any value of G3 > 1, but Ga1→a4 > 0 and
Ga3→a4 > 0 at G3 ∈ (1, 1.08) and G3 > 1.14, respectively,
and Ga2→a4 = 0 all the time. Although the individual modes
â1, â2, â3 cannot steer â4 simultaneously, constrained by the
type-I monogamy, the steerability by them together is sig-
nificantly enhanced. Similar phenomena are observed for the
asymmetric structure shown in Fig. 4(b), with even stronger
joint steerability Gb1b2b3→b4 > Ga1a2a3→a4 . This is because by
cascading more FWM processes in the asymmetric structure
one can generate lager squeezing values in the system, as
discussed in Sec. IV.

In both cases, the enhanced joint steerability is
even stronger than the sum of the pairwise steerability,
i.e., Ga1a2a3→a4 − ∑3

n=1 Gan→a4 > 0 and Gb1b2b3→b4 −∑3
n=1 Gbn→b4 > 0, as indicated in Figs. 4(c) and 4(d).
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FIG. 4. The (3 + 1)-mode steering varying with G3 for fixed
gain values G1 = G2 = 1.2. (a) Modes (â1â2â3) jointly steer â4,
and mode â1 or â3 can individually steer â4 with different G3.
(b) Modes (b̂1b̂2b̂3) jointly steer b̂4, and individual mode b̂2 or b̂3

can conditionally steer b̂4 with different G3. The residual Gaussian
steering for (c) the symmetric structure and (d) asymmetric case,
which stem from the type-III monogamy relation indicated in (e).

This is also true for the opposite direction, i.e., Ga4→a1a2a3 −∑3
n=1 Ga4→an > 0 and Gb4→b1b2b3 − ∑3

n=1 Gb4→bn > 0, as
plotted in Figs. 5(c) and 5(d). In fact, this observation meets
the constraint introduced by the type-III monogamy relation,

FIG. 5. The (1 + 3)-mode steering varying with G3 for fixed gain
values G1 = G2 = 1.2. (a) The steering from mode â4 to individual
â1, â2, â3 and the group of them. (b) The steering from mode b̂4 to
individual b̂1, b̂2, b̂3 and the group of them. The residual Gaussian
steering for (c) the symmetric structure and (d) asymmetric case,
which stem from the type-III monogamy relation indicated in (e).

FIG. 6. The (2 + 2)-mode and corresponding (2 + 1)-mode
steerings varying with G3 for fixed gain values G1 = G2 = 1.2.
(a) Modes (â1â3) jointly steer â2, â4 and the group of them, respec-
tively. (b) Modes (b̂1b̂3) jointly steer b̂2, b̂4 and the group of them,
respectively. The difference between (2 + 2)-mode steerability and
the sum of (2 + 1)-mode steerability in (c) the symmetric structure
and in (d) the asymmetric case. (e) The simplified schematic of
type-IV monogamy relation (5a).

named Coffman-Kundu-Wootters-type monogamy [24]. For
the four-mode scenario, it reads

Gi jk→l − Gi→l − G j→l − Gk→l � 0, (4a)

Gl→i jk − Gl→i − Gl→ j − Gl→k � 0, (4b)

which are valid for all Gaussian states with Gaussian measure-
ments.

Note that for the state created by the symmetric case mode
â4 cannot steer the individual modes â1, â2, â3 simultaneously,
as shown in Fig. 5(a), while for the asymmetric case mode
b̂4 can always steer the individual modes b̂1, b̂2, b̂3 at the
same time when G3 > 1.0, as shown in Fig. 5(b). This can
be understood following the analysis of the difference in the
two structures in Sec. IV.

D. The (2 + 2)-mode steering and type-IV monogamy relation

Finally, we study a more general type of steering properties
where both the steering party and the steered party contain
more than one mode. We select one example with respect
to the bipartition (1,3)-(2,4). The steerings in the directions
(1, 3) → (2, 4), (1, 3) → (2), and (1, 3) → (4) are shown in
Figs. 6(a) and 6(b) for the symmetric and asymmetric cases,
respectively. Figures 6(c) and 6(d) show that the (2 + 2)-mode
steerability is stronger than the sum of the (2 + 1)-mode
steerability. Analogously, we get the same result in Fig. 7,
where the (2 + 2)-mode steerability is stronger than the sum
of the (1 + 2)-mode steerability. This confirms a more general

053834-5



XIANG, LIU, CAI, LI, ZHANG, AND HE PHYSICAL REVIEW A 101, 053834 (2020)

FIG. 7. The (2 + 2)-mode and corresponding (1 + 2)-mode
steerings varying with G3 for fixed gain values G1 = G2 = 1.2.
(a) Modes (â2â4) are steered by â1, â3 and their collaboration.
(c) Modes (b̂2b̂4) are steered by b̂1, b̂3 and their collaboration.
The difference between (2 + 2)-mode steerability and the sum of
(1 + 2)-mode steerability in the (c) symmetric structure and in (d) the
asymmetric case. (e) The simplified schematic of type-IV monogamy
relation (5b).

version of the type-III monogamy relation for Gaussian steer-
ability [55], which is written as for our four-mode scenario,

Gi j→kl − Gi j→k − Gi j→l � 0, (5a)

Gi j→kl − Gi→kl − G j→ikl � 0, (5b)

sketched in Figs. 6(e) and 7(e). Note that the constraint
described by Eq. (5b) can be lifted when the system is not
pure [55]. The present states created by two cascaded FWM
structures are pure such that the type-IV monogamy relation
is valid for all possible (2 + 2)-mode configurations.

Note that the lifting of the type-II constraint is also ob-
served in Fig. 7(a) where the group (â2â4) can be steered by
mode â1 and by mode â3 simultaneously.

IV. DISCUSSION

In order to understand the essential physics of the above
steering properties, in particular, why the lifting of the con-
straint given by the type-II monogamy relation can be ob-
served only for the states created by the cascaded FWM pro-
cesses in a symmetric structure, in this section we analyze the
difference in the two structures and the squeezed eigenmodes
decomposed from four-mode Gaussian states.

A. The difference in steering properties created by two
cascaded FWM structures

The characteristics of all the pairwise quantum steerings
created by the two structures are discussed here in detail, as
they underlie the properties of quantum steering shared by
more modes. Based on the solutions given in Appendix 1 and

FIG. 8. All pairwise EPR steerings for (a) the symmetric struc-
ture and (b) asymmetric structure. The red and blue circles represent
the signal and idler beams plotted in Figs. 1(a) and 1(e), respectively.
Solid red lines with a cross, solid green lines, and dashed green
lines represent no steering, deterministic steering, and conditional
steering, respectively.

2, we plot in Fig. 8 all possible (1 + 1)-mode steerings in both
structures corresponding to the parameters used in Figs. 2–7.
It is clear that the four-mode Gaussian states produced by
the two structures possess different steering properties. First,
there is no pairwise steering between â1 and â3, â2 and â4,
and no pairwise steering among b̂1, b̂2, and b̂3, indicated by
arrows with crosses. From Fig. 1(a), we can see that both â1

and â3 (â2 and â4) act as idler (signal) beams. It is well known
that the output beams of FWM processes in the same roles,
i.e., idler and idler beams, as well as signal and signal beams,
cannot entangle with each other as they have never interacted
with each other directly [56]. It is the same reason as for the
absence of steering among idler beams b̂1, b̂2, and b̂3.

Second, the states manifest asymmetric even “one-way”
steering between different pairs in the two structures, as
shown in Fig. 2. We plot in Fig. 8 all asymmetric steerings
using green solid arrows for deterministic steering and dashed
arrows for conditional steering. For example, in the asymmet-
ric structure shown in Fig. 8(b), mode b̂4 can always steer
the other three modes but can be steered by individual modes
conditional on the values of the gain factors. The reason may
be attributed to the asymmetrical influence of thermal noise on
the steering in two directions. As shown in Fig. 1(e), the signal
beam b̂4 comes from the continuously amplified seed input
âs,0 by three FWM processes which generate thermal states
by adding extra vacuum noise to the signal beam. To make it
clear, let us analyze the steering between modes b̂1 and b̂4 as
an example. After the FWM1 process, the two outputs b̂1 and
âs1 are entangled with each other with symmetric steerability
[see Eqs. (A2c) and (A2j) in Appendix 2, where G2 = G3 = 1,
Gb1→b4 = Gb4→b1 ]; then the beam âs1 goes through the second
and third Rb vapor cells and becomes mode b̂4. Note that
FWM2 and FWM3 act together on the signal beam âs1 to
make it into a thermal state with thermal noises controlled by
the gain factors G2 and G3. This destroys the steering between
b̂1 and b̂4, and the larger G2 and G3 are, the smaller the steer-
ability becomes. However, the effect of thermal noise on the
steering in two directions is asymmetric; that is, the steering
of b̂1 → b̂4 is more sensitive to the effect of thermal noise and
can be achieved only when G2

3 < (2G2
1 − 1)/(G2

1G2
2), while

the steering in the other direction b̂4 → b̂1 cannot be fully
destroyed by increasing thermal noise as mode b̂1 is not
thermally excited [9,57]. With similar analysis, we can see
thatGb2→b4 > 0 when G2

3 < (2G2
1G2

2 − 2G2
1 + 1)/(G2

1G2
2) and
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Gb3→b4 > 0 when G2
3 > (2G2

1G2
2 − 1)/(G2

1G2
2), while no such

conditions exist for the steering in the opposite directions,
i.e., Gb4→b2 > 0 and Gb4→b3 > 0 for all practical parame-
ters [analytical solutions are given in Eqs. (A2k) and (A2l)
in Appendix 2]. From the above conditions and ensuring
G1, G2, G3 > 1, we can also see that it is not possible to
achieve the steering from individual modes b̂1, b̂2, and b̂3 to b̂4

simultaneously. Notice that although the pairwise steerability
may decrease by cascading more FWM processes, the total
quantum correlation of the system is enhanced, as evidenced
by the increasing steerability of Gb1b2b3→b4 in Fig. 4(b).

The third difference in the states created by the two struc-
tures is that the value of G2 does not affect the steerability
Ga3→a4 produced by the symmetric FWM process but does
affect the steerability Gb3→b4 created by the asymmetric case.
This is because the FWM2 and FWM3 processes in the
symmetric structure are independent events; adjusting G2 (G3)
does not influence the steering between modes â3 and â4 (â1

and â2). Nevertheless, for the asymmetric structure, any gain
of three FWM processes has an effect on the steerability. In
Fig. 2(b), one can see that Gb4→b3 slightly grows when G2

decreases from 2 to 1.2, as the noise effect caused by FWM2
is weakening.

B. Eigenmode of the four-mode Gaussian states

In Figs. 3 and 7 we observe the lifting of the constraint
introduced by the type-II Gaussian monogamy relation for

the symmetric cascaded FWM processes, where Ga2→(a1a3 ) >

0 Ga4→(a1a3 ) > 0, as indicated in Fig. 3(c), and Ga1→(a2a4 ) >

0 Ga3→(a2a4 ) > 0, as indicated in Fig. 7(a). It is not observed
for the states created by the cascaded FWM processes in the
asymmetric structure.

The first reason is that in the asymmetric structure, the
quantum steering cannot be created among idler beams b̂1,
b̂2, and b̂3; that is, we cannot get any steerability among them
unless the signal mode b̂4 is involved. When mode b̂4 acts
as a steering party, one cannot find any other signal mode
that can act in the same role to steer the remaining modes.
When mode b̂4 is one of the steered modes, we find that it is
still impossible to realize Gb1→(b2b4 ) > 0 and Gb3→(b2b4 ) > 0
simultaneously. Because the symplectic eigenvalues of their
corresponding Schur complements are reciprocal, only one
of these two steerabilities can be greater than zero (other
combinations are the same, as detailed in Appendix 3).

Second, our result also suggests that the lifting of the
constraint may happen when more eigensqueezers coexist in
the system. Using the Bloch-Messiah reduction, a multipartite
Gaussian state can be decomposed into a unique set of uncor-
related single-mode squeezers and passive (linear) unitaries
[48,49]. For instance, the correlations terms related to the
amplitude quadrature Xi in the CM of a four-mode Gaussian
state created by the symmetric structure, which is determined
by Eq. (2a),

CX,sym =

⎛
⎜⎜⎜⎜⎜⎝

2G2
1G2

2 − 1 2g2G2
1G2 2g1g3G1G2 2g1G1G2G3

2g2G2
1G2 1 + 2G2

1

(
G2

2 − 1
)

2g1g2g3G1 2g1g2G1G3

2g1g3G1G2 2g1g2g3G1 1 + 2G2
1

(
G2

3 − 1
)

2g3G2
1G3

2g1G1G2G3 2g1g2G1G3 2g3G2
1G3 2G2

1G2
3 − 1

⎞
⎟⎟⎟⎟⎟⎠, (6)

can be diagonalized with eigenvalues 0.125, 0.436, 2.296,
and 7.972 when G1 = G2 = G3 = 1.2. Correspondingly, the
momentum (phase) quadrature contains the same eigenmodes
with inverse eigenvalues in the case of pure states. Based
on the method introduced in Refs. [48,49], each eigenvalue
represents the variance of an eigenmode for the amplitude
quadrature. When one of these eigenvalues is larger (smaller)
than 1 (vacuum mode), the system is composed of one
squeezed (antisqueezed) mode in the amplitude quadrature.
Therefore, the squeezing levels corresponding to those eigen-
values (variances) are −9.02, −3.61, 3.61, and 9.02 dB,
as plotted in Figs. 9(a)–9(d). This means the output four-
mode Gaussian states can be decomposed into four inde-
pendent squeezers (two squeezed in the amplitude quadra-
ture and two squeezed in the phase quadrature) with linear
unitaries (e.g., a linear optical network composed by beam
splitters).

Similarly, we transform the four-mode Gaussian states gen-
erated by the asymmetric structure into a set of uncorrelated
squeezers and find there are only two squeezed eigenmodes
with levels of squeezing: {−9.93, 0, 0, 9.93 dB}, as shown in
Figs. 9(e)–9(h). The eigenmode components and squeezing

levels change for different gain settings in both structures. It
is clear that more squeezed eigenmodes may be generated by
cascading more FWM processes in the symmetric structure,
while cascading more FWM processes in the asymmetric case
generates larger squeezing values but keeps only two squeezed
eigenmodes. The total level of quantum correlations in the
system is determined by the squeezing value of eigensqueez-
ers, and thus, the collective steerability indicated by the resid-
ual Gaussian steering, stemming from the type-III and type-IV
monogamy relations, in the asymmetric case is significantly
stronger than that created in the symmetric setup, as shown
in Figs. 4–7. In addition, more independent eigensqueezers
existing in the symmetric structure may bring more abundant
structures to the quantum steering in the system such as the
lifting of the type-II monogamy constraint. What’s more,
compared with the multipartite entangled states generated by
linear optics networks [27,28], from the above analysis, we
can clearly see that by adjusting the structures of cascaded
FWM processes, one can create entangled states with steering
shared among different modes and can even enhance the total
steerability involved in the system without changing the pump
and gains. However, to realize this by linear optics networks
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FIG. 9. Eigenmodes decomposed from the four-mode Gaussian states for two schemes with the same pump power. The bars in (a)–(d) and
(e)–(h) represent the relative weight of modes â1,2,3,4 and b̂1,2,3,4, respectively. Eigenmodes 1 and 4, 2 and 3 have the same squeezing levels in
the amplitude and phase quadratures, respectively.

[27,28], one has to change the squeezing inputs as well as
the linear structure of the networks (the transformation unitary
matrix).

V. SUMMARY

Different structures of cascaded FWM processes are useful
for creating various multipartite entangled states that are
abundant in multimode quantum steering and are useful for
a variety of quantum communication tasks. For instance, in
the region of 1.08 < G3 < 1.14 (with fixed G1 = G2 = 1.2)
shown in Fig. 4(a), mode â4 can be steered by (â1â2â3)
together but cannot be steered by any individual mode
(Ga1a2a3→a4 > 0, Ga1→a4 = Ga2→a4 = Ga3→a4 = 0). A similar
property is observed in the asymmetric case when 1.04 <

G3 < 1.23. This means that the values of amplitudes of â4

(b̂4) cannot be inferred to high precision by one mode alone
and must be inferred collectively by a group. Therefore, the
values of amplitudes of â4 can form the basis for a key which
can be deciphered only by receivers â1, â2, â3 collaboratively
with a low uncertainty. Unlike ordinary entanglement (state
inseparability), the steering nonlocality cannot be faked by
classical means assuming the station of mode â4 is secure
(trusted), without the assumption of trust in the collaborating
receivers’ measurement devices [58]. The amount of residual
steerability achieved in both schemes is, in principle, high
enough to demonstrate secure continuous-variable 1sDI quan-
tum secret sharing with nonzero key rates [24]; for example,
the steerabilities are required to be larger than ln(e/2). Note
that creating the same level of multimode steerability with
linear optics networks [27,28] requires more effort to either
improve the squeezing level of the input states or generate
more single-mode squeezers.

In summary, we proposed two different schemes, i.e., the
symmetric and asymmetric structures of three cascaded FWM
processes in Rb atomic vapors, to generate four-mode Gaus-
sian entangled states. We investigated the steering properties
shared by two-, three-, and four-mode steering, which could
be actively modulated by adjusting the gain values of FWM
processes in both structures. By examining the monogamy
relations for Gaussian steering, we found in the symmetric
case that there is a lifting of the constraint given by the
type-II monogamy relation when the steered party contains
more than one mode. The steering properties, especially the
asymmetric steering, and the lifting of the constraint were
analyzed by considering the difference in the two structures
and the independent squeezed eigenmodes decomposed from
the four-mode Gaussian states. The present results help people
to understand the distribution rules of multipartite steering in
the FWM platform and pave the way to generate on-demand
multipartite EPR steering for a quantum network.
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APPENDIX: SOLUTION TO (1 + 1)- AND (1 + 2)-MODE EPR STEERING

1. The solution to (1 + 1)-mode EPR steering of the symmetric structure (G1 > 1, G2 > 1, and G3 > 1)

Ga1→a2 = − ln

(
1 − 2G2

1

(
G2

2 − 1
)

2G2
1G2

2 − 1

)
> 0, (A1a)

Ga1→a3 = max

{
0,− ln

(2G2
1

(
2G2

2G2
3 − G2

2 − G2
3 + 1

) − 1

2G2
1G2

2 − 1

)} = 0, (A1b)

Ga1→a4 = max

{
0,− ln

(2G2
1G2

3

(
2G2

2 − 1
)

2G2
1G2

2 − 1
− 1

)}
, (A1c)

Ga2→a1 = max

{
0,− ln

(
2G2

1G2
2

2G2
1

(
G2

2 − 1
) + 1

− 1

)}
, (A1d)

Ga2→a3 = max

{
0,− ln

(
2G2

1

(
2G2

2G2
3 − G2

2 − G2
3

) + 1

2G2
1

(
G2

2 − 1
) + 1

)}
= 0, (A1e)

Ga2→a4 = max

{
0,− ln

(
2G2

1

(
2G2

2G2
3 − G2

2 − G2
3 + 1

) − 1

2G2
1

(
G2

2 − 1
) + 1

)}
= 0, (A1f)

Ga3→a1 = max

{
0,− ln

(
2G2

1

(
2G2

2G2
3 − G2

2 − G2
3 + 1

) − 1

2G2
1

(
G2

3 − 1
) + 1

)}
= 0, (A1g)

Ga3→a2 = max

{
0,− ln

(
2G2

1

(
2G2

2G2
3 − G2

2 − G2
3

) + 1

2G2
1

(
G2

3 − 1
) + 1

)}
= 0, (A1h)

Ga3→a4 = max

{
0,− ln

(
2G2

1G2
3

2G2
1

(
G2

3 − 1
) + 1

− 1

)}
, (A1i)

Ga4→a1 = max

{
0,− ln

(
2G2

1G2
2

(
2G2

3 − 1
)

2G2
1G2

3 − 1
− 1

)}
, (A1j)

Ga4→a2 = max

{
0,− ln

(
2G2

1

(
2G2

2G2
3 − G2

2 − G2
3 + 1

) − 1

2G2
1G2

3 − 1

)}
= 0, (A1k)

Ga4→a3 = − ln

(
1 − 2G2

1

(
G2

3 − 1
)

2G2
1G2

3 − 1

)
> 0. (A1l)

2. The solution to (1 + 1)-mode EPR steering of the asymmetric structure (G1 > 1, G2 > 1, and G3 > 1)

Gb1→b2 = max

{
0,− ln

(
1 + 2G2

1

(
G2

2 − 1
)

2G2
1 − 1

)}
= 0, (A2a)

Gb1→b3 = max

{
0,− ln

(
1 + 2G2

1G2
2

(
G2

3 − 1
)

2G2
1 − 1

)}
= 0, (A2b)

Gb1→b4 = max

{
0,− ln

(
2G2

1G2
2G2

3

2G2
1 − 1

− 1

)}
, (A2c)

Gb2→b1 = max

{
0,− ln

(
1 + 2

(
G2

1 − 1
)

2G2
1

(
G2

2 − 1
) + 1

)}
= 0, (A2d)

Gb2→b3 = max

{
0,− ln

(
1 + 2G2

1G2
2

(
G2

3 − 1
)

2G2
1G2

2 − 2G2
1 + 1

)}
= 0, (A2e)
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Gb2→b4 = max

{
0,− ln

(
2G2

1G2
2G2

3

2G2
1

(
G2

2 − 1
) + 1

− 1

)}
, (A2f)

Gb3→b1 = max

{
0,− ln

(
1 + 2

(
G2

1 − 1
)

2G2
1G2

2G2
3 − 2G2

1G2
2 + 1

)}
= 0, (A2g)

Gb3→b2 = max

{
0,− ln

(
1 + 2G2

1

(
G2

2 − 1
)

2G2
1G2

2G2
3 − 2G2

1G2
2 + 1

)}
= 0, (A2h)

Gb3→b4 = max

{
0,− ln

(
2G2

1G2
2G2

3

2G2
1G2

2

(
G2

3 − 1
) + 1

− 1

)}
, (A2i)

Gb4→b1 = − ln

(
1 − 2

(
G2

1 − 1
)

2G2
1G2

2G2
3 − 1

)
> 0, (A2j)

Gb4→b2 = − ln

(
1 − 2G2

1

(
G2

2 − 1
)

2G2
1G2

2G2
3 − 1

)
> 0, (A2k)

Gb4→b3 = − ln

(
1 − 2G2

1G2
2

(
G2

3 − 1
)

2G2
1G2

2G2
3 − 1

)
> 0. (A2l)

3. The solution to (1 + 2)-mode EPR steering of the asymmetric structure (G1 > 1, G2 > 1, and G3 > 1)

Gb2→(b1b4 ) = max

{
0,− ln

(
2G2

1G2
2G2

3 − 2G2
1G2

2 + 1

2G2
1G2

2 − 2G2
1 + 1

)}
, (A3a)

Gb3→(b1b4 ) = max

{
0,− ln

(
2G2

1G2
2 − 2G2

1 + 1

2G2
1G2

2G2
3 − 2G2

1G2
2 + 1

)}
, (A3b)

Gb1→(b2b4 ) = max

{
0,− ln

(
2G2

1G2
2G2

3 − 2G2
1G2

2 + 1

2G2
1 − 1

)}
, (A3c)

Gb3→(b2b4 ) = max

{
0,− ln

(
2G2

1 − 1

2G2
1G2

2G2
3 − 2G2

1G2
2 + 1

)}
, (A3d)

Gb1→(b3b4 ) = max

{
0,− ln

(
2G2

1G2
2 − 2G2

1 + 1

2G2
1 − 1

)}
, (A3e)

Gb2→(b3b4 ) = max

{
0,− ln

(
2G2

1 − 1

2G2
1G2

2 − 2G2
1 + 1

)}
. (A3f)
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