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High-dimensional entangled photon pairs have many excellent properties compared to two-dimensional
entangled two-photon states, such as greater information capacity, stronger nonlocality, and higher security.
Traditionally, the degree of freedom that can produce high-dimensional entanglement mainly consists of angular
momentum and energy time. In this paper, we propose a type of high-dimensional energy-time-entangled qudit,
which is different from the traditional model with an extended propagation path. In addition, our method mainly
focuses on the generation with multiple frequency modes, while two- and three-dimensional frequency-entangled
qudits are examined as examples in detail through the linear or nonlinear optical response of the medium.
The generation of high-dimensional energy-time-entangled states can be verified by coincidence counts in the
damped Rabi oscillation regime, where the paired Stokes–anti-Stokes wave packet is determined by the structure
of resonances in the third-order nonlinearity. Finally, we extend the dimension to N in the sequential-cascade
mode. Our results have potential applications in quantum communication and quantum computation.
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I. INTRODUCTION

Correlation of entangled quantum particles is stronger
than that allowed by classical physics. The correlation is
one of the most deep foundational questions in quantum
mechanics [1], and forms the basis of many emerging quan-
tum technologies [2–5]. The most widespread technique for
creating these quantum resources is spontaneous parametric
down-conversion (SPDC) [6]. However, the inferiority of
SPDC sources lies in the broad bandwidth determined by the
phase-matching condition, which is usually on the order of
several THz or hundreds of GHz. The broadband SPDC source
becomes very dim in many applications requiring narrow-band
photons, such as long-distance fiber optical quantum commu-
nication (∼GHz), strong interaction of the photons with atoms
and molecules (∼MHz,), and interference of independent
sources without time synchronization (∼GHz) [7]. Much effort
has been used in the past more than one decades to narrow
down the SPDC photon bandwidth by using optical cavities [8–
10] and passive filtering [11]. However, the bandwidth of
SPDC polarization-entangled photon pairs is still wider than
most atomic transitions and leads to a very low efficiency of
storing these polarization states in a quantum memory [9,12].

Due to their low decoherence rate, photons are used in many
experiments as a robust carrier of entanglement. Recently,
the Harris group [13,14] generated narrow-bandwidth time-
frequency entangled paired photons with the two driving lasers
running in continuous-wave mode, making use of electromag-
netically induced transparency (EIT) [15] and spontaneous
parametric four-wave mixing (SPFWM). Photons produced
from this method not only possess narrow bandwidth but also
automatically match the atomic transitions. The applications
of these narrow-band photons include the demonstration of
a single-photon memory with a storage efficiency of about
50% [16], a single-photon precursor [17], and quantum key
distribution [18].
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Meanwhile, in order to increase information carrying
capacity, some scientists have been drawn to the production
of photons that are simultaneously entangled in more than one
degree of freedom, or hyper-entangled. But it is difficult to keep
the stability of the system when different degrees of freedom
are regulated. Another way to reach this goal is using high-
dimensional (assume H dimension) two-photon entanglement,
wherein each photon is an H -level qudit. From a fundamental
standpoint, higher-dimensional entanglement implies stronger
violations of locality [19,20] and is especially useful in the
study of mutually unbiased bases in higher dimensions [21].
More relevant to practical applications, higher-dimensional
entanglement provides increased security and robustness
[22–24] and a higher information capacity [23,25,26].

The degrees of freedom of generally generated high-
dimensional entangled biphoton states mainly include orbital
angular momentum [27] and energy time [28]. For the
orbital angular momentum, the generation mechanism mainly
uses the spatial light modulator to allow the polarization
of entangled two-photon states to carry orbital angular
momentum so that the degree of freedom in the orbital angular
momentum also has entanglement properties. Photon pairs
with high-dimensional energy-time entanglement properties
are generated primarily by extending the propagation path [29],
which will lead to some drawbacks. With the increase of
the path, the success rate of generating the high-dimensional
energy-time-entangled state will decrease rapidly. Here, we
propose a new method for producing high-dimensional energy-
time-entangled photon pairs based on the four-level double-�
EIT system, whose high-dimensional features originate from
multiple frequency modes. Frankly speaking, the transverse
effects in paired-photon generation by the four-level system
has been discussed in detail [30,31]. Du et al. also discussed
the correlation characteristics of two-photon states under
the single transverse mode of the generating fields [32].
Compared with the previous double-� configurations, the
extended frequency modes are mainly produced by the splitted
atomic energy level induced by the dressing field, resulting in
high-dimensional energy-time entanglement.
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FIG. 1. Mechanisms of biphoton generation from a four-level
system. In the presence of a cw pump ωp and coupling ωc beams,
paired Stokes ωs , and anti-Stokes ωas photons are spontaneously
created from the FWM processes in the low-gain regime. (a)–(c)
No dressed field, single-dressed field, and N-dressed field cases,
respectively. (d) The backward detection geometry for two-photon
emission shown in (a), (b), and (c).

The paper is organized as follows. In Sec. II, we derive
a general formalism of the two-photon state and biphoton
wave packet generated from the FWM parametric process.
In Sec. III, we show that the linear and nonlinear optical
responses to the generated fields play an important role
in determining the two-photon amplitude. By looking at
the nonlinear susceptibility, we illustrate the mechanism of
biphoton generation and how to extend to higher dimension.
In Sec. IV we study the linear and nonlinear optical responses
to the generated fields in the presence of an additional dressing
field. We show that the frequency mode of generated fields
have substantially increased with the existence of dressing
field. In Sec. V, paired Stokes and anti-Stokes photons are
studied in coincidence counting measurements. Theoretical
analysis suggests that the two-photon temporal correlation has
a significant difference in the presence and absence of the
dressing field. In Sec. VI, according to the nonlinear response
characteristics of the atomic medium, we extend the dimension
of entanglement to N. Finally, we draw the conclusion and
outlook in Sec. VII.

II. OVERVIEW OF TWO-PHOTON STATE FUNCTION

We begin with a medium of identical four-level atoms
initially prepared in their ground level |1〉. The medium
is confined within a long, thin cylindrical volume with a
length L. The averaged atomic density is N. The schematic of
biphoton generation via a four-level double-� atomic system is
shown in Fig. 1(a). A simplified experimental setup for paired
photon generation in such a four-level system is illustrated in
Fig. 1(d), where a weak pump laser with angular frequency
ωp and a strong control field with angular frequency ωc are

counterpropagating through the medium. The weak pump
beam is applied to the atomic transition |1〉 → |4〉 with a
detuning �p = ω41 − ωp, and a strong control laser is near the
resonant frequency of the atomic transition |2〉 → |3〉, where
ωij is the transition frequency between levels |i〉 and |j 〉. Paired
Stokes and anti-Stokes photons are spontaneously produced
from the FWM process in the low-gain limit. As shown in
Fig. 1(a), the strong coupling laser forms a standard three-level
� EIT scheme with the generated anti-Stokes field. Therefore,
the role of the coupling laser here is that it not only assists
the FWM nonlinear process but also creates a transparency
window for the anti-Stokes photons with the slow-light effect.
For simplicity, in this paper we will not take into account the
Doppler broadening and polarization effects. Since the control
laser is much stronger than the pump and a large detuning
puts the pump far off resonance, the quantum atomic noise
may be suppressed and the atomic population is maintained
primarily in the ground state. In the two-photon limit, the
quantum Langevin noise introduces unpaired photons, which
are not of interest here and so are ignored [33,34]. In addition,
we concentrate on the two-photon temporal correlation.

In the interaction picture the effective interaction Hamilto-
nian for the FWM parametric process takes the form,

ĤI = ε0

∫
V

d3rχ (3)E(+)
p E(+)

c E(−)
as E(−)

s + H.c., (1)

where V is the interaction volume illuminated by the pump
and control beams together and H.c. stands for the Hermitian
conjugate. χ (3) is the third-order nonlinear susceptibility to
the Stokes (or anti-Stokes) field defined by the nonlinear
polarizability. E(+)

p and E(+)
c are the positive-frequency parts

of the pump and couple field which are classical plane waves,

E(+)
p = Epei(k̂p ·ẑ−ωpt),E(+)

c = Ece
−i(k̂c ·ẑ+ωct). (2)

The z direction is assumed to be parallel to the pump
longitudinal propagation. In the Hamiltonian (1) we ignore the
reflections from the system surfaces and use the rotating-wave
approximation. The generated Stokes and anti-Stokes photons
are given by the quantized fields,

E(+)
s =

∑
k̂s

Es âk̂s
ei(k̂s ·r̂−ωs t),

E(+)
as =

∑
k̂as

Eas âk̂as
e−i(k̂as ·r̂+ωas t), (3)

where Ej = i
√

h̄�j/2ε0n
2
jVq and Vq is the quantization

volume. Using Eqs. (2) and (3) and after integration, the
Hamiltonian (1) can be rewritten as

ĤI = ih̄

2

∫
dωsdωasκ
(�kL)H (α̂s + α̂as,ρ)

× â+
s â+

ase
−i(ωp+ωc−ωs−ωas ), (4)

where κ = −i
√

�s�asχ
(3)EcEp is the nonlinear parametric

coupling coefficient; �as and �s are central frequencies of the
anti-Stokes and Stokes fields, respectively. Here, because of
the steep EIT dispersion profile, all the indices of refraction are
taken as unity. 
(�kL) is the longitudinal detuning function,
which is an integral about z from −L to 0 over the length of
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the medium,


(�kL) = 1 − e−i�kL

i�kL
, (5)

where �k = kc − kp + ks − kas is the phase mismatch along
the longitudinal axis. Note that 
(�kL) carries the informa-
tion of phase mismatch in the longitudinal direction over the
entire medium. The natural spectral width of the two-photon
state may be determined by this longitudinal detuning function.
H (α̂s + α̂as,ρ) is called the transverse detuning function,
which is the integral over the area A of the intersection of
the beam cross section,

H (α̂s + α̂as,ρ) = 1

A

∫
A

d2ρe−i(α̂s+α̂as )·ρ̂ . (6)

In Eq. (6) we have assumed that A is independent on z. α̂s

and α̂as are transverse wave vectors of Stokes and anti-Stokes
photons, respectively. ρ̂ is in the transverse plane normal to
the longitudinal axis ẑ. For large emission angles and long
effective-interaction length, the properties of the two-photon
state are mainly determined by the function 
(�kL). In the
limit of a medium with infinite length and cross section, both

 and H become δ functions. Combining with the energy
conservation δ function, they form perfect phase-matching
conditions k̂c − k̂p + k̂s − k̂as = 0. The natural spectral width
of the biphoton wave packet determined by 
 can be
manipulated by changing the group delay to traverse the
medium. For example, subnatural-linewidth photon pairs have
been generated in the cold atomic medium using the EIT to
alter the phase matching, and the coherence time has exceeded
up to 1.5 μs [35]. In most of the experiments the range of the
transverse component of the wave number is limited by placing
pin holes in the beams. On the other hand, the transverse
correlation of entangled photons has important applications in
quantum imaging [36] and quantum lithography [37]. In this
paper, we focus on the temporal correlation of the two-photon
state. To simplify the proceeding discussions, we presumed
that the cross section of the pump and coupling beam are large
enough so that diffraction effects may be ignored. Thus the
transverse detuning function H becomes a δ function. The
wave vectors are replaced by wave numbers.

Considering the weak nonlinear interaction, we can obtain
the initial state of paired Stokes–anti-Stokes photons by the
first-order perturbation theory in the interaction picture. It
gives the photon state at the output surface approximately as
a linear superposition of |0〉 and |�〉, where |0〉 is the vacuum
state. Because the vacuum is not detectable, from now on we
ignore it and only consider the two-photon part. The biphoton
state |�〉 can be expressed as

|�〉 = −i

h̄

∫ +∞

−∞
dtĤI |0〉

=
∫

dωasκ
(�kL)â+
s â+

asδ(ωp + ωc − ωs − ωas)|0〉

=
∫

dωasκ(ωas,ωp + ωc − ωas)
(�kL)â+
s â+

as |0〉. (7)

In Eq. (7), the Dirac δ function comes from the time integral
and states the energy conservation. The two-photon state is
entangled in frequency and wave number. In frequency space,

the entanglement is the result of the frequency phase-matching
condition, which implies that the detection of a photon at
frequency ωas requires the detection of the other photon at
frequency ωp + ωc − ωs . The state is also entangled with
respect to the wave number since the 
(�kL) function cannot
be factorized as a function of kas times a function of ks . In the
general noncollinear case, the wave-number entanglement has
implications for the spatial correlation of photon pairs [30–32].

In most experiments the two-photon correlation is the quan-
tity of primary interest. To look at the two-photon properties
from a four-level system, we start with a simple experiment of
the photon coincidence counting measurement. We suppose
that detector D1 detects photons with frequency ωs while
photons with frequency ωas fire detector D2. Assuming perfect
detection efficiency, the averaged two-photon coincidence
counting rate is defined by

Rcc = lim
T →∞

1

T

∫ T

0
dts

∫ T

0
dtasG

(2)M(ts − tas), (8)

where

G(2) = 〈�|E(−)
s E(−)

as E(+)
as E(+)

s |�〉.

In Eq. (8), M(ts − tas) is the coincidence window function,
which is defined so that M = 1 for |ts − tas | < tcc and it goes to
zero rapidly for |t | > tcc. Generally speaking, tcc is quite large
and so we may take M = 1. Using Eq. (7), the second-order
intensity correlation function can be written as

G(2) = 〈�|E(−)
s E(−)

as E(+)
as E(+)

s |�〉
= |〈0|E(+)

as E(+)
s |�〉|2 = |B(τs,τas)|2, (9)

where τi = ti − ri/c and ri is the optical path from the output
surface of the medium to the ith detector. For simplicity, we
choose rs = ras . In general, the function B(τs,τas) is referred
to as the two-photon amplitude, or biphoton wave packet. By
substituting Eqs. (3) and (7) into Eq. (9), one obtains

B(τs,τas) =
∑
ks

∑
kas

Wχ (3)(ωas)

′(�kL)e−i(ωsτs+ωasτas ),

(10)

where 
′(�kL) = 
(�kL)eikasL and all the constants and
slowly varying terms have been absorbed into W . Now
converting the sums in Eq. (10) into integrals in the standard
fashion

∑
kj

→ V
1/3
q /(2π )

∫
dωj/νj , one obtains

B(τs,τas) = ψ(τ )e−i(ωp+ωc)τs , (11)

where

ψ(τ ) = W1

∫
dωasκ(ωas)


′(ωas)e
−iωasτ , (12)

with the relative time delay τ = τas − τs . The integral in
Eq. (12) is a Fourier transform of the longitudinal detun-
ing function times the profile of the third-order nonlinear
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susceptibility. In general, the pattern of the two-photon
amplitude is determined by both κ and 
′.

III. OPTICAL RESPONSE OF A FOUR-LEVEL SYSTEM

The two-photon wave function is determined by both
the nonlinear susceptibility and the longitudinal detuning
function. Therefore, in this section we look at the linear
and nonlinear optical responses to the generated fields. On
one hand, the importance of the nonlinear susceptibility

is that it not only characterizes the strength of the nonlinear
parametric process but also is the mechanism of biphoton
generation. As a consequence, it determines the feature
of the two-photon temporal correlation in one regime. On
the other hand, the longitudinal detuning function sets the
natural spectral width of biphotons and governs the pat-
tern of the temporal correlation in another regime. Using
the probability amplitude model, the third-order nonlin-
ear susceptibility for the generated anti-Stokes field is
[30–32,38]

χ (3) = Nμ13μ24μ41μ32

ε0h̄
3(−�p + iγ14)[4(ω + iγ13)(ω + iγ12) − |�c|2]

= Nμ13μ24μ41μ32

ε0h̄
34(−�p + iγ14)(ω − �e/2 + iγe)(ω + �e/2 + iγe)

, (13)

where μij are the electric dipole matrix elements and γij

the dephasing rates. �e = √
�2

c − (γ13 − γ12)2 is the effective
coupling Rabi frequency, where γ12 and γ13 are dephasing rates
of coherence |3〉 → |1〉 and |2〉 → |1〉. γe = (γ12 + γ13)/2 is
the effective dephasing rate. We are interested in the optical
response of the atomic dipoles oscillating at frequencies
�as + ω. The reason is that the resonances shown in the
denominator of Eq. (13) will tell the generation mechanisms
behind the FWM processes, e.g., how many modes can be
generated for the Stokes and anti-Stokes fields and how these
modes are correlated with each other [32,39–41]. The exact
roots of the real part of the denominator in Eq. (13) are
simple. There are two resonances, which occur at �as + �e/2
and �as − �e/2 with the associated linewidth γe. These two
resonances correspond to two FWM processes existing in the
system. The first FWM process happens when the central
frequency of the anti-Stokes field is �as + �e/2 and the
central frequency of the Stokes field is �s − �e/2. The other
FWM occurs as the anti-Stokes field is peaked at �as − �e/2
while the Stokes field peaks at �s + �e/2. As expected, both
FWMs satisfy the energy conservation ωp + ωc − ωs − ωas =
0. The spontaneously emitted paired photons propagate into
opposite directions as shown in Fig. 1(d). On the other hand,
in the case of strong coupling field power and low optical
depth, the single-photon spectrum of anti-Stokes can be plotted
in Fig. 2(a). The widths of these two resonance peaks are
determined by 2γe. The generated Stokes and anti-stokes
photon pair can be described as the entanglement state
with destructive interference (|�as + �e/2〉|�s − �e/2〉 −
|�as − �e/2〉|�s + �e/2〉)/√2.

The linear susceptibilities corresponding to the Stokes and
anti-Stokes are

χs = Nμ2
24

ε0h̄

4(ω − iγ31)

4(ω − iγ21)(ω − iγ31) − |�c|2
|�p|2

�2
p + γ 2

14

,

χas = Nμ2
13

ε0h̄

4(ω + iγ21)

4(ω + iγ21)(ω + iγ31) − |�c|2 . (14)

The linear susceptibilities χs and χas control the dispersion
profile and transmission spectrum of the generated Stokes and
anti-Stokes fields as they propagate through the medium. As
a consequence, these linear susceptibilities will govern the
natural spectral width of paired photons through the phase-
matching condition. As described in Eq. (14), the standard

�-type EIT exists in the generated anti-Stokes channel due
to the strong coupling field Ec. The propagation constants
of two weak fields within the medium are given by kas =
(�as + ω)/νas and ks = (�s − ω)/νs , respectively. νas and
νs are group velocities of Stokes and anti-Stokes photons
propagating through the system, which are defined by ν =
c/[n + ω(dn/dω)]. n(ω) is the refractive index experienced
by each weak field and is defined as n = √

1 + Re[χ ]. For
the Stokes field, its group velocity approaches c because of
|�p|2 	 (�2

p + γ 2
14). Accordingly, the group velocity of the

anti-Stokes field is

νas = c

1 + ω31
2

Re[χas (ω)]
dω

= c

1 + 2ω31OD·γ31

k31L|�c|2
, (15)

where OD is optical depth. In the counterpropagating geome-
try, the resulting wave-number mismatch is

�k = kp − kc + kas − ks =
(

1

νas

− 1

c

)
ω ≈ ω

νas

. (16)

The bandwidth due to the group delay can then be estimated
as �ωg ∼ νas/L. On the other hand, the propagations of the
Stokes and anti-Stokes beams are limited by the transmission
spectral widths. It is known that the transmission spectral width
is determined by the imaginary part of the linear susceptibility
χ . Considering the situations here, the transmission profile
plays the role only as the control field is near resonant with its
transition. In such a case, the anti-Stokes transmission will be
controlled by the EIT window as shown in Fig. 2(b). From the
expression for the transmission T (ω) = e−Im[χas ]kL, we can
obtain the transmission bandwidth �ωt ≈ |�c|2/(γ31

√
OD).

From the above analysis, one can arrive at the conclusion
that the competition between �e, γe, and �ωg will determine
which effect plays a dominant role in governing the feature of
the two-photon correlation [32,39]. If the effective coupling
Rabi frequency �e and linewidths γe are smaller than the
phase-matching bandwidth �ωg , the two-photon amplitude
are mainly determined by the nonlinear coupling coefficient.
Instead, the slow-light effect can be used to dynamically
control the biphoton temporal correlation time in the group-
delay regime if �e,γe > �ωg . In this region, the information
of the two-photon spectrum is erased by the slow-light effect.
To check the high-dimensional properties of energy time, we
focus on the damped Rabi oscillation regime.
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FIG. 2. (a) The doublet resonances shown in the third-order nonlinear susceptibility |χ (3)| of the anti-Stokes beam. (b) Anti-Stokes
transmission versus the detuning from the |1〉 → |3〉 transition in the presence of the coupling laser. The parameters used here are γ13 = γ14 =
2π × 3 MHz, γ12 = 0.01γ13, �p = 50γ13, �c = 30γ13, and OD = 10.

IV. OPTICAL RESPONSE OF MEDIUM WITH
DRESSING FIELD

In this section, we will discuss the paired Stokes–anti-
Stokes generation in a dressed five-level system as shown
in Fig. 1(b). Comparing with the previous double-� schemes,
the EIT effects offered in the current configuration may be
manipulated by altering either the Rabi frequency of the
control laser or the Rabi frequency of the dressing beam,
or both. When the pump (Ep) and coupling (Ec) field are
kept the same, a dressing laser with angular frequency ωd is
applied to the quantum transition |3〉 → |5〉 with a detuning
�d = ω53 − ωd . One may notice that two types of EIT exist
in the system for the input probe beam, a ladder-type and
a �-type, as shall be formally shown below. Again we will
not take into account the Doppler broadening and polarization
effects. By solving the probability amplitude model under this
configuration, the third-order nonlinear susceptibility for the
generated anti-Stokes field is

χ ′(3) = Nμ13μ24μ41μ32(ω − �d + iγ53)

2ε0h̄
3(�p − iγ14)D1(ω)

,

D1(ω) = 4(ω − �d + iγ53)(ω + iγ21)(ω + iγ31)

− |�d |2(ω + iγ21) − |�c|2(ω − �d + iγ53), (17)

since the parametric conversion efficiency of twin beams is
governed by the third-order nonlinear susceptibilities χ ′(3).
The structure of these nonlinearities plays an important role
in determining the feature of the biphoton wave packet. For
example, as shown in Eq. (12), the integration over the full
frequency spectrum will yield the two-photon spectral width
around the residues. Comparing this width with that from
the phase dispersion, a narrower one will play a major role
in the biphoton wave packet. Solving the cubic function
ReD1(ω) = 0, one can find three roots which indicate a triplet
of resonances. Figure 3(a) displays numerical simulations of
three resonances. Alternatively, there are three types of FWM
processes occurring in the interaction.

Since these three roots take very complicated forms, we
divided them into two cases to discuss the following. (a)
The intensity of the dressing field (Ed ) is stronger than Ec,
i.e., �d � �c. We can approximate D1(ω) as (ω + iγ21) ×
[4(ω − �d + iγ53)(ω + iγ31) − |�d |2], which means the EIT
effect mainly comes from the strong dressing field Ed not
from the coupling field Ec. (b) The intensity of the dressing
field (Ed ) is weaker than Ec. In such a situation, D1(ω)
may be approximated as (ω − �d + iγ53) × [4(ω + iγ21)(ω +
iγ31) − |�c|2]. These two cases are equivalent in principle, so
we just discuss the case (a). To visualize the optical responses
of the medium to the generated Stokes and anti-Stokes fields
in such a case, we rewrite Eq. (17) as

χ
(3)
d = Nμ13μ24μ41μ32(ω − �d + iγ53)

2ε0h̄
3(�p − iγ14)D′

1(ω)
,

D′
1(ω) = (ω + iγ21)[4(ω − �d + iγ53)(ω + iγ31) − |�d |2].

(18)

By inspecting that the real part of D′
1(δ) vanishes, the triplet

of resonances appears at

ω0 = 0,ω± = �d

2
± �′

e

2
, (19)

where �′
e =

√
|�d |2 + �2

d − (γ53 − γ31)2 and γe1 = (γ53 +
γ31)/2. The corresponding linewidths of the triplet of reso-
nances are �0 = γ21 and �± = γe1. Three types of FWMs
appear behind D′

1(δ). Alternatively, three types of paired
Stokes and anti-Stokes photons can be generated from these
three FWM processes in the spontaneous emission region.
One FWM process occurs when the central frequency of the
anti-Stokes field coincides with the pump laser frequency
ω31, and the central frequency of the Stokes field coincides
with the atomic-transition frequency ω41 − �p. In this case,
the correlated photon pairs are generated due to the ab-
sorption of a pair counter-propagating pump and coupling
photons as required by the phase-matching conditions. The
spontaneously emitted paired photons propagate into opposite
directions. The second FWM occurs as the anti-Stokes field
peaks at ω31 + �d/2 + �′

e/2 while the Stokes field peaks
at ω41 − �p − �d/2 − �′

e/2. The third FWM exists when
the anti-Stokes mode is centered at ω31 + �d/2 − �′

e/2 and
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FIG. 3. (a) The triple resonances shown in the third-order nonlinear susceptibility |χ ′(3)| of the anti-Stokes beam. (b) Anti-Stokes
transmission versus the detuning from the |1〉 → |3〉 transition in the presence of the coupling and dressing laser. The parameters used
here are γ13 = γ14 = 2π × 3 MHz, γ53 = 2.3γ13, γ12 = 0.01γ13, �c = 40γ13, �d = 50γ13, �p = 50γ13, �d = 20γ13, and OD = 10.

the Stokes mode is centered at ω41 − �p − �d/2 + �′
e/2.

As expected, all three FWMs satisfy the energy conservation
ωp + ωc − ωs − ωas = 0. Similarly, the generated photon pair
can be described as the entanglement state,

|�〉1 = (d1|ω31〉|ω41 − �p〉 − d2|�as + ω+〉|�s − ω+〉
− d3|�as + ω−〉|�s − ω−〉),

where d1,d2, and d3 satisfy d2
1 + d2

2 + d2
3 = 1 and d2

1 −
d2

2 − d2
3 = 0 because of the normalization and destructive

interference.
We can also understand the physical process from the

dressed-state picture. In the presence of the on-resonance
coupling field Ec, the levels |2〉 and |3〉 are split into two
with a frequency separation equal to the coupling field
Rabi frequency �c as shown in Fig. 2(a). In such a case,
two spontaneous FWM channels occur. When an additional
dressing laser is applied to the quantum transition |3〉 → |5〉,
the levels |3〉 and |5〉 will be splitted again, resulting in four
eigenvalue and nondegenerate eigenstates accordingly. One
of the trapping states is caused by the in-resonant coupling
field. The single-photon spectrum of the anti-Stokes exhibits
competitive behavior. If the intensity of the dressing field is
greater than the coupling field, the single-photon spectrum
shows the intensity of the central component greater than
two sidebands and vice versa. It is worth noting that if the
detunning of the dressing field is 0, i.e., the resonance situation,
two of the four nondegenerate eigenstates are dark states in
subsystems. On the other hand, focus on the linear optical
response in Eq. (20), there only has two transmission channels
for the sideband generation signals in electromagnetically
induced transparency window and the central component will
be completely absorbed. To pursue more frequency modes, the
situation must be avoided. Therefore, there is a certain range
of the detuning for the dressing field. When �d is not equal to
0, the four nondegenerate eigenstates consist of one dark state
and three bright states, making the double FWM channels into
three FWM channels as shown in Fig. 3(a). Similarly, there are
three transmission channels in the electromagnetically induced
transparency window as shown in Fig. 3(b).

The linear susceptibilities at the Stokes and anti-Stokes can
be written as

χd
s = −Nμ2

24/(ε0h̄)

8
[
(ω − iγ21) + (ω−�d−iγ53)|�c|2

|�d |2−4(ω−�d−iγ53)(ω−iγ31)

] |�p|2
�2

p + γ 2
14

,

χd
as = Nμ2

13

ε0h̄

1[ |�d |2
4(ω−�d+iγ53) + |�c|2

4(ω+iγ31) − (ω + iγ21)
] . (20)

As described in Eq. (20), two sets of EIT may exist in the gen-
erated ωas channel. One is the standard �-type EIT due to the
strong coupling Ec beam and the other is the ladder-type EIT
due to the dressing laser Ed . There is a competitive relationship
between the two EIT effects. As is mentioned in Sec. III, the
linear susceptibilities will govern the natural spectral width of
paired photons through the phase-matching condition. Instead,
the high-dimensional energy-time entanglement photon pairs
were born in such a regime that the two-photon amplitude was
dominated by the nonlinear coupling coefficient. So we only
consider the transmission in the anti-Stokes channel instead of
the phase mismatch of FWM. Figure 3(b) is the anti-Stokes
transmission via versus the detuning from the |1〉 → |3〉 tran-
sition in the presence of the coupling and dressing laser. There
are three transmission windows corresponding to the three
resonant positions of the χ ′(3). This means that the medium
does not have a strong absorption for three types of FWM
signals.

V. PHOTON COUNTING MEASUREMENT

In this section, we prove the generation of high-dimensional
energy-time-entangled photon pairs by coincidence counting.
We consider the case that the structure of the third-order
nonlinear susceptibility χ (3) mainly determines the profile of
the biphoton wave packet. With a strong coupling laser and
an optical depth of about 10, we work in the damped Rabi
oscillation regime. In such a case, the longitudinal detuning
function 
 is approximated to 1. The two-photon amplitude
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FIG. 4. The two-photon coincidence counting rate in the damped
Rabi oscillation regime, where the paired Stokes–anti-Stokes wave
packet is determined by the structure of double resonances shown in
Eq. (13). The parameters here are the same as those used in Fig. 2.

in Eq. (11) now turns out to be the Fourier transform of χ (3),

B(τ ) = Nμ13μ24μ41μ32
√

�s�as

4ε0ch̄
3(−�p + iγ14)

EpEce
−i(ωp+ωc)τs ,

∫
dω

e−iωτ

(ω − �e/2 + iγe)(ω + �e/2 + iγe)
. (21)

By calculating the residues in Eq. (21), it gives

B(τs,τas) = φ(τs)θ (τ ),φ(τs) = W2e
−i(ωp+ωc)τs ,

θ (τ ) = (ei�eτ/2 − e−i�eτ/2)e(−γeτ ). (22)

W2 has absorbed all the constants and slowly varying terms.
The physics of Eq. (22) is understood as follows. Since the
two-photon state is entangled, it cannot be factorized into a
function of τas times a function of τs . Equation (22) also shows
destructive interference between the two biphoton channels.
The first term in the second line on the right-hand side
of Eq. (22) represents the two-photon amplitude of paired
anti-Stokes at �as + �e/2 and Stokes at �s − �e/2, while
the second term is the two-photon amplitude of paired anti-
Stokes at �as − �e/2 and Stokes at �s + �e/2. Two-photon
coincidence counting has the form,

Rcc = W3[1 − cos(�eτ )]e−2γeτ , (23)

where W3 is a constant. Figure 4 is the numerical simulation
two-photon coincidence counting rate in the damped Rabi
oscillation regime, where the paired Stokes–anti- Stokes wave
packet is determined by the structure of double resonances
shown in χ (3). The physics of Eq. (23) shows the beating
between two types of paired photons generated from the
two FWM processes. The two-photon correlation exhibits
damped Rabi oscillations of period 2π/�e. The damping rate
is determined by the resonant linewidth γe in the doublet. In
the two-photon coincidence counting experiment, the noise
of coincidence counts is inevitable. They mainly result from
the accidental coincidence between uncorrelated photons as
the photon pairs are stochastically produced in time and
space. Here, under the the interaction picture and perturbation
theory, the evolution of the photon state describes clearly

how biphotons are generated, but it’s nearly helpless in the
multiphoton events and accidental coincidences. To obtain the
background noise of coincidence counting, we must transform
the interaction picture to the Heisenberg picture. After that,
the two-photon coincidence counting can be modified as

R′
cc = 〈E(−)

s E(−)
as E(+)

as E(+)
s 〉 = |B(τ )|2 + RsRas,

where the RasRs terms are independent of the time delay. They
have the form,

Rs = 〈E(−)
s E(+)

s 〉 = Rs0

∫
dω|χ (3)
(2ωL/νs)|2,

Ras = 〈E(−)
as E(+)

as 〉 = Ras0

∫
dω|χ (3)
(2ωL/νas)|2,

where Ras0 and Rs0 are constant.
Now, let’s focus on the coincidence counting with the strong

dressing case. In such a case, the two-photon amplitude has
the form,

Bd (τ ) = Nμ13μ24μ41μ32
√

�s�as

2ε0ch̄
3(�p − iγ14)

e−i(ωp+ωc)τs EpEc

∫
dω

× (ω − �d + iγ53)e−iωτ

(ω + iγ21)(ω + ω+ + iγe1)(ω + ω− + iγe1)
.

(24)

After some mathematical calculations, one obtains

Bd (τs,τas) = Wdφd (τs)θd (τ ), φd (τs) = e−i(ωp+ωc)τs ,

θd (τ ) = (iγ53 − iγ21 − �d )e−γ21τ − e−γe1τ e−i�dτ/2

×
[
�d cos(�τ )+3i�2

d

4�
sin(�τ ) − � sin(�τ )

]
,

(25)

where � = �′
e/2. Again, all the slowly varying terms and

constants have been absorbed into Wd . In Eq. (25), the ap-
proximation of (�d,�

′
e) � (γ21 − γe1,γ53 − γe1) is employed.

Due to the triplet of resonances in χ ′(3)(ω), the two-photon
amplitude is the sum of three FWMs. It should be noted that
since the bandwidth of the biphoton is smaller than the spectral
width of the detectors, the coincidence counting rate is simply
the module-squared two-photon amplitude. By using Eqs. (25)
and (9), it is easy to find

Rd
cc = Wd1

[
e−2γ21τ+e−2γe1τ

[
cos2(�′

eτ ) +
(

3�d

2�′
e

− �′
e

2�d

)
,

sin2(�′
eτ )

]
−

[
2 cos(�′

eτ ) cos

(
�dτ

2

)
− �′

e

2�d

sin(�′
eτ ),

sin

(
�dτ

2

)
+3�d

�′
e

sin(�′
eτ ) sin

(
�dτ

2

)]
e−(γ21+γe1)τ

]
, (26)

where Wd1 is a constant. The physics of Eq. (26) is understood
as follows: The destructive interference caused by three
FWMs results in a damped oscillation in the two-photon joint
detection probability. Note that the damping rate 2γ21 is very
small, resulting in the coherent time of photon pairs greater
than without the dressing field. Considering the presence of
accidental coincidence in experiment, lower contours will
be overwhelmed by uncorrelated background. As seen from
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FIG. 5. The coincidence counting rate in the damped Rabi
oscillation regime, where the two-photon wave packet is determined
by the structure of triple resonances shown in Eq. (18). The parameters
are the same as Fig. 3.

Eq. (26), the two-photon coincidences go to zero at τ = 0 and
τ → ∞. This indicates that a photon antibunching-like effect
appears in Rd

cc due to the destructive interference between
three FWMs. Figure 5 is the numerical simulation two-
photon coincidence counting rate in the damped oscillation
regime, where the paired Stokes–anti-Stokes wave packet is
determined by the structure of triple resonances shown in
χ

(3)
d . In consideration of the background noise of coincidence

counting, Eq. (26) can be modify as

Rdn
cc = Rd

cc + Rs0Ras0

∫
dω

∣∣χ (3)
d 
(2ωL/νs)

∣∣2

×
∫

dω
∣∣χ (3)

d 
(2ωL/νas)
∣∣2

. (27)

VI. EXTENSION TO N DIMENSIONS

Finally, we consider the sequential-cascade mode as shown
in Fig. 1(c). In the case of the original configuration unchanged,
the N -fold dressing field with angular frequency ωj are
applied to the transition |j + 3〉 → |j + 4〉 with detuning
�j = ω(j+4)(j+3) − ωj . Similarly, we will not take into account
the Doppler broadening and polarization effects. By solving
the probability amplitude model under this configuration, the
third-order nonlinear susceptibility for the generated anti-
Stokes field is

χ
(3)
(as) = Nμ13μ24μ41μ32

ε0h̄
3(�p − iγ14)

× (ω − �1 + iγ53) · · · (ω − �n + iγ(n+4)(n+3))

Dn(ω)
,

Dn(ω) = 4(ω + iγ21)(ω + iγ31)(ω − �1 + iγ53) · · · (ω − �n

+ iγ(n+4)(n+3)) − |�c|2(ω + iγ21)(ω − �1

+ iγ53) · · · (ω − �n + iγ(n+4)(n+3)) − · · · − |�n|2
× (ω + iγ21),

(ω + iγ31) · · · (ω − �n−1 + iγ(n+3)(n+2)). (28)

Next, we focus on the optical response of the atomic
dipoles oscillating at frequencies �as + ω. Since the roots
are very complicated, we only carry out a phenomenological
description. Think of D2 as a polynomial about ω, it is
obvious that D2 has N roots and corresponds to N types
of frequency modes (ω1,ω2, . . . ωN ). Alternatively, N types
of paired Stokes and anti-Stokes photons can be generated
from these processes in the spontaneous emission region. The
first FWM occurs as the anti-Stokes field peaks at �as + ω1

while the Stokes field peaks at �s − ω1. The second FWM
exists when the anti-Stokes mode is centered at �as + ω2

and the Stokes mode is centered at �s − ω2 and so on. As
expected, all N types of FWMs satisfy the energy conservation
ωp + ωc − ωs − ωas = 0.

Accordingly, the entangled photon pair can be described as
a form with destructive interference,

|�〉as,s = N1|�as + ω1〉|�s − ω1〉 − N2|�as + ω2〉,
⊗|�s − ω2〉 − · · · · · · − Nn|�as + ωN 〉|�s − ωN 〉, (29)

where N2
1 + N2

2 + · · · + N2
n = 1 and N2

1 − N2
2 − · · · −

N2
n = 1. This is a typical two-photon high-dimensional entan-

gled state function. Traditional energy-time-entangled photon
pairs usually increase the number of propagation paths to
extend the dimension of entanglement. Their generation rate
is inversely proportional to the number of paths. In our
model, by introducing the dressing field to adjust the nonlinear
response, the entangled photon pairs are generated with
multiple frequency modes. Meanwhile, the proper absorption
spectrum must ensure that the entangled photon pairs can be
emitted from the surface of the medium.

VII. CONCLUSION

In conclusion, we extensively studied the optical properties
of the paired Stokes and anti-Stokes generation in a four-
level double-� system. To catch the physics instead of the
complicated analysis, the Doppler broadening and polarization
effects are not taken into account. The third-order nonlinear
susceptibility shows that there are two types of FWMs that
occur in the four-level system. To study the detailed informa-
tion of the two types of biphoton generation, the nonlinear
dominance of a two-photon wave packet is necessary, and
the longitudinal detuning function approximates to 1. In
the absence of the dressing field, the generated signal is a
two-dimensional energy-time-entangled photon pair. Since the
dressing field can modify the nonlinearity of the system, the
nonlinear response of the system is exchanged. The nonlinear
optical response increases when a dressing field acts on the
system, resulting in an increase in the frequency modes of the
generating signals. We examined the linear optical response of
the medium to ensure that the generated signals are not strongly
absorbed by the atomic system. In such a case, the generated
signal becomes a three-dimensional energy-time-entangled
photon pairs. This change can be verified from the two-photon
coincidence counting experiment. Finally we pushed it to the
case of the N-fold dressing, resulting in a higher-dimensional
energy-time-entangled photon pair. Our method opens a
window to test the locality along with the potential applications
in quantum communication and quantum computation.
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