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Abstract

We show that the time-dependent nonlinear wave equation in closed-circuit photovoltaic media can exhibit quasi-steady-state and
steady-state spatial solitons. We demonstrate that the formation time of open-circuit quasi-steady-state and open-circuit steady-state
dark solitons decreases with an increase in the intensity ratio of the soliton, which is the ratio between the soliton peak intensity and
the dark irradiance. We find that for the time-dependent nonlinear wave equation that exhibits only an open-circuit steady-state dark
soliton, changing the electric current density J0 does not generate quasi-steady-state dark solitons and affects the formation time of
steady-state dark solitons and that for the time-dependent nonlinear wave equation that exhibits an open-circuit quasi-steady-state dark
soliton, changing J0 gives rise to three different time evolution regimes of the full width half maximum of the soliton’s intensity. The first
regime shows that the formation time of steady-state dark solitons increases with J0 whereas the formation time of quasi-steady-state
dark solitons is independent of J0. The second regime shows that the formation time of steady-state dark solitons decreases with an
increases in J0 and the formation time of quasi-steady-state dark solitons increases with J0. The third regime shows that changing J0

enables only steady-state dark solitons in the time-dependent nonlinear wave equation, of which the formation time increases with J0.
� 2008 Elsevier B.V. All rights reserved.
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Photorefractive (PR) spatial solitons have attracted
much attention because of their possible applications for
optical switching and routing. At present, three types of
PR bright and dark solitons are known: quasi-steady-state
solitons [1–3], of which the first theoretical model was
based on the PR coupling of the various spatial Fourier
components of a traveling beam, and screening solitons
[4–7] and photovoltaic (PV) solitons [8–10], which occur
in steady-state. In particular, screening solitons require
the application of an external bias field, whereas PV soli-
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tons can exist in PR materials with appreciable PV coeffi-
cients. Recently, steady-state screening-photovoltaic solitons
have been predicted [11–13] and observed [14] in biased
photorefractive–photovoltaic materials, which change into
screening solitons when the bulk PV effect is neglected and
PV solitons when the external field is absent. However, the
major drawback of the PR effect is its low response time
when compared to that of the Kerr effect. Therefore the
formation time of PR solitons is longer than that of Kerr
solitons. Of course, at this point, it would be of interest
to know the temporal behavior of PR solitons. A non-
stationary bidimensional model leading to numerical simu-
lations has been proposed [15]. Unfortunately it does not
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provide an explicit wave propagation equation. Subse-
quently, a time-dependent theory for bright solitons has
been developed and confirmed by experiments in which
bright solitons were studied in Bi12TiO20 and Sr0.61Ba0.39-
Nb2O6 crystals with external applied field [16,17]. Very
recently, some preliminary experiments with the temporal
behavior of spatial solitons in biased photorefractive–
photovoltaic materials have been demonstrated [18]. More-
over, the temporal behavior of dark solitons in open-circuit
photovoltaic media has been predicted theoretically and
has also been observed experimentally [19]. However, the
temporal behavior of dark solitons in closed-circuit photo-
voltaic media has not been fully investigated yet. On the
other hand, can one control the formation time of such
dark solitons?

In this paper, we present that the time-dependent non-
linear wave equation in closed-circuit photovoltaic media
can exhibit quasi-steady-state and steady-state spatial soli-
tons. We show that the formation time of open-circuit
quasi-steady-state and open-circuit steady-state dark soli-
tons decreases with an increase in the intensity ratio of
the soliton, which is the ratio between the soliton peak
intensity and the dark irradiance. We find that for the
time-dependent nonlinear wave equation that exhibits only
an open-circuit steady-state dark soliton, changing the elec-
tric current density J0 does not generate quasi-steady-state
dark solitons and affects the formation time of steady-state
dark solitons. When the intensity ratio is much smaller
than unity, the time-dependent nonlinear wave equation
exhibits only steady-state dark solitons. We also find that
for the time-dependent nonlinear wave equation that
exhibits an open-circuit quasi-steady-state dark soliton,
changing J0 gives rise to three different time evolution
regimes of the full width half maximum (FWHM) of the
soliton’s intensity. The first regime shows that the forma-
tion time of steady-state dark solitons increases with J0

whereas the formation time of quasi-steady-state dark sol-
itons is independent of J0. The second regime shows that
the formation time of steady-state dark solitons decreases
with an increases in J0 and the formation time of quasi-
steady-state dark solitons increases with J0. The third
regime shows that changing J0 enables only the steady-state
dark soliton in the time-dependent nonlinear wave equa-
tion, of which the formation time increases with J0.

To start, let us consider an optical beam that propagates
in a photovoltaic material along the z axis and is allowed to
diffract only along the x direction. In this case, the photo-
refractive space-charge field formed by this inhomogeneous
beam can be obtained from the time-dependent band-
transport model. In a photovoltaic medium, the model is
represented by the following set of equations [10,16,19]:

oNþD
ot
¼ sI þ bTð Þ ND � NþD

� �
� cnNþD; ð1Þ

oq
ot
þ obJ

ox
¼ 0; ð2Þ

q ¼ e NþD � N A � n
� �

; ð3Þ
o

ox
e0erEsð Þ ¼ q; ð4Þ

bJ ¼ elnEs þ lkBT
on
ox
þ js ND � NþD

� �
I ; ð5Þ

where ND is the total donor number density, NþD is the
number density of ionized donors, NA is the number den-
sity of negatively charged acceptors that compensate for
the ionized donors, n is the electron number density, bT

is the thermal excitation rate of the electrons, s is the pho-
toexcitation cross section, q is the charge density, bJ is the
electric current density, I = I(x,z) is the power density pro-
file of the optical beam, which is defined by I = jA(x,z)j2,
A(x,z) is the slowly varying amplitude of the optical field
defined by E(x,z) = A(x,z)exp[i(kx � -t)] + c.c (k = 2pne/
k0 is the propagation constant, k0 is the common free-space
wavelength, ne is the unperturbed extraordinary index of
refraction, and - is the optical frequency). The other
parameters are the photovoltaic constant j, the electric
charge e, the electron mobility l, the recombination coeffi-
cient c, the absolute temperature T, Boltzmann’s constant
kB, the dielectric constant er of the material, and the per-
mittivity of the vacuum e0.

To establish a time-dependent relation between the
space-charge field and the optical intensity, let us recall that
in typical photorefractive materials ND or NA� n and
NþD � n. Thus Eq. (3) yields q � eðNþD � NAÞ. Substituting
the expression we have just found for q into Eq. (4) yields
e0eroE=ox ¼ eðNþD � N AÞ. When x ? ±1, E(x ? ±1,z) =
E0 (constant) [5,10], and thus oE/ox = 0. Form
e0eroE=ox ¼ eðNþD � N AÞ we obtain that NþD ¼ NA. More-
over, Eq. (1) describes the process of charge generation
and recombination and gives the characteristic carrier’s
recombination time 1/cn characterizing the response time
for free-electron buildup. Eqs. (2) and (5) express the cur-
rent distribution continuity and give the dielectric response
time e0er/eln, which is associated with the dynamics of the
ionic charge buildup. In typical photorefractive materials,
s = (1/cn)/(e0er/eln) = el /e0erc� 1. For example, its max-
imum value is 2 � 10�4 in LiNbO3 and 1 � 10�2 in BaTiO3

[16]. Therefore, Eq. (1) can be considered as a steady-state.
Under these conditions and from Eq. (1) the electron num-
ber density can be obtained and it is given by

n ¼ sðI þ IdÞðN D � NAÞ
cN A

; ð6Þ

where Id = bT/s. Substituting NþD ¼ N A and Eq. (6) into Eq.
(5) leads to

bJ ¼ elsðN D � NAÞ
cNA

ðI þ IdÞEs þ
kBT

e
oI
ox
þ EpI

� �
; ð7Þ

where Ep = jcNA/el is the photovoltaic field constant.
Substitution of Eqs. (4) and (7) into Eq. (2) yields

T dId
o2Es

oxot
þ o½ðI þ IdÞEs�

ox
þ kBT

e
o2I
ox2
þ Ep

oI
ox
¼ 0; ð8Þ

where Td = (e0er/el)[cNA/bT (ND � NA)]. The integral of
Eq. (8) leads to
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T dId
oEs

ot
þ ðI þ IdÞEs þ

kBT
e

oI
ox
þ EpI ¼ C1; ð9Þ

where C1 is an integration constant. In steady stare and at
x ? ±1, I(x ? ±1) = I1 and Es(x ? ±1) = E0. From
Eq. (9) the integration constant C1 in these regions
(x ? ±1) can be determined and is given by
C1 = (I1 + Id)E0 + EpI1. By assuming that the optical
intensity I varies slowly with time, the integral of Eq. (9)
leads to

Es ¼ E0

I1 þ Id

I þ Id
� Ep

I � I1
I þ Id

� kBT
e

1

I þ Id

oI
ox

� �

þ C2 exp � I þ Id

T dId
t

� �
; ð10Þ

where C2 is an integration constant. Substituting the initial
condition that Es = 0 into Eq. (10) leads to C2 =� E0

(I1 + Id)/(I + Id) + Ep(I � I1)/(I + Id) + [(kBT/e)/(I + Id)]
(oI/ox). Substituting the expression we have just found for
C2 into Eq. (10) yields the following relation:

Es ¼ E0

I1 þ Id

I þ Id
� Ep

I � I1
I þ Id

� kBT
e

1

I þ Id

oI
ox

� �

� 1� exp � I þ Id

T dId
t

� �� �
: ð11Þ

In the above equation the constant field E0 can be deter-
mined from the potential condition

H
Es � dl = 0. Substitut-

ing Eq. (11) into Eq. (7) and transforming the electric
current density into dimensionless form yield

J ¼ J 0 �
I
Id
� kBT

eIdEp

oI
ox

� �
1� exp � I þ Id

T dId
t

� �� �

þ kBT
eIdEp

oI
ox
þ I

Id
; ð12Þ

where J0 = (E0/Ep)(1 + d) + d, d = I1/Id, and
J ¼ bJ = els N D � NAð Þ=cNA½ �EpId . Under strong bias condi-
tions, all the terms associated with the process of diffusion
(kBT/e term) can be neglected in Eqs. (11) and (12) [5]. In
this case Eqs. (11) and (12) yield the following results:

Es ¼ E0

I1 þ Id

I þ Id
� Ep

I � I1
I þ Id

� �
1� exp � I þ Id

T dId
t

� �� �
;

ð13Þ

J ¼ J 0 �
I
Id

� �
1� exp � I þ Id

T dId
t

� �� �
þ I

Id
: ð14Þ

Evidently, Eq. (14) shows that J0 is the steady-state electric
current density. Substituting J0 into Eq. (13) and transform-
ing the space-charge field into dimensionless form yield

bEs ¼
J 0 � I

Id

I
Id
þ 1

1� exp � I þ Id

T dId
t

� �� �
; ð15Þ

where bEs ¼ Es=Ep. This space-charge field gives rise to, via
the electro-optic Pockels effect, the refractive index varia-
tion in the photovoltaic material. The propagation of the
optical field in the photovoltaic material with a low index
modulation can be described by the scalar wave propaga-
tion equation

o

oz
� i

2k
o2

ox2

� �
A x; zð Þ ¼ ik

ne

Dn Esð ÞA x; zð Þ; ð16Þ

where Dn Esð Þ ¼ � 1=2ð Þn3
ereffEs is the perturbation in the

refractive index and reff is the effective electro-optic coeffi-
cient. We look for soliton solutions of the form

A x; zð Þ ¼ u xð Þ exp iCzð Þ
ffiffiffiffi
Id

p
; ð17Þ

where C is the soliton propagation constant and u(x) is the
normalized amplitude. Moreover, for simplicity, let us
adopt the following dimensionless coordinate n = x/d,
where d = (±2kb) �1/2 is the characteristic length scale
and b ¼ k=neð Þ 1=2ð Þn3

ereff Ep is the parameter that charac-
terizes the strength and the sign of the optical nonlinearity.
By employing this transformation and by substituting Eqs.
(15) and (17) into Eq. (16), we find the following time-
dependent nonlinear wave equation:

u00 ¼ 	 C
b
þ J 0 � u2

1þ u2
1� exp � 1þ u2

T d
t

� �� �	 

u; ð18Þ

where u00 = d2u/dn2, etc. The integral of Eq. (18) leads to

p2 � p2
0 ¼ 	

C
b
� 1

� �
u2 � u2

0

� �
þ J 0 þ 1ð Þ ln u2 þ 1

u2
0 þ 1

� �	

� J 0 þ 1ð Þ Ei � u2 þ 1

T d
t

� �
� Ei � u2

0 þ 1

T d
t

� �� �

� T d

t
exp � u2 þ 1

T d
t

� �
� exp � u2

0 þ 1

T d
t

� �� �

;

ð19Þ

where Ei hð Þ ¼ �
R1
�h exp �#ð Þ=#½ �d#, p = u0, and

p(n = 0) = p0.
For dark solitons one requires that the boundary condi-

tions are u(1) = u1 6¼ 0, u0(1) = u00(1) = 0, and u0 = 0.
Using boundary conditions u1 6¼ 0 and u00(1) = 0 and
substituting n ?1 into Eq. (18) lead to

C
b
¼ � J 0 � u2

1
1þ u2

1
1� exp � 1þ u2

1
T d

t
� �� �

: ð20Þ

Substituting Eq. (20), n ?1, and conditions u1 6¼ 0,
u0(1) = 0, and u0 = 0 into Eq. (19) leads to

p2
0 ¼ 	 J 0þ 1ð Þ u2

1
1þ u2

1
� ln 1þ u2

1
� �� �

þ
J 0� u2

1
� �

u2
1

1þ u2
1

	

�exp �1þ u2
1

T d
t

� �
þ J 0þ 1ð Þ Ei �1þ u2

1
T d

t
� ��

�Ei � t
T d

� ��
þT d

t
exp �1þ u2

1
T d

t
� �

� exp � t
T d

� �� �

;

ð21Þ

which reduces to the expression for steady-state dark pho-
tovoltaic solitons when t ?1.The reality of p0 can be ob-
tained only for the negative (lower) sign [9]. In the limit of
p2

0 > 0 and u0 = 0, Eqs. (19)–(21) yield
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p2 ¼ J 0 þ 1ð Þ u2 � u2
1

1þ u2
1
þ ln

1þ u2
1

1þ u2

� �
þ Ei � 1þ u2

T d
t

� ��

�Ei � 1þ u2
1

T d
t

� ��
�

J 0 � u2
1

� �
u2 þ u2

1
� �

1þ u2
1

� exp � 1þ u2
1

T d
t

� �
þ T d

t
exp � 1þ u2

T d
t

� ��

� exp � 1þ u2
1

T d
t

� ��
; ð22Þ

from which the dark soliton’s temporal behavior can be ob-
tained by numerical integration. Recall now that for open-
circuit condition J0 = 0 and for short-circuit condition
J 0 ! Wu2

1= Dx 1þ u2
1

� �
þ W

� �
, where W is the width of

the photovoltaic crystal between the electrodes [9]. In the
W� Dx case and for u2

1 � 1000, one quickly obtain
J 0 � u2

1 from the expression we have just found for J0.
Obviously, J0 can vary continuously from zero to the max-
imum value of J0. Fig. 1 shows the intensity FWHM of the
dark solitons as a function of t/Td for open-circuit condi-
tions when u2

1 ¼ 0:1, 1, 10, and 100. Note that the time
needed to reach the minimum transient intensity FWHM
of the quasi-steady-state soliton is defined as its formation
time [16], whereas the formation time of the steady-state
soliton is given by t/Td corresponding to the plateau start-
ing point of the intensity FWHM curves in Fig. 1. A careful
examination of Fig. 1 reveals that the formation time of
open-circuit quasi-steady-state and open-circuit steady-
state dark solitons decreases with an increase in u2

1 and
open-circuit quasi-steady-state dark solitons exist only for
big u2

1. Moreover, two types of spatial soliton can be deter-
mined from Fig. 1. The first kind involves the so-called
quasi-steady-state soliton, which is the transient character.
The second category of soliton is the steady-state soliton,
occurring in the steady state. The effect of J0 on the forma-
tion time of the dark soliton has several interesting phe-
nomena. First, consider the time-dependent nonlinear
wave equation that exhibits only an open-circuit steady-
state dark soliton. Fig. 2 depicts the intensity FWHM of
dark solitons as a function of t/Td for u2

1 ¼ 1 when
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Fig. 1. Intensity FWHM of the dark soliton as a function of t/Td for
short-circuit conditions when u2

0 ¼ 0:1, 1, 10, and 100.
J0 = 0, 0.5, and 1. This figure also shows that changing
J0 does not generate quasi-steady-state dark solitons and
affects the formation time of steady-state dark solitons.
Second, consider the time-dependent nonlinear wave equa-
tion that exhibits an open-circuit quasi-steady-state dark
soliton. Fig. 3 depicts the intensity FWHM of dark solitons
as a function oft/Td for various values of J0 between
0 6 J 0 6 u2

1 when u2
1 ¼ 100. It reveals that changing J0

gives rise to three different intensity FWHM time evolution
regimes. Fig. 3a shows that the formation time of steady-
state dark solitons increases with J0 whereas the formation
time of quasi-steady-state dark solitons is independent of
J0. Fig. 3b shows that the formation time of steady-state
dark solitons decreases with an increases in J0 and the for-
mation time of quasi-steady-state dark solitons increases
with J0. Fig. 3c shows that changing J0 enables only stea-
dy-state dark solitons in the time-dependent nonlinear
wave equation, of which the formation time increases in J0.

Finally, it is instructive to explain that our results are
correct. The expression for the time-dependent nonlinear
wave equation of previously studied dark solitons in
open-circuit photovoltaic media can be obtained from
Eq. (22). Let us assume that the soliton’s optical field
amplitude is defined as A x; zð Þ ¼

ffiffiffiffiffiffi
rId
p

w xð Þ exp iCzð Þ, where
r is the ratio of soliton peak intensity to dark irradiance. In
this case, substituting J0 = 0 into Eq. (22) leads to the same
expression obtained from Eqs. (11) and (12) in Ref. [19].
Moreover, when t ?1, the physical system of quasi-
steady-state photovoltaic solitons becomes that of
previously studied steady-state photovoltaic solitons. By
substituting t ?1 into Eqs. (15), (18), and (22), we obtain
Eqs. (13), (14), and (26) of Ref. [9], in which closed-circuit
steady-state photovoltaic solitons were studied.

In conclusion, we have shown that the time-dependent
nonlinear wave equation in closed-circuit photovoltaic
media can exhibit quasi-steady-state and steady-state soli-
tons. We have demonstrated that the formation time of
open-circuit quasi-steady-state and open-circuit steady-
state dark solitons decreases with an increase in u2

1. We
have found that for the time-dependent nonlinear wave
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Fig. 2. Intensity FWHM of dark solitons as a function of t/Td for u2
1 ¼ 1

when J0 = 0, 0.5, and 1.
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Fig. 3. Intensity FWHM of the dark soliton as a function of t/Td for (a) J0 = 0, 0.1, and 1, (b) J0 = 20, 25, and 30, and (c) J0 = 60, 80, and 100 when
u2
1 ¼ 100.
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equation exhibiting only an open-circuit steady-state dark
soliton, changing J0 does not generate quasi-steady-state
dark solitons and affects the formation time of steady-state
dark solitons and that for the time-dependent nonlinear
wave equation exhibiting an open-circuit quasi-steady-state
dark soliton, changing J0 gives rise to three different inten-
sity FWHM time evolution regimes, of which the proper-
ties were also shown.
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