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Local singularity of a signal includes a lot of important information. Wavelet transform can overcome the
shortages of Fourier analysis, i.e., the weak localization in the local time- and frequency-domains. It has
the capacity to detect the characteristic points of boiling curves. Based on the wavelet analysis theory
of signal singularity detection, Critical Heat Flux (CHF) and Minimum Film Boiling Starting Point (qmin)
of boiling curves can be detected by using the wavelet modulus maxima detection. Moreover, a genetic
neural network (GNN) model for predicting CHF is set up in this paper. The database used in the analysis
is from the 1960s, including 2365 data points which cover a range of pressure (P), from 100 to 1000 kPa,

−2 −1

avelet analysis

enetic neural network
rediction

mass flow rate (G) from 40 to 500 kg m s , inlet sub-cooling (�Tsub) from 0 to 35 K, wall superheat
(�Tsat) from 10 to 500 K and heat flux (Q) from 20 to 8000 kW m−2. GNN mode has some advantages of
its global optimal searching, quick convergence speed and solving non-linear problem. The methods of
establishing the model and training of GNN are discussed particularly. The characteristic point predictions
of boiling curve are investigated in detail by GNN. The results predicted by GNN have a good agreement
with experimental data. At last, the main parametric trends of the CHF are analyzed by applying GNN.
Simulation and analysis results show that the network model can effectively predict CHF.
. Introduction

In general, local singularity of a signal includes a lot of impor-
ant information. Wavelet transform can overcome the shortages
f Fourier analysis, i.e., the weak localization in the local time- and
requency-domains. It has the good localization characteristic to
tudy the singularity of boiling curves. It has been applied widely
n the theory and the practice.

It is well known that the boiling curve reflects the relation
etween wall superheat and heat flow. In general, these boiling
urves do not always include nucleate boiling, transition boiling
nd film boiling regions, as shown in Fig. 1. They often show just
ne or two of the three parts. The CHF and Minimum Film Boiling
tarting Point (qmin) of boiling curves can be detected by using the
avelet multi-resolution analysis. CHF is one of the most important

uantities when considering the safety limits of nuclear reactors,
team generators, and other thermal units. It cannot increase indef-

nitely. In some cases, the steam produced leads to the formation
f a continuous vapor film over the surface which may cause the
estruction of the heater due to a sudden increase of the sur-

ace temperature. The pressurized water nuclear reactors must be

∗ Corresponding author. Tel.: +86 29 82663401; fax: +86 29 82663401.
E-mail address: ghsu@mail.xjtu.edu.cn (G.H. Su).

029-5493/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.nucengdes.2009.07.016
© 2009 Elsevier B.V. All rights reserved.

designed with sufficient thermal (power) margin for the specifi-
cally acceptable fuel design limits to ensure that they are operated
safely within the limiting conditions for operation. The limitation is
produced from the analysis of CHF. So the detection of characteristic
points of boiling curve is very important.

In this study, we employ the local modulus maxima of cubic
B-spline wavelet transform to determine the location of CHF.
Daubechies wavelets and B-spline wavelets have been dominantly
used in wavelet analysis. Compared to Daubechies wavelets, the
compactly supported cardinal B-spline wavelets have several dis-
tinctive desirable properties including small support of scaling
functions and wavelets, total positivity of the scaling functions,
easy construction and fast implementation (Dubieties, 1988; Chui,
1992).

The prediction of CHF is most crucial in designing various trans-
fer units including nuclear reactors fossil-fueled boilers, fusion
devices, and so on. When CHF occurs, the heat transfer capabil-
ity decreases dramatically and the corresponding wall temperature
increases rapidly that it can even melt the heat transfer surface
(Wang et al., 2000). The power generated is often limited by the

CHF value. It is an important parameter to be predicted in safety
analysis of nuclear power system. Therefore, the research on CHF
has been extensively carried out during the last four decades.

GA is a stochastic search algorithm (Guo et al., 2000; Goldberg,
1989) inspired by the mechanics of natural evolution. Goldberg

http://www.sciencedirect.com/science/journal/00295493
http://www.elsevier.com/locate/nucengdes
mailto:ghsu@mail.xjtu.edu.cn
dx.doi.org/10.1016/j.nucengdes.2009.07.016
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Fig. 1. Schematic diagram for flow boiling curves.

1989) and Michalewicz (1992) discussed the mechanism and
obustness of GA in solving non-linear optimization problems.
ompared to the conventional optimization methods that move

rom one point to another, GA starts from many points simulta-
eously climbing many peaks in parallel (Misra and Sharma, 1991).
herefore, GA is less susceptible to be stuck at local minima than
onventional search methods (Goldberg, 1989; Mitchell, 1996). It
s one of the strategic randomized search techniques, which are

ell known for its robustness in finding the optimal or near opti-
al solution. The basic genetic operators are selection, crossover

nd mutation. Natural selection increases the surviving capability
f the populations over the foregoing generations. Crossover is the
ecombination of the information from two good ‘parent’ solutions
nto what we hope are even better ‘offspring’ solutions. Mutation
romotes diversity at random and explores more global areas of the
olution space providing a mechanism to escape from local optima.
hen, from generation to generation, the average fitness of the

ndividuals increases, evolving the population to its optimum adap-
ation. The new chromosomes reproduced by selection, crossover
nd mutation operators were evaluated, and this procedure for
valuation and reproduction of all chromosomes was repeated until

he stopping criterion is satisfied. A complete description of GA can
e given in Shopova and Vaklieva-Bancheva (2006).

BP neural network model is a kind of learning algorithms used
o transfer oppositely from former to multi-level neural network.
t can simulate any non-linear function. It has been widely used in

able 1
atabase of flow boiling.

eference Test section

hen et al. (1979) Stainless steel and Inconel; circular duct
(tube); DO = 19.1 and 15.9 ı=1.65, 0.89 and 1.02
L = 4, 3.5

agheb et al. (1981) DO = 13.1 and ı= 0.559 for Zircaloy; DO = 14.0
and ı= 0.635 for Al; DO = 12.7 and ı= 0.38
Inconel; DO = 12.7 and ı=0.38 for Cu; tube

ang and Seban (1988) DO = 16.1, ı= 0.8, L = 3.66; tube
uang et al. (1994) Monel; DO = 10, ı= 0.15, L = 0.05; tube
agheb and Cheng (1979) DO = 12.7; tube
uang et al. (1993) Ni; DO = 32, ı= 5.575, L = 0.05; tube
uang et al. (1993) Cu; DO = 32, ı= 11, L = 0.05; tube
heng et al. (1977) Cu; DO = 95.3, ı= 41.3, L = 0.0572; tube
heng et al. (1978a) Cu, DO = 95.3, ı= 41.3, L = 0.0572; tube
heng et al. (1978b) Cu, DO = 95.3, ı= 41.3, L = 0.0572; tube
e (1989) Stainless steel, DO = 16, ı= 2, L = 0.1; tube
ian et al. (1994) Stainless steel, DO = 20, ı= 2, L = 1; tube

ote. DO , tube outside diameter (mm); ı, tube wall thickness (mm); L, tube length (m); P
nitial wall temperature (◦C).
d Design 239 (2009) 2317–2325

many applications (Liang et al., 2000; Looney, 1997). However, there
are some shortcomings for BP neural network during the training
course, such as slow training speed and easily get stuck into local
minimum. This is very disadvantageous under finite experiment
data of CHF. So in order to improve the training speed and reliability
of network, the present paper adopts a method to integrate genetic
algorithm and neural network. GA was used to optimize the weight
and threshold of BP neural network (Adineh et al., 2008; Motlaghi
et al., 2008; Sahoo and Ray, 2006). The shortcoming is solved and
the weight and threshold are optimized, thus the accurate degree
of predicting CHF data is achieved by GNN.

The aim of this study is to propose some methods to detect and
predict the characteristic points of boiling curves. Wavelet anal-
ysis has the good localization characteristic in studying boiling
curves. It is employed to detect the characteristic points of boil-
ing curves. The GNN mode has some advantages including its global
optimal searching, quick convergence speed and solving non-linear
problem. It is used to predict the characteristic points. The data
from the past four decades have been tabulated in Table 1, respec-
tively. In this paper, at first, we introduce the basic theories of the
two methods—wavelet modulus maxima detection and GNN. Sec-
ondly, the locations of characteristic points of boiling curves are
determined by using the local modulus maxima detection of cubic
B-spline wavelet transform. The experimental data of characteris-
tic points of boiling curves are used to train and test the network.
Next, the characteristic points of boiling curves are predicted by
GNN. We give the comparisons between the experimental data and
GNN prediction. The prediction results of the characteristic points
of boiling curves are consistent with experimental data very well.
Approximately 98% of the data were predicted within the ±10%
error range. At last, the effects such as pressure, mass flow rate
and inlet sub-cooling of main parameters on CHF are analyzed by
using the GNN. The results agree with practical behavior as they are
generally understood.

2. Singularity detection of wavelet analysis

Wavelet analysis is a kind of methods that have the characteris-
tics of time-frequency analysis. Comparing with Fourier analysis,
wavelet analysis overcomes the weakness of analyzing signals

only in frequency-domain (Mallat, 1989). Generally, the wavelet
transform can be realized. Wavelet analysis is the best choice for
analyzing complex non-linear signals (Mallat and Hwang, 1992). At
present, wavelet analysis has been applied in the research of two-
phase flow widely and successfully. The singular point of signal may

Working fluid Parameter range

Water P = 0.1, G = 100–400,�Tsub = 10–80, Tw = 270–800

Water P = 0.1, G = 68–203,�Tsub = 0–28,

Water P = 0.1–0.4, G = 25–75,�Tsub=33–81
Water P = 0.1–1.0, G = 25–500,�Tsub = 5–50
Water P = 0.1, G = 34–102,�Tsub = 0–28
Water P = 0.1–1.0,G = 100–200,�Tsub = 30
Water P = 0.1–1.2, G = 25–500,�Tsub = 3–30
Water P = 0.1, G = 136,�Tsub = 0
Water P = 0.1, G = 68–203,�Tsub = 0–28
Water P = 0.1, G = 136,�Tsub = 0–28
Water P = 0.117–2.9, G = 40.8–123,�Tsub = 9.1–26.3
Water P = 0.25–1.09, G = 74.2–223.9,�Tsub = 5.5–32.4

, pressure (MPa); G, mass flow rate (kg m−2 s−1); �Tsub, inlet sub-cooling (◦C); Tw ,
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dicting precision. Actually, the network with less number of hidden
layer units will not be trained or not be strong enough to distin-
guish the sample that has never been learned, and also has lower
general capacity. However, if the number of hidden layer unit is too
much, training time will be prolonged and prediction error may
Fig. 2. G

e determined by using wavelet multi-scale edge detecting technol-
gy. At first, the original signal can be smoothed by means of various
easures. Secondly, the singular point can be located according to

he first derivation or the second derivation of the smooth signal.
he modulus maxima point of the first derivation of smooth signal
r the zero cross point of the second derivation of smooth signal is
he corresponding singular point of original signal.

Supposing that �(x) is smooth function, subject to
∞

−∞
�(x)dx = 1 (1)

lim
→±∞

�(x) = 0 (2)

he edge detection wavelet of smooth function �(x) can be con-
tructed as following:

I(x) = d�(x)
dx

, II(x) = d2�(x)
dx2

(3)

et f(x) is original signal (Mallat and Hwang, 1992; Cheng, 1998),
nd its wavelet transform is obtained

I
s f (x) = f (x) ∗ Is(x) = f ∗

(
s
d�s
dx

)
(x) = s d

dx
(f ∗ �s)(x) (4)

II
s f (x) = f (x) ∗ IIs (x) = f ∗

(
s2
d2�s
dx2

)
(x) = s2 d

2

dx2
(f ∗ �s)(x) (5)

here �s(x) = 1/s�(x/s), s is scale factor. If �s(x) is Gauss function, the
ero cross detection is the known Marr–Hildreth edge detection
Ling and Kim, 1992) and the modulus maxima detection is the
anny edge detection (Canny, 1986; Mallat and Hwang, 1992). The
ketches of the second- and four-orders Gauss function (smoothed
unction) are shown in Fig. 2. The convolution is defined as follows:

f ∗ g)(x) =
∫ ∞

−∞
f (x − y)g(y)dy

here f, g are two functions and f, g ∈ L1(R). When f, g are discrete
eries, the convolution can be rewritten as:

(m) =
+∞∑
n=−∞

f (n)g(m+ 1 − n)

here w(m) is the mth element of convolves f and g.
In the modulus maxima detection, the modulus maxima and
inimum points are the sharp and slow change points, respectively.
n the zero cross detection, the sharp and slow change points are
ll zero cross points. It is difficult to distinguish the sharp and slow
hange point. Therefore, we choose the modulus maxima detection
o detect the sharp change characteristic points in this study.
avelet.

Singularities are detected by finding the abscissa where the
wavelet modulus maxima converge at fine scales. For fast numer-
ical computations, the detection of wavelet transform maxima is
limited to dyadic scales s = {2j},(0 < j ≤ log2N, j is the wavelet hier-
archy, and N is the length of signal). At each scale s = 2j, the maxima
representation provides the values of WI

s f (x) where
∣∣WI

s f (x)
∣∣ is

locally maximum. As the scale s increases, the small changes of
boiling curves are eliminated by the convolution �2j ∗ f (x). So the
big changes of boiling curves may be detected. The different sharp
points of boiling curves can be detected at different scales. The finest
scale can be determined by experiment. Fig. 3 can explain the mod-
ulus maxima and zero cross detection of the original signal f(x).
�2j ∗ f (x) is the signal of f(x) smoothed by �2j . Wavelet modulus max-
ima are the maxima of the first derivative of f(x) smoothed by �2j , as
illustrated by (d/dx)�2j ∗ f (x). x0 and x2 are the sharp change points.
Zero cross points are the zero points the second-order derivative of
f(x) smoothed by �2j , as illustrated by (d2/dx2)�2j ∗ f (x).

3. GNN theory

3.1. Structure of the network

A multiple layer feed-forward and back-propagation neuron net-
work is established to predict CHF. Input layer of the prediction
network is responding to CHF parameter. The dimension of input
layer can be completely designed according to influence factors on
CHF. Output layer of the network is the CHF that will be predicted.
The number of hidden layer unit is in direct contact with the pre-
Fig. 3. The modulus maxima and zero cross detection of signal.
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Fig. 4. G

ot be the minimum. Therefore, there must be the best number of
idden layer unit. The initial number of hidden layer unit is deter-
ined by using experiential method. In this study, the dimensions

f input layer are 3. They are system pressure, mass flow rate and
nlet sub-cooling, respectively. The dimension of output layer is 1.
t is CHF. The first and second hidden layer units are 35 and 25,
espectively. Therefore, a double hidden layers BP network can be
onstructed to predict the CHF. The topological structure of GNN
ith two hidden layers is shown in Fig. 4. The model of each neuron

n the GNN includes non-linearity at the output end. The hyperbolic
angent function in hidden layers is used as transfer function. The
ransfer function in output layer is linear transfer function. Multi-
ayer perception is trained in a supervised manner with a highly
opular algorithm known as the back-propagation algorithm. This
lgorithm is based on the error-correction learning rule. The error
ack-propagation processes consist of two passes through the dif-

erent layers of the network: forward pass and backward pass. In
he forward pass, an input vector is applied to the sensory nodes of
he network, and its effect propagates through the network, layer
y layer. During the backward pass, the synaptic weights are all
djusted in accordance with the error-correction rule. The actual
esponse of the network is subtracted from a desired response to
roduce an error signal. This error signal is then propagated back-
ard through the network and the synaptic weights are adjusted

o as to make the actual response of the network move closer to the
esired response. GNN consist of 60 neurons which are connected
o one another. A neuron is an information-processing unit that is
undamental to the operation of a neural network. Fig. 5 shows the

odel for a neuron. In mathematical terms, a neuron is described
y the following equation:

utput = F
(

p∑
wkxk + �

)
(6)
k=1

here x1, x2, . . ., xp are the input signals. w1, w2, . . ., wp are the
ynaptic weights of neuron. � is threshold and F(·) is the activation
unction which could have several forms, regarding the problem.

Fig. 5. Neuron model.
ructure.

3.2. Optimizing network weight and threshold using GA

The GA is the most useful method (Ghorbani et al., 2007; Peng
and Ling, 2008; Shin and Han, 2000; Xu, 2007) to solve optimization
problems with multiple objectives. Genetic operation is an opti-
mization algorithm that imitates the evolution process of natural
principles, and develops quickly. This operation using colony search
technology, which can be avoided getting into local extreme point,
and can solve how to optimize weight and threshold of BP network.
For a more thorough description of genetic algorithms we refer to
Goldberg (1989). Genetic operation is employed to optimize the
weight and threshold of the network in this study. The detailed
operation is given as follows:

3.2.1. Coding of weight and threshold
The genetic operation is used to optimize the weight and thresh-

old of the network and its input signals should be transformed
into genetic genes—chromosome. The model adopts binary coding
method. The vector that chromosome responding with weight and
threshold of network is:

W = [W1, . . . ,Wi, . . . , �1, . . . , �j] (7)

where Wi is the ith weight gene of chromosome, �j is the jth thresh-
old gene of chromosome.

3.2.2. Initialization of population
After coding the weight and threshold of the network, chro-

mosome is yielded at random and makes up an initial population.
And then we start iterative search using initial population as a start
point. The initial weight and threshold can be obtained by random
reactor. Initial population is made up of M bunches; each bunch is
made up of weight and threshold and produces random. Finally,
population size, selection probability, crossover probability and
mutation probability are determined by experiments. The popula-
tion size, selection probability, crossover probability and mutation
probability are 100, 0.85, 0.56 and 0.0001, respectively.

3.2.3. Fitness function
Fitness function is an important principle on evaluating individ-

ual. All individuals are evaluated in terms of their performances,
which is based on their fitness values. The chromosome with large
fitness is reserved, and the small one is removed. The fitness func-

tion of the model uses the reciprocal of error squaring sum between
prediction signal and goal signal, is as follows:

Ffitness = 1((∑n
i=1(Ai − Ti)2)/n(n− 1)

)
+ ε

(8)
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here n stands for the number of the samples, Ai is prediction
ignal, and Ti is goal signal. The ε is 0.00001 in this study.

.2.4. Selection operation
The selection operation for GA is the basic engine of Darwinian

atural selection and survival of the fittest. The selection opera-
ion is to choose the individual who has the strongest vitality from
he population, and it has the chance to propagate offspring. Selec-
ion is done according to the natural principia of “good win and
ad lost”, that is, individual with large fitness will be reserved and
he opposite one will be removed. A stochastic universal sampling

ethod is used to choose new individual in this study. Probability
f individual selection is:

i =
Fi∑n
i=1Fi

(9)

here, Pi and Fi are the selection probability and fitness of ith
ndividual, respectively. The weight and threshold of the network
radually approach to optimal values through selection operation.
n the learning process, the largest fitness individual is reserved for
ffspring.

.2.5. Crossover operation
The crossover operator creates two new chromosomes from two

xisting chromosomes by cutting them at a random position and
xchanging the parts following the cut. It starts with two parental
hromosomes and produces two offspring chromosomes. In this
tudy, two parental chromosomes and bunch’s crossing position
re determined by random. And then their bunches are exchanged
ehind crossing point of parental chromosome and produce two
ew offspring chromosomes, these two new chromosomes have
heir parental feature.

.2.6. Mutation operation
Mutation introduces innovation into the chromosomes. It is a

enetic operator that alters one ore more gene values in a chro-
osome from its initial state. It increases the variability of the

hromosomes and helps to avoid the possibility of falling into
ocal optima in the evolution process (Krishnakumar and Goldberg,
992). In this work, the non-uniform mutation (Cook et al., 2000) is
hosen. From one generation to the next, the chromosomes have a
etter fitness (Paris and Pierreval, 2001). By using the above genetic
lgorithm operation, appropriate network weight and threshold are
btained. The GA optimization, training, learning and prediction
rocedure for the CHF data is represented in Fig. 6.

. CHF determination

The wavelet modulus maximum method is applied to detect the
ingularity of the pressure fluctuations in a circulating fluidized bed
Chen et al., 2004). This method has been tested effective under var-
ous operation conditions. The wavelet modulus maximum is used
o detect the spike wave of epileptic EEG (electroencephalogram)
ignals by detecting their singular points (Shen et al., 1998). Results
how that the spike detection rate is 94.2%, and no false detec-
ion for normal EEG signals. Shang et al. (2001) applied the wavelet

odulus maximum to detect the faults in high-voltage direct cur-
ent (HVDC) system. Their simulation results show that the wavelet

odulus maximum can make a definite identification of HVDC line
aults. Yue et al. (2009) pointed out that the wavelet modulus maxi-

um could effectively detect the polarity of non-effectively earthed

eutral system. In flow boiling heat transfer regime, the tempera-
ure of the fluid is on the saturated level and the wall temperature
lso keeps nearly a constant value. However, when CHF occurs, the
orresponding wall temperature increases rapidly. Using previous
ethods, the location of CHF can be observed with the rapid change
Fig. 6. The overall prediction procedure for the CHF database.

of temperature by using the thermocouples arranged in the test sec-
tion. In fact, the location of CHF may be occurring before (or behind)
the observed position. In mathematics, it can be represented by a
larger singularity on that point. The CHF and Minimum Film Boil-
ing Starting Point are the singularity points of boiling curves. The
wavelet has the capacity to detect the singularity points of boiling
curves. So in this work, it is employed to determine the location
of CHF. It may accurately determine the location of the character-
istic points of boiling curves by an intelligent way of interpolating
though old data points. The location of CHF can then be detected
according to the rapid change in temperature.

The results are different to process the same problem by using
different wavelet functions. It is very important to choice the finest
smooth function (i.e., wavelet function) in practical application. The
choice criteria of wavelet function are determined by its compactly
supported, symmetry, vanishing moment and regularity. The length
of wavelet function is determined by compactly supported length.
It reflects the local ability of wavelet. The symmetry may effectu-
ally guarantee linear phase. The ability of wavelet approximations
to smooth function increases with increasing vanishing moment.
Because of the good regularity of wavelet, it is easy to obtain smooth
reconstruction curves. Above all, the four-order B-spline wavelet 4
is used as smooth function. It is given as follows:

⎧⎪⎪⎪⎨ x3/6, 0 ≤ x < 1;
−x3/2 + 2x2 − 2x + 2/3, 1 ≤ x < 2;
 4 =⎪⎪⎪⎩
x3/2 − 4x2 + 10x − 22/3, 2 ≤ x < 3;
(4 − x)3/6, 3 ≤ x < 4;
0, else.
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Fig. 7. B-

o the cubic B-spline wavelet is employed to detect the singularities
f boiling curves. The sketches of the cubic and four-order B-spline
avelets are shown in Fig. 7.

In the following text, we give the detection result. The boil-
ng curve obtained from experiment is shown in Fig. 8. The result
f wavelet modulus maxima detection is showed in Fig. 9. From
ig. 9, we can clearly see two modulus maxima points: the one
s the CHF point, the other is the Minimum Film Boiling Start-
ng Point (qmin) of boiling curves. So we can accurately determine
he locations of the characteristic points of boiling curves. CHF
ccurred only at wall superheat of 48.89 K. The Minimum Film Boil-

ng Starting Point (qmin) occurred only at wall superheat of 158.49 K.
igs. 10–12 show the comparison between detection results and
xperimental data for CHF, qmin and wall superheat correspond-
ng to qmin, respectively. From the results, the root-mean-square
RMS) errors of the detection results are 4.72, 5.84 and 6.94%,
espectively. From Figs. 10–12, we can clearly know that the detec-
ion results by wavelet modulus maxima detection have a good
greement with experimental data. Our results show that wavelet
nalysis can accurately detect the characteristic points of boiling
urves.

. Prediction of the characteristic points
The prediction of CHF is most crucial in designing various trans-
er units including nuclear reactors fossil-fueled boilers, fusion
evices, and so on. When CHF occurs, the surface cooled is no

onger in intimate contact with the liquid film. As a result, the

Fig. 8. Experimental boiling curve.
Fig. 9. Wavelet detection result.

heat transfer capability decreases so dramatically and the corre-
sponding wall temperature rises so rapidly that it can even melt

the heat transfer surface (Wang et al., 2000). The power generated
is often limited by the CHF value. It is an important parame-
ter to be predicted in safety analysis of nuclear power system.
Therefore, prediction of characteristic points of boiling curves is
investigated by GNN in this section. A double hidden layers BP

Fig. 10. Comparisons between the experimental data and wavelet detection results
of CHF.
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Fig. 13. Comparisons between the experimental data and GNN prediction results of
CHF.

Fig. 14. Comparisons between the experimental data and GNN prediction results of
qmin.
ig. 11. Comparisons between the experimental data and wavelet detection results
f qmin.

etwork is constructed to predict those characteristic points. The
imension of input layer is 3. They are pressure, mass flow rate
nd inlet sub-cooling, respectively. The dimension of output layer
s 1. It is the CHF, qmin or wall superheat corresponding to qmin.
he first and second hidden layer units are 35 and 25, respectively.
he GNN is trained and tested based on those experimental data.
rom these, 70% of the experimental data was used for training
nd cross validation (60% for training and 10% for cross valida-
ion) and the rest 30% for testing the network. The mean square
rrors (MSE) of the training, validation and testing are all lower
han 0.06319, 0.07912 and 0.08475, respectively. The trained GNN
s used to predict CHF, qmin and wall superheat corresponding
o qmin, respectively. The prediction results are shown in the fol-
owing Figs. 13–15. Figs. 13–15 show the comparison between
rediction results and experimental data for CHF, qmin and wall
uperheat corresponding to qmin, respectively. From Figs. 13–15,
e can clearly know that the prediction results by GNN have a

ood agreement with experimental data. From the results, the root-
ean-square (RMS) errors of the prediction results are 7.18, 6.24

nd 12.5%, respectively. Our results show that an appropriately

rained GNN can accurately predict the characteristic points of boil-
ng curve.

ig. 12. Comparisons between the experimental data and wavelet detection results
f wall superheat corresponding to qmin.

Fig. 15. Comparisons between the experimental data and GNN prediction results of
wall superheat corresponding to qmin.
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Fig. 16. Effect of system pressure on CHF.

. Parametric trends

An exact understanding of parametric trends is important in
ractical applications. In this section, the parametric trends based
n fixed inlet conditions are predicted by using GNN. The fixed inlet
onditions hypothesis is nearly independent of the other variable
esides system pressure, mass flux and inlet sub-cooling. However,

t is very useful for the prediction of the CHF in practical applica-
ions. The prediction parametric trends are shown in Figs. 16–18. In
he figures, the actual outputs of the GNN are simply connected by
ines. The trends agree with general understanding. The parametric
rends are discussed as follows.

The overall trend of system pressure is shown in Fig. 16. Fig. 16
hows the variation of CHF with pressure under fixed inlet condi-
ions. CHF data are represented for a fixed inlet sub-cooling of 15 K
nd different mass velocities in a pressure range of 0.1–1 MPa. From
ig. 16, we can clearly see that the CHF increases with increasing
ystem pressure under low pressures.

The effects of mass flow velocity on CHF under different sys-
em pressures are illustrated in Fig. 17 for a fixed inlet sub-cooling
f 15 K in a broad mass flow velocity range of 50–500 kg m−2 s−1.

ig. 17 shows the CHF increases with increasing mass flow velocity
t low mass flow velocity. From Fig. 17, we can also see that the CHF
ncreases with increasing the system pressure.

The overall trend of inlet sub-cooling is shown in Fig. 18. The
ffects of inlet sub-cooling on CHF at different mass flow velocities

Fig. 17. Effect of mass flow velocity on CHF.
Fig. 18. Effect of inlet sub-cooling on CHF.

are represented in Fig. 18 for a fixed system pressure of 0.1 MPa. In
this figure, the results can be obtained by the GNN. In overall, the
CHF increases as the inlet sub-cooling increases for low inlet sub-
cooling as shown in Fig. 18. From this figure, we can also clearly see
that the trend of the mass flow velocities. The CHF increases with
increasing mass flow velocity at low mass flow velocity.

Any way the occurrence of CHF is very complicated and there
are several mature mechanism models. However all proposed mod-
els reveal that the DNB is relative with bubble dynamics and liquid
film near the heating wall. In present study, the experimental range
of system pressure is very limited and quite low, i.e., from 0.1 to
1.0 MPa, so it is not proper to draw a proper conclusion on the
effect of pressure on CHF in such a limited range. Anyway, pressure
plays a predominant role and improves heat transfer in all boiling
regions. An increase in pressure obviously improves the heat trans-
fer in boiling regions particularly at low pressure. So the prediction
results show that the CHF will increase with an increase in pres-
sure in present parametric range. For the effect of mass flux, higher
mass flux obviously enhances the turbulence and it is much more
difficult to generate bubble clusters. The mechanism of DNB is (1)
rapid evaporation of liquid film between the bubble and heating
wall or (2) accumulation of small bubbles near the heating surface
and so on. The mechanism of MFBP is that a stable vapor film is
attained near the heating surface. So it is well understandable that
larger heat flux is necessary to generate DNB and MFBP at higher
mass flux. For the effect of inlet sub-cooling degree, it can affect
the local parameter (MNB or MFBP) more or less although many
researchers believed that DNB is a ‘local phenomenon’. Consider-
ing this memory effect, it is not difficult to understand that higher
inlet sub-cooling results into a higher heat flux and temperature in
DNB and MFBP.

7. Conclusions

Wavelet analysis and GNN are particularly discussed to analysis
the characteristic points of flow boiling curves with a database com-
posed of experimental data from the 1960s. The database includes
2365 data points that cover the following parameter ranges: pres-
sure of 100–1000 kPa; mass flow rate of 40–500 kg m−2 s−1; inlet
sub-cooling of 0–35 K; wall superheat of 10–500 K and heat flux of

−2
20–8000 kW m .
The wavelet modulus maxima detection was applied success-

fully to detect the characteristic points of flow boiling curves. It
has the good localization characteristic to study boiling curves. The
detection results are shown in Figs. 10–12. From the results, we
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an clearly know that the detection results by wavelet modulus
axima detection have a good agreement with experimental data.
ur results show that wavelet analysis can accurately detect the
haracteristic points of boiling curves.

The GNN was applied successfully to predict the characteris-
ic points of flow boiling curves. It applied genetic algorithm to
ptimize BP neural network weight and threshold. It overcomes
ome shortcomings of BP neural network, such as slow conver-
ence and easily deep in local extreme point. It reduces experiment
imes and improves reliability of network. The prediction results are
hown in the Figs. 13–15. The prediction results by GNN have a good
greement with experimental data. From the results, the proposed
ethodology allows accurate results to be achieved, thus the GNN

s suitable for boiling curve data processing. The developed method
an be used in numerous two-phase flow problems.

Finally, the effects of the main parameters on flow boiling curves
re analyzed and the following result is obtained: the CHF increases
ith increasing system pressure, mass flow rate and inlet sub-

ooling, respectively. It should be clear that these initial useful
esults on CHF in the nuclear plant applications are not sufficient for
ndustrial standard, and that additional and more accurate results
hould be expected from further works.
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