Publications ( Cited by SCI )

Computational fluid dynamics simulation of hydrodynamics in the riser of an external loop airlift reactor

作者: Jiang, Xuedong; Yang, Ning; Yang, Bolun
发表/完成日期: 2016-08-16
期卷: 27
Local hydrodynamics in the riser of an external loop airlift reactor (EL-ALR) are identified and the performances of three drag models are evaluated in computational fluid dynamics simulation. The simulation results show that the Schiller-Naumann drag model underestimated the local gas holdup at lower superficial gas velocity whereas the Tomiyama drag model overestimated that at higher superficial gas velocity. By contrast, the dual-bubble-size (DBS)-local drag model gave more reasonable radial and axial distributions of gas holdup in all cases. The reason is that the DBS-local drag model gave correct values of the lumped parameter, i.e., the ratio of the drag coefficient to bubble diameter, for varying operating conditions and radial positions. This ratio is reasonably expected to decrease with increasing superficial gas velocity and be smaller in the center and larger near the wall. Only the DBS-local drag model correctly reproduced these trends. The radial profiles of the axial velocity of the liquid and gas predicted by the DBS-local model also agreed well with experimental data.