已发表SCI文章

+ equal contributor,    * correspondence author 

50. Linghu, Y.; Li, N.; Du, Y.*; Wu, C.*, Ligand induced structure and property changes of 1T-MoS2, Physical Chemistry Chemical Physics, 2019, 21, 9391 - 9398.

49. Linghu, Y.; Wu, C.*, 1T’-MoS2, A Promising Candidate for Sensing NOx. Journal of Physical Chemistry C, 2019, 123, 10339−10345.

48. Liu, F.; Xue, T.; Wu, C.*; Yang, S.*, Coadsorption of CO and O over strained metal surfaces. Chemical Physics Letters, 2019, 722, 18-25.

47. Xia, Z.; Zhang, S.; Liu, F.; Ma, Y.; Qu, Y.*; Wu, C.*, Size-Dependent Adsorption of Styrene on Pd Clusters: A Density Functional Theory Study. Journal of Physical Chemistry C, 2019, 123, 2182-2188.

46.Xu, C.; Su, R.; Wang Z.; Wang, Y.; Zhang, D.; Wang, J.; Bian, J.; Wu, C.; Lou, X.; Yang, Y.*, Tuning the microstructure of BaTiO3@SiO2 core-shell nanoparticles for high energy storage composite ceramics. Journal of Alloys and Compounds, 2019, 784, 173-181.

45. Xue, T.; Wu, C.*; Ding, X.*; Sun, J., Dissociative adsorption of O2 on strained Pt(111). Physical Chemistry Chemical Physics2018, 20, 17927-17933.

44. Li, C.; Lu, D.; Wu, C.*, The role of cations in the interactions between anionic N-heterocycles and SO2Scientific Reports2018, 8 (1), 7284.

43. Li, C.; Lu, D.; Wu, C.*, Designing tri-branched multiple-site SO2 capture materials. Physical Chemistry Chemical Physics2018, 20 (24), 16704-16711.

42. Zhang, L.; Wu, C.*; Ding, X.*; Fang, Y.; Sun, J., Separation selectivity and structural flexibility of graphene-like 2-dimensional membranes. Physical Chemistry Chemical Physics2018, 20, 18192-18199.

41. Li, Y.; Wu, C.*, Utilizing SO2 as self-installing gate to regulate the separation properties of porous graphenes. Carbon2018, 134, 145-152.

40. He, Y.; Que, W.*; Liu, X.; Wu, C.*, Trapping Behaviors of Photogenerated Electrons on the (110), (101), and (221) Facets of SnO2: Experimental and DFT Investigations. ACS Applied Materials and Interfaces2017, 9 (44), 38984-38991.

39. Liu, F.; Wu, C.*; Yang, S.*, Strain and Ligand Effects on CO2 Reduction Reactions over Cu–Metal Heterostructure Catalysts. Journal of Physical Chemistry C2017, 121 (40), 22139–22146.

38. Zhang, L.; Wu, C.*; Fang, Y.; Ding, X.*; Sun, J., Computational Design Porous Graphenes for Alkane Isomer Separation. Journal of Physical Chemistry C 2017, 121 (18), 10063-10070.

37. Wu, C.; Hou, X.; Zheng, Y.; Li, P.; Lu, D.*, Electrophilicity and Nucleophilicity of Boryl Radicals. Journal of Organic Chemistry 2017, 82 (6), 2898-2905.

36. Zhang, S.; Xia, Z.; Ni, T.; Zhang, H.; Wu, C.; Qu, Y.*, Tuning chemical compositions of bimetallic AuPd catalysts for selective catalytic hydrogenation of halogenated quinolines. J. Mater. Chem. A2017, 5, 3260-3266.

35. Zhang, S.; Li, J.; Xia, Z.; Wu, C.; Zhang, Z.; Ma, Y.*; Qu, Y.*, Towards highly active Pd/CeO2 for alkene hydrogenation by tuning Pd dispersion and surface properties of catalysts. Nanoscale 2017, 9, 3140-3149.

34. Shi, L.; Yang, J. H.; Zeng, H. B.; Chen, Y. M.*; Yang, S. C.; Wu, C.; Zeng, H.;  Yoshihito, O.; Zhang, Q.*, Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores. Nanoscale 2016, 8, 14374-14378.

33. Li, H.; Wu, C.; Malinin, S. V.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules. Chemical Physics 2016, 481, 124-132. [Vladimir Y. Chernyak FestschriftTribute to Vladimir Chernyak by Shaul Mukamel]

32. Zhang, Y.; Lu, D.*; Zhang, J.-J.; Wu, C.*, Synthesis and characterization of imidazolium poly(azolyl)borate ionic liquids and their potential application in SO2 absorption. RSC Advances 20166 (70), 66078-66086.

31. Yang, S.; Liu, F.; Wu, C.*; Yang, S.*, Tuning Surface Properties of Low Dimensional Materials via Strain Engineering. Small 201612 (30), 4028-4047.

30. WuC.; Wang, H.; Zhang, J.; Gou, G.*; Pan, B.; Li, J.*, Lithium–Boron (Li–B) Monolayers: First-Principles Cluster Expansion and Possible Two-Dimensional Superconductivity. ACS Applied Materials and Interfaces 20168 (4), 2526–2532.

29. Hou, X.*; Wu, C.; Li, Y.; Yang, X., The C-N coupling reaction of bimetallic cations [MAu(CH)]+(M = Pt, Ir, Os) with NH3Computational and Theoretical Chemistry 2015, 1027, 52-57.

28. Fang, Y.; Tai, Y. Y.; Deng, J.; Wu, C.; Ding, X.*; Sun, J.; Salje, E. K. H.*, Fe-vacancy ordering in superconducting K1-xFe2-ySe2: first-principles calculations and Monte Carlo simulations. Superconductor Science and Technology 2015, 28, 095004.

27. Liu, F.; Wu, C.*; Yang, G.; Yang, S.*, CO Oxidation over Strained Pt(100) Surface: A DFT Study. Journal of Physical Chemistry C 2015119 (27), 15500–15505.

26. Tang, H.; Lu, D.*; Wu, C.*, Cation-assisted interactions between N-heterocycles and CO2Physical Chemistry Chemical Physics 2015,17, 15725-15731.

25. Tang, H.; Lu, D.*; Wu, C.*, Intramolecular Hydrogen Bonds Enhance Disparity in Reactivity between Isomers of Photoswitchable Sorbents and CO2: A Computational Study. ChemPhysChem 201516 (9), 1926-1932.

24. Wang, Z.; Chen, Z.; Zhang, H.; Zhang, Z.; Wu, H.; Jin, M.*; Wu, C.*; Yang, D.; Yin, Y.*, Lattice-mismatch-induced twinning for seeded growth of anisotropic nanostructures. ACS Nano 20159 (3), 3307-13.

23. Chen, Z.; Li, P.*; Wu, C.*, - A uniformly porous 2D CN (1 : 1) network predicted by first-principles calculations. RSC Advances 20155 (16), 11791-11796.

22. Xu, X.; Yang, X.; Wu, Y.; Zhou, G.*; Wu, C.*; Wong, W.-Y.*, tris-Heteroleptic Cyclometalated Iridium(III) Complexes with Ambipolar or Electron Injection/Transport Features for Highly Efficient Electrophosphorescent Devices. Chemistry – An Asian Journal 2015, 10 (1), 252-262.

21. Chen, Y.-C.+; Qin, L.+; Meng, Z.-S.; Yang, D.-F.; Wu, C.*; Fu, Z.; Zheng, Y.-Z.*; Liu, J.-L.; Tarasenko, R.; Orendá, M.*; Prokleka, J.; Sechovsky, V.; Tong, M.-L.*, Study on a Magnetic-Cooling Material Gd(OH)CO3. Journal of Material Chemistry A2014, 2, 9851-9858.

20. Wei, Y.+; Tang, H.+; Cong, X.; Rao, B.; Wu, C.*; Zeng, X.*, Pd(II)-Catalyzed Intermolecular Arylation of Unactivated C(sp3)–H Bonds with Aryl  Bromides Enabled by 8-Aminoquinoline Auxiliary. Organic Letters 201416 (8), 2248-2251.

19. Lu, D.*; Wu, C.; Li, P.*, 3-Center-5-Electron Boryl Radicals with σ0π1 Ground State Electronic Structure. Organic Letters 201416 (5), 1486–1489.

18. Pang, Y. C.+; Hou, X.+; Qin, L.; Wu, C.*; Xue, W.; Zheng, Y. Z.*; Zheng, Z.; Chen, X. M., Observation of allylic rearrangement in water-rich reaction. Chemical Communications 2014, 50, 2910-2912. [烯丙基重排机理,水团簇的辅助作用]

17. Li, R.+; Tang, H.+; Fu, H.; Ren, H.; Wang, X.; Wu, C*; Wu, C.*; Shi, F.*, Arynes Double Bond Insertion/Nucleophilic Addition with Vinylogous Amides and Carbodiimides. Journal of Organic Chemistry 2014, 79, 1344-1355.

16. Lu, D.*; Wu, C.; Li, P.*, Synergistic effects of lewis bases and substituents on the electronic structure and reactivity of boryl radicals. Chemistry – A European Journal 2014, 20 (6), 1630-1637.

15. Vogt, M.; Wu, C.; Oliver, A. G.; Meyer, C. J.; Schneider, W. F.*; Ashfeld, B. L.*, Site specific carboxylation of abnormal anionic N-heterocyclic dicarbenes with CO2Chemical Communications 2013, 49, 11527-11529.

14. Cong, X.+; Tang, H.+Wu, C.*; Zeng, X.*, Role of Mono-N-protected Amino Acid Ligands in Palladium(II)-Catalyzed Dehydrogenative Heck Reactions of Electron-Deficient (Hetero)arenes: Experimental and Computational Studies. Organometallics 201332 (21), 6565-6575.

13. Vogt, M.; Bennett, J. E.; Huang, Y.; Wu, C.; Schneider, W. F.*; Brennecke, J. F.*; Ashfeld, B. L.*, Solid-State Covalent Capture of CO2 by Using N-Heterocyclic Carbenes. Chemistry – A European Journal 2013, 19 (34), 11134-11138.

12. Tang, H.; Wu, C.*, Reactivity of Azole Anions with CO2 from the DFT Perspective.  ChemSusChem  2013, 6 (6), 1050-1056. [唑类含氮杂环的离子液体最多1:1化学计量的与CO2化学成键,对比了与SO2的作用]

11. McEwen, J. S.; Bray, J. M.; Wu, C.; Schneider, W. F.*, How low can you go? Minimum energy pathways for O2 dissociation on Pt(111). Physical Chemistry Chemical Physics 2012, 14 (48), 16677-16685.

10. Wu, C.; Senftle, T. P.; Schneider, W. F.*, First-principles-guided design of ionic liquids for CO2 capture. Physical Chemistry Chemical Physics 2012, 14 (38), 13163-13170.

9. Wu, C.; Schmidt, D. J.; Wolverton, C.; Schneider, W. F.*, Accurate coverage-dependence incorporated into first-principles kinetic models: Catalytic NO oxidation on Pt(111). Journal of Catalysis 2012, 286 (7), 88-94. [本研究的结论也可以用于解释严重两极分化等社会现象,参见: 1% 99%]

8. Li, H.; Wu, C.; Malinin, S. V.; Tretiak, S.*; Chernyak, V. Y.*, Exciton Scattering on Symmetric Branching Centers in Conjugated Molecules. Journal of Physical Chemistry B 2011, 115 (18), 5465-5475.

7. Li, H.; Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Excited States of Donor and Acceptor Substituted Conjugated Oligomers: A Perspective from the Exciton Scattering Approach. Journal of Physical Chemistry Letters 2010, 1 (23), 3396-3400.

6. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for branched conjugated molecules and complexes. III. Applications. Journal of Chemical Physics 2008, 129 (17), 174113.

5. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for branched conjugated molecules and complexes. II. Extraction of the exciton scattering parameters from quantum-chemical calculations. Journal of Chemical Physics 2008, 129 (17), 174112.

4. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for branched conjugated molecules and complexes. I. Formalism. Journal of Chemical Physics 2008, 129 (17), 174111. [文章4(理论),5(实现),6(应用)构成一个系列,特别是从跃迁能量的角度,系统地讨论激发子散射的理论及其实现方法。该系列的第四篇(本人未参与)讨论了跃迁强度及偶极等的定量实现。]

3. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Multiscale modeling of electronic excitations in branched conjugated molecules using an exciton scattering approach. Physical Review Letters 2008, 100 (5), 057405. [讨论如何定量地实现激发子散射方法]

2. Wu, C.; Tretiak, S.*; Chernyak, V. Y.*, Excited states and optical response of a donor-acceptor substituted polyene: A TD-DFT study. Chemical Physics Letters 2007, 433 (4-6), 305-311. [本文的亮点:讨论了B3LYP方法在处理共轭体系的局限性]

1. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering and localization in branched dendrimeric structures.Nature Physics 2006, 2 (9), 631-635. [Chernyak首次提出激发子散射概念,定性地描述该概念。核心的创新:将粒子在一维势阱模型与散射理论联系起来,简洁地解释复杂枝状共轭体系的激发态电子结构。当然这个想法并不局限于处理电子激发态,也可以应用到其他适合的体系。相关但并不准确的解读:Exciton dynamics: Simplifying organic complexity综述参见33号文章]