已发表SCI文章

    + equal contributor,    * correspondence author 

99. Hai, P.; Wu, C.*; Ding, X.*, H2 generation from H2S decomposition on Al. International Journal of Hydrogen Energy, 2023, .

98. Li, R.; Tursun, M.; Jiang, Y.; Zhan, Q.; Ji, S.; Bi, W.; Wang, C.; Liu, Y.; Dai, S.*; Wu, C.*; Jin, M.*, PdPt Alloy Nanoframes with Rugged Surfaces: Efficient Bifunctional Fuel Cell Catalysts in a Broad pH Range. ACS Materials Letters, 2023, 5, XXX, 2384–2392.

97. Linghu*, T.; Tong, T.; Wu, C.*, Electrochemical reduction of carbon dioxide to methane at transition metal-doped 1T'-MX monolayers. Journal of Physical Chemistry C, 2023, 127, 31, 15035–15042.

96. Hai, P.; Wu, C.*; Ding, X.*; Li, Y.*, Morphology evolution of aluminum surface in fluorine-containing environment. Physical Chemistry Chemical Physics, 2023, 25, 21045 - 21053.

95. Yan, H.; Liao, Q.; Chen, Y.; Gurzadyan, G. G.; Lu, B.; Wu, C.; Shi, L.*, Photocatalytic Metal Hydride Hydrogen Atom Transfer Mediated Allene Functionalization by Cobalt and Titanium Dual Catalysis. Angewandte Chemie International Edition, 2023, 3,62,e2023024.

94. Hai, P.; Wu, C.*; Ding, X.*; Li, Y.*, Coverage-dependent adsorption and dissociation of H2O on Al surfaces. Physical Chemistry Chemical Physics, 2023, 25, 13041-13048.

93. Tong, T.; Linghu, Y.*; Wu, C.*, The Ability of CO2 Capture on Transition Metal-modified 1T′-MoS2 Monolayers Controlled by an Electric Field. ChemPhysChem, 2023, 24, e202300072.

92. Gan, Z.; Liu, L.; Hai, P.; Li, L.; Gao, Y.; Yin Y.; Li, M.; Wu, C.; Ai, W.*; Cheng, Y.*; Xu, X.*, Unleash sodium storage potential of MoS2 nanosheets: Generating favorable kinetics from optimal crystallinity and elaborate structure. Journal of Power Sources, 2023, 570, 233028.

91. Tursun, M.; Wu, C.*; Defective 1Tˊ-MoX2 (X = S, Se, Te) monolayers for electrocatalytic ammonia synthesis: Steric and electronic effects on the catalytic activity. Fuel, 2023, 342, 127779.

90. Liu, F.; Gao, P.-F.; Wu, C.*; Yang, S.; Ding, X., DFT-based Machine Learning for Ensemble Effect of Pd@Au Electrocatalysts on CO2 Reduction Reaction. ChemPhysChem, 2023, e202200642 .

89. Linghu, Y.*; Tong, T.; Wu, C.*, Cu Doped MoSi2N4 Monolayer as a Potential NH3 Sensor. ChemPhysChem, 2023, e202200712.  

88. Chen, L.; Hai, P.; Yang, Y.*; Wu, C.; Hu, Y.; Rao, W.-F.*, Highly efficient photocatalytic hydrogen production by platinum modified ferroelectric SrBi4Ti4O15. Separation and Purification Technology, 2023, 309, 123058.

87. Ali, A.; Chen, L.; Nasir, M. S.; Wu, C.; Guo, B.; Yang, Y.*, Piezocatalytic removal of water bacteria and organic compounds: a review. Environmental Chemistry Letters, 2023, 21, 1075–1092.

86. Yin, J. +; Hai, P. +; Gao, Y.; Gan, Z.; Wu, C.*; Cheng, Y.*; Xu, X.*, Theory-driven designed TiO2@MoO2 heterojunction: Balanced crystallinity and nanostructure toward desirable kinetics and high-rate sodium-ion storage. Nano Research, 2023, 16, 4941–4949.

85. Liu, F.; Wu, C.*; Ding, X.*; Sun, J., Atomic modification of Mo(100) surface for corrosion resistance. Applied Surface Science, 2023, 610,155509.

84. Linghu, Y.*; Tong, T.; Wu, C.*, Cu-doped MoSi2N4 monolayer as a highly efficient catalyst for CO reduction toward C2+ products. Applied Surface Science, 2023, 609, 155332.

83. Tursun, M.; Wu, C.*, Single Transition Metal Atoms Anchored on Defective MoS2 Monolayers for the Electrocatalytic Reduction of Nitric Oxide into Ammonia and Hydroxylamine. Inorganic Chemistry, 2022, 61, 44, 17448–17458.

82. Gao, Y. +; Hai, P. +; Liu, L.; Yin, J.; Gan, Z.; Ai, W.; Wu, C.*; Cheng, Y.*; Xu, X.*, Balanced Crystallinity and Nanostructure for SnS2 Nanosheets through Optimized Calcination Temperature toward Enhanced Pseudocapacitive Na+ Storage. ACS Nano2022, 16, 9, 14745–14753.

81. Zhang, K.; He, Y.; Guo, R.; Wang, W.; Zhan, Q.; Li, R.; He, T.; Wu, C.*; Jin, M.*, Interstitial Carbon-Doped PdMo Bimetallene for High-Performance Oxygen Reduction Reaction. ACS Energy Letters, 2022, 7, 10, 3329–3336.

80. Hai, P.; Wu, C.*; Ding, X.*, NOx on Al: The Unusual Adsorption Site Preference and the Attraction among Adsorbates. Journal of Physical Chemistry C, 2022, 126, 29, 11971–11980.

79. Chen, Y.; Yan, H.; Liao, Q.*; Zhang, D.; Lin, S.; Hao, E.*; Murtaza, R.; Li, C.; Wu, C.; Duan, C.; Shi, L.*, Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angewandte Chemie International Edition, 2022, 61, e202204516.

78. Tursun, M.; Wu, C.*, Electrocatalytic Reduction of N2 to NH3 Over Defective 1T '-WX2 (X=S, Se, Te) Monolayers. ChemSusChem, 2022, 15, 11, e202200191.

77. Tong, T.; Linghu, Y.*; Wu, G.; Wang, C.; Wu, C.*, Nitric oxide electrochemical reduction reaction on transition metal-doped MoSi2N4 monolayers. Physical Chemistry Chemical Physics, 2022, 24, 18943-18951.

76. Linghu, Y.*; Tong, T.; Li, C.; Wu, C.*, The catalytic mechanism of CO2 electrochemical reduction over transition metal-modified 1T'-MoS2 monolayers. Applied Surface Science, 2022, 590, 153001.

75. He, Y.; Hai, P.; Wu, C.*, Screening strain sensitive transition metals using oxygen adsorption. New Journal of Chemistry, 2022, 46, 2178-2188.

74. Ding, X.; Luo, Q.; Zhai, Y.; Zhang, X.; Lv, Y.; Zhang, X.; Ke, C.; Wu, C.; Zheng, Y.*, Rigid Dysprosium(III) Single-Molecule Magnets Exhibit Preserved Superparamagnetism in Solution. Chinese Journal of Chemistry, 2022, 40, 563-570.

73. Li, Y.; Zhang, L.; Wu, C.*, Porous graphene membranes under small tensile strains exhibit higher percolation barriers to the passing molecules. Surfaces and Interfaces, 2021, 27, 101526.

72. He, Y.; Wu, C.*, Equilibrium distribution of dissolved carbon in PdCx: DFT and Canonical Monte Carlo simulations. Journal of Physical Chemistry C2021, 125, 38, 20930–20939.

71. Hai, P.; Wu, C.*, A comparative DFT study of the oxidation of Al crystals and nanoparticles. Physical Chemistry Chemical Physics, 2021,23, 24004-24015.

70. Tursun, M.; Wu, C.*, Vacancy-triggered and dopant-assisted NO electrocatalytic reduction over MoS2. Physical Chemistry Chemical Physics, 2021, 23, 19872-19883.

69. Tursun, M.; Wu, C.*, NO Electroreduction by Transition Metal Dichalcogenides with Chalcogen Vacancies. ChemElectroChem, 2021, 8, 3113-3122.

68. Li, C.; Lu, D.*; Wu, C.*, A theoretical study on screening ionic liquids for SO2 capture under low SO2 partial pressure and high temperature. Journal of Industrial and Engineering Chemistry, 2021, 98, 161-167.

67. Linghu, Y.; Lu, D.*; Wu, C.*, CO oxidation over defective and nonmetal doped MoS2 monolayers. Journal of Physics: Condensed Matter, 2021, 33, 165002.

66. Guo, R.; Zhang, K.; Liu, Y.; He, Y.; Wu, C.*; Jin, M.*, Hydrothermal synthesis of palladium nitrides as robust multifunctional electrocatalysts for fuel cells. Journal of Materials Chemistry A, 2021, 9, 6196-6204.

65. Li, F.; Lin, S.; Chen, Y.; Shi, C.; Yan, H.; Li, C.; Wu, C.; Lin, L.; Duan, C.; Shi, L.*, Photocatalytic Generation of π-Allyltitanium Complexes via Radical Intermediates. Angewandte Chemie International Edition, 2021, 60, 1561-1566.

64. Wang, B.*; Xiong, L.; Hao, H.; Cai, H.; Gao, P.; Liu, F.; Yu, X.; Wu, C.*; Yang, S.*, The “electric-dipole” effect of Pt–Ni for enhanced catalytic dehydrogenation of ammonia borane. Journal of Alloys and Compounds, 2020, 844, 156253.

63. Linghu, Y.; Wu, C.*, NO disproportionation over defective 1T′-MoS2 monolayers. Physical Chemistry Chemical Physics, 2020, 22, 13154-13159.

62. Li, C.; Lu D.*; Wu, C.*, Multi-molar CO2 capture beyond the direct Lewis acid–base interaction mechanism. Physical Chemistry Chemical Physics, 2020, 22, 11354-11361.

61. Linghu, Y.; Wu, C.*, Strain engineering the behaviors of small molecules over defective MoS2 monolayers in the 2H and 1T′ phases. Journal of Materials Science, 2020, 55, 10643–10655.

60. Li, Y.; Zhang, L.; Wu, C.*, Uncertainty in the separation properties of functionalized porous graphenes. Applied Surface Science, 2020, 525, 146524.

59.  Li, Y.; Linghu, Y.; Wu, C.*, Separation Properties of Porous MoS2 Membranes Decorated with Small Molecules. ACS Applied Materials & Interfaces, 2020, 12, 17, 20096–20102.

58. Li, Y.; Li, C.; Linghu, Y.; Wu, C.*, Functional group-directed self-installing doors in porous graphene: a theoretical study. Journal of Materials Science, 2020, 55(12), 5111-5122

57. Zhan, M.+; Ding, Z.+; Du, S.+; Chen, H.; Feng, C.; Xu, M.; Liu, Z.; Zhang, M.; Wu, C.; Lan, Y.*; Li, P.*, A unified approach for divergent synthesis of contiguous stereodiads employing a small boronyl group. Nature Communications, 2020, 11(1), 792

56. Linghu, Y.; Wu, C.*, Gas Molecules on Defective and Nonmetal-Doped MoS2 Monolayers. The Journal of Physical Chemistry C, 2020, 124(2), 1511-1522.

55. Yang, B.; Wu, C.; Wang, J.;  Bian, J.; Wang, L.; Liu, M.; Du, Y.; Yang, Y.* When C3N4 meets BaTiO3: Ferroelectric polarization plays a critical role in building a better photocatalyst. Ceramics International, 2019, 46(4) 4248-4255.

54. Lu, D.*; He, Y.; Wu, C.*, Electronic structure of mono(Lewis base)-stabilized borylenes. Physical Chemistry Chemical Physics2019, 21, 23533-23540.

53. Li, C.; Lu, D.*; Wu, C.*, Exploration of tetra-branched multiple-site SO2 capture materials. Physical Chemistry Chemical Physics2019, 21, 18250-18258.

52. Moss, J. B.; Zhang, L.; Nielson, K. V.; Bi, Y.; Wu, C.*; Scheiner, S.*; Liu, T. L.*, Computational Insights into Mg-Cl Complex Electrolytes for Rechargeable Mg Batteries. Batteries & Supercaps2019, 2, 792-800.

51. Yang, B.; Bian, J.; Wang, L.; Wang, J.; Du, Y.; Wang, Z.; Wu, C.; Yang, Y.*, Enhanced photocatalytic activity of perovskite NaNbO3 by oxygen vacancy engineering. Physical Chemistry Chemical Physics2019, 21, 11697-11704.

50. Linghu, Y.; Li, N.; Du, Y.*; Wu, C.*, Ligand induced structure and property changes of 1T-MoS2Physical Chemistry Chemical Physics2019, 21, 9391 - 9398.

49. Linghu, Y.; Wu, C.*, 1T’-MoS2, A Promising Candidate for Sensing NOxJournal of Physical Chemistry C2019, 123, 10339−10345.

48. Liu, F.; Xue, T.; Wu, C.*; Yang, S.*, Coadsorption of CO and O over strained metal surfaces. Chemical Physics Letters2019, 722, 18-25.

47. Xia, Z.; Zhang, S.; Liu, F.; Ma, Y.; Qu, Y.*; Wu, C.*, Size-Dependent Adsorption of Styrene on Pd Clusters: A Density Functional Theory Study. Journal of Physical Chemistry C2019, 123, 2182-2188.

46.Xu, C.; Su, R.; Wang Z.; Wang, Y.; Zhang, D.; Wang, J.; Bian, J.; Wu, C.; Lou, X.; Yang, Y.*, Tuning the microstructure of BaTiO3@SiO2 core-shell nanoparticles for high energy storage composite ceramics. Journal of Alloys and Compounds2019, 784, 173-181.

45. Xue, T.; Wu, C.*; Ding, X.*; Sun, J., Dissociative adsorption of O2 on strained Pt(111). Physical Chemistry Chemical Physics2018, 20, 17927-17933.

44. Li, C.; Lu, D.; Wu, C.*, The role of cations in the interactions between anionic N-heterocycles and SO2Scientific Reports2018, 8 (1), 7284.

43. Li, C.; Lu, D.; Wu, C.*, Designing tri-branched multiple-site SO2 capture materials. Physical Chemistry Chemical Physics2018, 20 (24), 16704-16711.

42. Zhang, L.; Wu, C.*; Ding, X.*; Fang, Y.; Sun, J., Separation selectivity and structural flexibility of graphene-like 2-dimensional membranes. Physical Chemistry Chemical Physics2018, 20, 18192-18199.

41. Li, Y.; Wu, C.*, Utilizing SO2 as self-installing gate to regulate the separation properties of porous graphenes. Carbon2018, 134, 145-152.

40. He, Y.; Que, W.*; Liu, X.; Wu, C.*, Trapping Behaviors of Photogenerated Electrons on the (110), (101), and (221) Facets of SnO2: Experimental and DFT Investigations. ACS Applied Materials and Interfaces2017, 9 (44), 38984-38991.

39. Liu, F.; Wu, C.*; Yang, S.*, Strain and Ligand Effects on CO2 Reduction Reactions over Cu–Metal Heterostructure Catalysts. Journal of Physical Chemistry C2017, 121 (40), 22139–22146.

38. Zhang, L.; Wu, C.*; Fang, Y.; Ding, X.*; Sun, J., Computational Design Porous Graphenes for Alkane Isomer Separation. Journal of Physical Chemistry C 2017, 121 (18), 10063-10070.

37. Wu, C.; Hou, X.; Zheng, Y.; Li, P.; Lu, D.*, Electrophilicity and Nucleophilicity of Boryl Radicals. Journal of Organic Chemistry 2017, 82 (6), 2898-2905.

36. Zhang, S.; Xia, Z.; Ni, T.; Zhang, H.; Wu, C.; Qu, Y.*, Tuning chemical compositions of bimetallic AuPd catalysts for selective catalytic hydrogenation of halogenated quinolines. Journal of Material Chemistry A2017, 5, 3260-3266.

35. Zhang, S.; Li, J.; Xia, Z.; Wu, C.; Zhang, Z.; Ma, Y.*; Qu, Y.*, Towards highly active Pd/CeO2 for alkene hydrogenation by tuning Pd dispersion and surface properties of catalysts. Nanoscale 2017, 9, 3140-3149.

34. Shi, L.; Yang, J. H.; Zeng, H. B.; Chen, Y. M.*; Yang, S. C.; Wu, C.; Zeng, H.;  Yoshihito, O.; Zhang, Q.*, Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores. Nanoscale 2016, 8, 14374-14378.

33. Li, H.; Wu, C.; Malinin, S. V.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules. Chemical Physics 2016, 481, 124-132. [Vladimir Y. Chernyak FestschriftTribute to Vladimir Chernyak by Shaul Mukamel]

32. Zhang, Y.; Lu, D.*; Zhang, J.-J.; Wu, C.*, Synthesis and characterization of imidazolium poly(azolyl)borate ionic liquids and their potential application in SO2 absorption. RSC Advances 20166 (70), 66078-66086.

31. Yang, S.; Liu, F.; Wu, C.*; Yang, S.*, Tuning Surface Properties of Low Dimensional Materials via Strain Engineering. Small 201612 (30), 4028-4047.

30. WuC.; Wang, H.; Zhang, J.; Gou, G.*; Pan, B.; Li, J.*, Lithium–Boron (Li–B) Monolayers: First-Principles Cluster Expansion and Possible Two-Dimensional Superconductivity. ACS Applied Materials and Interfaces 20168 (4), 2526–2532.

29. Hou, X.*; Wu, C.; Li, Y.; Yang, X., The C-N coupling reaction of bimetallic cations [MAu(CH)]+(M = Pt, Ir, Os) with NH3Computational and Theoretical Chemistry 2015, 1027, 52-57.

  

28. Fang, Y.; Tai, Y. Y.; Deng, J.; Wu, C.; Ding, X.*; Sun, J.; Salje, E. K. H.*, Fe-vacancy ordering in superconducting K1-xFe2-ySe2: first-principles calculations and Monte Carlo simulations. Superconductor Science and Technology 2015, 28, 095004.

27. Liu, F.; Wu, C.*; Yang, G.; Yang, S.*, CO Oxidation over Strained Pt(100) Surface: A DFT Study. Journal of Physical Chemistry C 2015119 (27), 15500–15505.

26. Tang, H.; Lu, D.*; Wu, C.*, Cation-assisted interactions between N-heterocycles and CO2Physical Chemistry Chemical Physics 2015,17, 15725-15731.

25. Tang, H.; Lu, D.*; Wu, C.*, Intramolecular Hydrogen Bonds Enhance Disparity in Reactivity between Isomers of Photoswitchable Sorbents and CO2: A Computational Study. ChemPhysChem 201516 (9), 1926-1932.

24. Wang, Z.; Chen, Z.; Zhang, H.; Zhang, Z.; Wu, H.; Jin, M.*; Wu, C.*; Yang, D.; Yin, Y.*, Lattice-mismatch-induced twinning for seeded growth of anisotropic nanostructures. ACS Nano 20159 (3), 3307-13.

23. Chen, Z.; Li, P.*; Wu, C.*, - A uniformly porous 2D CN (1 : 1) network predicted by first-principles calculations. RSC Advances 20155 (16), 11791-11796.

22. Xu, X.; Yang, X.; Wu, Y.; Zhou, G.*; Wu, C.*; Wong, W.-Y.*, tris-Heteroleptic Cyclometalated Iridium(III) Complexes with Ambipolar or Electron Injection/Transport Features for Highly Efficient Electrophosphorescent Devices. Chemistry – An Asian Journal 2015, 10 (1), 252-262.

21. Chen, Y.-C.+; Qin, L.+; Meng, Z.-S.; Yang, D.-F.; Wu, C.*; Fu, Z.; Zheng, Y.-Z.*; Liu, J.-L.; Tarasenko, R.; Orendá, M.*; Prokleka, J.; Sechovsky, V.; Tong, M.-L.*, Study on a Magnetic-Cooling Material Gd(OH)CO3. Journal of Material Chemistry A2014, 2, 9851-9858.

20. Wei, Y.+; Tang, H.+; Cong, X.; Rao, B.; Wu, C.*; Zeng, X.*, Pd(II)-Catalyzed Intermolecular Arylation of Unactivated C(sp3)–H Bonds with Aryl  Bromides Enabled by 8-Aminoquinoline Auxiliary. Organic Letters 201416 (8), 2248-2251.

19. Lu, D.*; Wu, C.; Li, P.*, 3-Center-5-Electron Boryl Radicals with σ0π1 Ground State Electronic Structure. Organic Letters 201416 (5), 1486–1489.

18. Pang, Y. C.+; Hou, X.+; Qin, L.; Wu, C.*; Xue, W.; Zheng, Y. Z.*; Zheng, Z.; Chen, X. M., Observation of allylic rearrangement in water-rich reaction. Chemical Communications 2014, 50, 2910-2912. [烯丙基重排机理,水团簇的辅助作用]

17. Li, R.+; Tang, H.+; Fu, H.; Ren, H.; Wang, X.; Wu, C*; Wu, C.*; Shi, F.*, Arynes Double Bond Insertion/Nucleophilic Addition with Vinylogous Amides and Carbodiimides. Journal of Organic Chemistry 2014, 79, 1344-1355.

16. Lu, D.*; Wu, C.; Li, P.*, Synergistic effects of lewis bases and substituents on the electronic structure and reactivity of boryl radicals. Chemistry – A European Journal 2014, 20 (6), 1630-1637.

15. Vogt, M.; Wu, C.; Oliver, A. G.; Meyer, C. J.; Schneider, W. F.*; Ashfeld, B. L.*, Site specific carboxylation of abnormal anionic N-heterocyclic dicarbenes with CO2Chemical Communications 2013, 49, 11527-11529.

14. Cong, X.+; Tang, H.+Wu, C.*; Zeng, X.*, Role of Mono-N-protected Amino Acid Ligands in Palladium(II)-Catalyzed Dehydrogenative Heck Reactions of Electron-Deficient (Hetero)arenes: Experimental and Computational Studies. Organometallics 201332 (21), 6565-6575.

13. Vogt, M.; Bennett, J. E.; Huang, Y.; Wu, C.; Schneider, W. F.*; Brennecke, J. F.*; Ashfeld, B. L.*, Solid-State Covalent Capture of CO2 by Using N-Heterocyclic Carbenes. Chemistry – A European Journal 2013, 19 (34), 11134-11138.

12. Tang, H.; Wu, C.*, Reactivity of Azole Anions with CO2 from the DFT Perspective.  ChemSusChem  2013, 6 (6), 1050-1056. [唑类含氮杂环的离子液体最多1:1化学计量的与CO2化学成键,对比了与SO2的作用]

11. McEwen, J. S.; Bray, J. M.; Wu, C.; Schneider, W. F.*, How low can you go? Minimum energy pathways for O2 dissociation on Pt(111). Physical Chemistry Chemical Physics 2012, 14 (48), 16677-16685.

10. Wu, C.; Senftle, T. P.; Schneider, W. F.*, First-principles-guided design of ionic liquids for CO2 capture. Physical Chemistry Chemical Physics 2012, 14 (38), 13163-13170.

9. Wu, C.; Schmidt, D. J.; Wolverton, C.; Schneider, W. F.*, Accurate coverage-dependence incorporated into first-principles kinetic models: Catalytic NO oxidation on Pt(111). Journal of Catalysis 2012, 286 (7), 88-94. [本研究的结论也可以用于解释严重两极分化等社会现象,参见: 1% 99%]

8. Li, H.; Wu, C.; Malinin, S. V.; Tretiak, S.*; Chernyak, V. Y.*, Exciton Scattering on Symmetric Branching Centers in Conjugated Molecules. Journal of Physical Chemistry B 2011, 115 (18), 5465-5475.

7. Li, H.; Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Excited States of Donor and Acceptor Substituted Conjugated Oligomers: A Perspective from the Exciton Scattering Approach. Journal of Physical Chemistry Letters 2010, 1 (23), 3396-3400.

6. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for branched conjugated molecules and complexes. III. Applications. Journal of Chemical Physics 2008, 129 (17), 174113.

5. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for branched conjugated molecules and complexes. II. Extraction of the exciton scattering parameters from quantum-chemical calculations. Journal of Chemical Physics 2008, 129 (17), 174112.

4. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering approach for branched conjugated molecules and complexes. I. Formalism. Journal of Chemical Physics 2008, 129 (17), 174111. [文章4(理论),5(实现),6(应用)构成一个系列,特别是从跃迁能量的角度,系统地讨论激发子散射的理论及其实现方法。该系列的第四篇(本人未参与)讨论了跃迁强度及偶极等的定量实现。]

3. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Multiscale modeling of electronic excitations in branched conjugated molecules using an exciton scattering approach. Physical Review Letters 2008, 100 (5), 057405. [讨论如何定量地实现激发子散射方法]

2. Wu, C.; Tretiak, S.*; Chernyak, V. Y.*, Excited states and optical response of a donor-acceptor substituted polyene: A TD-DFT study. Chemical Physics Letters 2007, 433 (4-6), 305-311. [本文的亮点:讨论了B3LYP方法在处理共轭体系的局限性]

1. Wu, C.; Malinin, S.; Tretiak, S.*; Chernyak, V. Y.*, Exciton scattering and localization in branched dendrimeric structures.Nature Physics 2006, 2 (9), 631-635. [Chernyak首次提出激发子散射概念,定性地描述该概念。核心的创新:将粒子在一维势阱模型与散射理论联系起来,简洁地解释复杂枝状共轭体系的激发态电子结构。当然这个想法并不局限于处理电子激发态,也可以应用到其他适合的体系。相关但并不准确的解读:Exciton dynamics: Simplifying organic complexity综述参见33号文章]