论文和报告

代表性论文

  1. Huang L, Chen D. Xie D* et al., Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron. Nature Materials. 2023. doi.org/10.1038/s41563-023-01537-w
  2. D. Xie*, R. Zhang, X. Dai, Z. Nie, X. Wang, E. Ma, J. Li, Z. Shan*. Long-distance interface diffusion induced non-volume-conserved deformation in self-supported submicron-sized aluminum pillars, Acta Mater. 255 (2023) 119092.
  3. Nie Z-Y, Sato Y, Ogata S, Duarte MJ, Dehm G, Li J, Ma E, Xie D-G*, Shan Z-W. Ultralong one-dimensional plastic zone created in aluminum underneath a nanoscale indent. Acta Mater. 2022;232:117944.
  4. Xie, D.-G., L. Wan, and Z.-W. Shan, Hydrogen enhanced cracking via dynamic formation of grain boundary inside aluminium crystal. Corrosion Science, 2021. 183: p. 109307.
  5. Qin, Y., Z. Nie, C. Ma, L. Huang, Y. Yang, Q. Fu, W. He, and D. Xie*, Simple nanoindentation-based method for determining linear thermal expansion coefficients of micro-scale materials. Journal of Materials Research, 2020. 35(23): p. 3202-3209.
  6. Xie, D.-G., Zhang, R.-R., Nie, Z.-Y., Li, J., Ma, E., Li, J. & Shan, Z.-W. Deformation mechanism maps for sub-micron sized aluminum. Acta Mater. 2020. 188: p. 570-578.
  7. Xie D-G, Nie Z-Y, Shinzato S, Yang Y-Q, Liu F-X, Ogata S, Li J, Ma E, Shan Z-W. Controlled growth of single-crystalline metal nanowires via thermomigration across a nanoscale junction. Nature Communications, 2019, 10 (1)4478.
  8. 解德刚 . 氢与金属的微观交互作用研究进展. 中国材料进展 【特约专栏】 37, 055-063 (2018).
  9. Li M, Xie D-G, Ma E, Li J, Zhang X-X, Shan Z-W. Effect of hydrogen on the integrity of aluminium–oxide interface at elevated temperatures. Nature Communications 8, 14564 (2017).
  10. Xie D, et al. Hydrogenated vacancies lock dislocations in aluminium. Nature Communications 7, 13341 (2016). (IDSEB2CY
  11. Xie D, Wang Z, Sun J, et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface[J]. Nature Materials, 2015, 14 (9): 899-903. (IDSCP9CT)
  12. Zhang LQ*, Wang YC*, Xie DG*, et al. In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode[J]. RSC Advances, 2016, 6 (14): 11441-11445.
  13. Wang Y, Xie D, Ning X, et al. Thermal treatment-induced ductile-to-brittle transition of submicron-sized Si pillars fabricated by focused ion beam[J]. Applied Physics Letters, 2015, 106 (8): 081905.
  14. Xie D, Li W. A novel simple approach to preparation of superhydrophobic surfaces of aluminum alloys[J]. Applied Surface Science, 2011, 258 (3): 1004-1007.

部分会议报告

  1. In situ quantitative environmental TEM tests on hydrogen-dislocation interaction in Al and Fe, The 20th International Microscopyh Congress, 10-15 September, 2023, Busan, Korea (Invited Speaker)
  2. In situ study of hydrogen-induced cavity/blister nucleation and growth at metal/oxide interface, The 20th International Microscopyh Congress, 10-15 September, 2023, Busan, Korea (Invited Speaker)
  3. 铝在微纳米尺度的高温变形行为,中国微米纳米技术学会微纳结构表征创新论坛(2023),2023724-26日,兰州(邀请报告
  4. 用环境透射电镜原位定量研究氢对金属位错行为的影响,中国材料大会,202377-10日,深圳。(邀请报告
  5. Hydrogen-dislocation interactions in Al and Fe revealed by in situ ETEM quantitative tests,第六届材料微结构与性能学术会议,2023519-21日,杭州(邀请报告
  6. Hydrogen-dislocation interactiona in Al and Fe Rrevealed by in situ ETEM quantitative tests, 2023 International Workshop on Materials Behavior at Micro- and Nano-Scale, May 9-12, 2023, Xi’an
  7. In-situ electron microscopy for hydrogen effect on dislocation motion and cracking in metals,第三届汽车EVI及高强度钢氢脆国际会议,2023419-21,重庆(邀请报告
  8. Environmental Attack in Metals Revealed by in Situ ETEM, The 10th Pacific Rim International Conference on Advanced Materials and Processing (PRICM10), August 18-22, 2019 in Xi'an. (邀请报告)
  9. Hydrogen-dislocation interaction in Al and Fe revisited by quantitative mechanical tests inside TEM, TMS2019,10-14 Mar 2019, San Antonio (邀请报告)
  10. Deformation mechanism maps for submicron aluminum at elevated temperatures, TMS2019,10-14 Mar 2019, San Antonio
  11. New insights into thermomechanical and chemomechanical problems via in situ quantitative nanomechanical TEMNTNU, invited by Prof. Afrooz Barnoush, 7 June 2018, Trondheim, Norway
  12. “Thermomechanical and Chemomechanical Experiments by in situ TEM: a Case Study on Hydrogen Embrittlement/Damage”, Oxford University, invited by Prof. Sergio Lozano-Perez, 25 May, 2018, Oxford, UK
  13. The role of hydrogenated vacancies on modulus, dislocation behavior and interfacial damage in pure aluminum, 3rd International Conference on Metals & Hydrogen, 29-31 May 2018, Ghent, Belgium
  14. “用环境透射电子显微镜原位研究氢和位错及界面的交互作用”, 第一届中国汽车EVI及高强度钢氢致延迟断裂会议,1214-15日,2017,北京(邀请报告
  15. Xie D.-G., Hydrogen effects on dislocation motion revisited by quantitative mechanical tests inside TEM, 2016 International Hydrogen Conference, Moran, WY, USA, Sep. 11-14, 2016

专利

[1]    Shan Z., Chen L., Li, M., Xie D., Liu B.; Zhang P., Wan J. ‘An efficient method and automatic instrument to fabricate tungsten tips.’ 2012, Invention Patent, Patent Number: CN 201210044381

[2]    Shan Z., Li M., Xie D. ‘A quantitative nanoheater for electron microscopy.’ 2014, Invention Patent, Patent Number: 201410542592.2

[3]    Shan Z., Li M., Xie D. ‘A quantitative heating device for in situ electron microscopy.’ 2014, Invention Patent, Patent Number: 201510437346.2

[4]    Shan Z., Li M., Xie D. ‘A quantitative thermomechanical tensile device for in situ electron microscopy.’ 2015, Invention Patent, Patent Number: 201510710901.4