矩阵分析

矩阵分析(研究生课程)

上课时间:2019年春学期1-9周,每周一5、6节课,周三, 9、10节课

上课地点:中2-3222

参考教材:

1. Roger A. Horn and Charles R. Johnson, Matrix Analysis, Posts & Telecom Press, second edition.

2. Gene H. Golub and Charles F. Van Loan, Matrix Computations.

3. Lloyd N. Trefethen and David Bau, Numerical Linear Algebra.

4. 潘建瑜,矩阵计算讲义

 

课程资料

1. Basic Concept in Matrix Analysis

 

以往课程

数学物理方程(新能源61,能动A61,能动A62,能动A63,能动C61)

上课时间:2018年秋学期9-16周,每周一,1、2节课、周三,9、10节课

教材:申建中,刘峰,数学物理方程,西安交通大学出版社,第二版,2018年。

参考书:

1. 李大潜,秦铁虎,物理学与偏微分方程,第二版(上下册),高等教育出版社,2005。

2. 谷超豪,李大潜,陈恕行,数学物理方程(第二版)高等教育出版社,2002。

3. 齐民友,吴方同,广义函数与数学物理方程(第2版)高等教育出版社,1999。

4. Lawrence C. Evans,Partial Differential Equations , Graduate Studies in Mathematics Volume 19, American Mathematical Society, 1998.

 

 

非标准有限元方法的最新发展及应用(研究生课程)

开课时间:2018年秋学期10-17周

课程内容简介:本课程以介绍非标准有限元方法的最新发展及其在力学、流体动力学中的应用为主,使学生掌握非标准有限元方法的设计、构造原理,了解非标准有限元发展的最新成果以及未来发展趋势。课程主要内容包括:非协调有限元及其在固体力学中的应用,混合有限元方法及其在固体、流体力学中的应用,间断Galerkin(DG)方法的构造、误差分析,扩展有限元及其在界面问题中的应用,杂交DG方法和弱Galerkin方法的构造,有限元方法之间的关系,自适应有限元方法,有限元方法在非线性固体、流体力学不等式问题中的应用。 

Course Name: Recent Advances in Non-Standard Finite Element Methods and their Applications

Introduction: The course mainly introduces recent advances in non-standard finite element methods and their applications on solid mechanics and fluid dynamics. After completing this course, students will understand how to design and construct the non-standard finite element to the problems in their own research, know the most recent results in this field and the trends in the future. The main content of this course includes: nonconforming finite element methods and applications on solid mechanics; mixed finite element methods, and applications on solid mechanics and fluid dynamics; discontinuous Galerkin (DG) methods; extended finite element method and applications on interface problem; hybrid DG methods and weak Galerkin methods, and their relationship; adaptive finite element methods; applications of FEMs on solving the inequality problems arising from nonlinear solid mechanics and fluid dynamics.

 

 

矩阵分析(研究生课程)

上课时间:2018年春学期1-9周,每周三、周四, 3、4节课

上课地点:主楼B205

参考教材:

1. Roger A. Horn and Charles R. Johnson, Matrix Analysis, Posts & Telecom Press, second edition.

2. Gene H. Golub and Charles F. Van Loan, Matrix Computations.

3. Lloyd N. Trefethen and David Bau, Numerical Linear Algebra.

 

 

复变函数(数学试验班51、52)

上课时间:2017年春学期1-16周,每周二、周四,3、4节课

教材:复变函数论,钟玉泉,高等教育出版,第四版。

参考书:

1. COMPLEX ANALYSIS,Princeton Lectures in Analysis,Elias M. Stein and Rami Shakarchi,PRINCETON UNIVERSITY PRESS

2. Visual Complex Analysis, Tristan Needham, CLARENDON PRESS, OXFORD

版权所有:西安交通大学 站点设计:网络信息中心 陕ICP备05001571号 IPhone版本下载 IPhone版本下载    Android版本下载 Android版本下载
欢迎您访问我们的网站,您是第 位访客
推荐分辨率1024*768以上 推荐浏览器IE7 Fifefox 以上