论文发表

 2020年

[29] Gao L, Dong Q, Bai S, Liang S, Hu C, Qiu J. Graphene oxide-tuned MoS2 with expanded interlayer for efficient hybrid capacitive deionization. ACS Sustain Chem Eng 2020, 8(26): 9690-9697 (IF: 6.97)

 

[28] 高利军, 白思林, 梁苏岑, 穆野, 董强, 胡超. ZIF衍生多孔碳纳米纤维用于高效电容去离子的研究. 化工学报  2020, 71(6): 2760-2767. (封面文章

化工学报官方公众号推送:mp.weixin.qq.com/s

     

[27]  Hu C, Liang S, Bai S, Yang J, Zhang X, Qiu J. Silica-assisted fabrication of N-doped porous carbon for efficient electrocatalytic nitrogen fixation. ChemCatChem 2020, 12, 3453-3458. (IF: 4.50)

 

[26] Man Wang, Juan Yang, Siyu Liu, Chao Hu, Jieshan Qiu. Dual Hybrid Effect Endowing Nickel Cobalt Sulfides with Enhanced Cycling Stability for Asymmetrical Supercapacitors, ACS Applied Energy Materials 2020, DOI: 10.1021/acsaem.0c01043.

 

[25] Juan Yang, Siyu Liu, Man Wang, Chao Hu, Jieshan Qiu. Fabrication of Porous Carbon Nanosheets with the Engineered Graphitic Structure for Electrochemical Supercapacitors, Industrial & Engineering Chemistry Research 2020, in press, DOI: 10.1021/acs.iecr.0c02394. 

 

[24]    Yang J, Jia K, Wang M, Liu S, Hu C, Zhang K, et al. Fabrication of nitrogen-doped porous graphene hybrid nanosheets from metal-organic frameworks for lithium-ion batteries. Nanotechnology 2020; 31(14):145402. (IF: 3.40)

 

 

[23]    Wang M, Yang J, Jia K, Liu S, Hu C, Qiu J. Boosting Supercapacitor Performance of Graphene by Coupling with Nitrogen-Doped Hollow Carbon Frameworks. Chem Eur J. 2020. DOI: 10.1002/chem.201904701 (IF: 4.77) 

 

  

 

[22]    Wang M, Yang J, Liu S, Li M, Hu C, Qiu J. Nitrogen-doped hierarchically porous carbon nanosheets derived from polymer/graphene oxide hydrogels for high-performance supercapacitors. J Colloid Interface Sci. 2020; 560:69-76.(IF: 5.93)

 

 2019年

[21]   Hu C, Bai S, Gao L, Liang S, Yang J, Cheng S-D, et al. Porosity-Induced High Selectivity for CO2 Electroreduction to CO on Fe-Doped ZIF-Derived Carbon Catalysts. ACS Catal. 2019, DOI:10.1021/acscatal.9b03175. (IF: 12.34)

 

[20]   Hu C, Li M, Qiu J, Sun Y-P. Design and fabrication of carbon dots for energy conversion and storage. Chem Soc Rev. 2019; 48(8):2315-37. (IF: 40.182)

         封底文章:https://pubs.rsc.org/en/content/articlelanding/2019/cs/c9cs90035g#!divAbstract

         校主页推送:http://news.xjtu.edu.cn/info/1033/112510.htm

 

 

 

[19]   Hu C, Mu Y, Bai S, Yang J, Gao L, Cheng S-D, et al. Polyvinyl pyrrolidone mediated fabrication of Fe, N-codoped porous carbon sheets for efficient electrocatalytic CO2 reduction. Carbon. 2019; 153: 609-16. (IF: 7.466)

 

 [18]   Wang M, Yang J, Liu S, Hu C, Li S, Qiu J. Polyethyleneimine-Mediated Fabrication of Two-Dimensional Cobalt Sulfide/Graphene Hybrid Nanosheets for High-Performance Supercapacitors. ACS Appl Mater Interfaces. 2019; 11(29): 26235-42. (IF: 8.456)

 

[17]   Hu C, Yang J, Yu C, Li S, Mu Y, Bai S, et al. Multilevel coupled hybrids made of porous cobalt oxides and graphene for high-performance lithium storage. Chem Eur J. 2019; 25(21):5527-33. (IF: 5.160,热点论文)

 

 

[16]   胡超, 穆野, 李明宇, 邱介山. 纳米碳点的制备与应用研究进展. 物理化学学报. 2019; 35(6):572-90. (IF: 1.05)

         主编点评推荐:http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201809022

      

2019年之前

 [15]   Yang J, Yu C, Hu C, Wang M, Li S, Huang H, et al. Surface-Confined Fabrication of Ultrathin Nickel Cobalt-Layered Double Hydroxide Nanosheets for High-Performance Supercapacitors. Adv Funct Mater. 2018; 28(44):1803272.

[14]   Song F, Bai L, Moysiadou A, Lee S, Hu C, Liardet L, et al. Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. J Am Chem Soc. 2018; 140(25):7748-59.

[13]   Li M, Yu C, Hu C, Zhao C, Zhang M, Ding Y, et al. Template-free synthesis of interconnected carbon nanosheets via cross-linking coupled with annealing for high-efficiency triiodide reduction. Green Chem. 2018; 20(1):250-4.

[12]   Li M, Yu C, Hu C, Yang W, Zhao C, Wang S, et al. Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield. Chem Eng J. 2017; 320:570-5.

[11]   Wang Y, Wu WT, Wu MB, Hu C, Qiu JS. Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions. New Carbon Mater. 2015; 30(6):550-9.

[10]   Liang Y, Lu C, Ding D, Zhao M, Wang D, Hu C, et al. Capping Nanoparticles with Graphene Quantum Dots for Enhanced Thermoelectric Performance. Chem Sci. 2015; 6(7):4103-8.

[9]  Li M, Hu C, Yu C, Wang S, Zhang P, Qiu J. Organic amine-grafted carbon quantum dots with tailored surface and enhanced photoluminescence properties. Carbon. 2015; 91:291-7.

[8]  Hu C, Yu C, Li M, Wang X, Dong Q, Wang G, et al. Nitrogen-doped carbon dots decorated on graphene: a novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction. Chem Commun. 2015; 51(16):3419-22.

[7]  Fan X, Yu C, Yang J, Ling Z, Hu C, Zhang M, et al. A Layered-Nanospace-Confinement Strategy for the Synthesis of Two-Dimensional Porous Carbon Nanosheets for High-Rate Performance Supercapacitors. Adv Energy Mater. 2015; 5(7):1401761.

[6]  Zhang P, Li B, Zhao Z, Yu C, Hu C, Wu S, et al. Furfural-Induced Hydrothermal Synthesis of ZnO@C Gemel Hexagonal Microrods with Enhanced Photocatalytic Activity and Stability. ACS Appl Mater Interfaces. 2014; 6(11):8560-6.

[5]  Wu M, Wang Y, Wu W, Hu C, Wang X, Zheng J, et al. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon. 2014; 78:480-9.

[4]  Hu C, Yu C, Li M, Wang X, Yang J, Zhao Z, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(II) detection. Small. 2014; 10(23):4926-33.

[3]  Hu C, Yu C, Li M, Fan X, Yang J, Zhang P, et al. Preparation of Single-Walled Carbon Nanotubes from Fullerene Waste Soot. ACS Sustain Chem Eng. 2014; 2(1):14-8.

[2]  Li ZT, Hu C, Yu C, Adams H, Qiu JS. Preparation and mechanical properties of highly-aligned carbon micro-trees. Carbon. 2010; 48(7):1926-31.

[1] Li ZT, Hu C, Yu C, Qiu JS. Synthesis and characterization of carbon-encapsulated magnetic nanoparticles via arc-plasma assisted CVD. Journal Nanoscience and Nanotechnology. 2009; 9(12):7473-6.