基本信息

 

王晨希,副教授

2011.09—2015.07   西安交通大学(211/985/双一流)    机械工程及自动化,工学学士,保研

2015.09—2020.09   西安交通大学(211/985/双一流)    机械工程,硕博连读,导师:陈雪峰/张兴武 教授

2020.10—2024.03   西安交通大学机械学院  助理教授  合作导师:陈雪峰 教授

2024.03至今    西安交通大学机械学院  副教授

 

2022陕西省科协青年人才托举计划
2022年第11上银优博论文佳作奖

发表SCI论文30余篇,国家发明专利8出版学术专著1

 

欢迎机械、力学、能动等相关专业学生报考

联系方式

单位:西安交通大学  机械学院  航天制造与信息工程研究所
地址:创新港高端装备研究院2号巨构,2-5171办公室
邮箱:wangchenxi@xjtu.edu.cn

 

站点计数器

研究领域

主持青年基金、博后特助、陕西省青托等科研项目8,参与重大项目3

 

研究方向:

一、以方法分类:

(1)智能控制:强化学习、自适应控制

(2)智能诊断:迁移学习、PINN、大数据驱动的健康状态监测

 

二、以对象分类:

(1)火箭发动机:状态监测和故障诊断——迁移学习、PINN(合作单位:航天六院11所)

(2)在轨航天器:空间威胁识别和轨迹预测——视觉检测(合作单位:航天五院钱学森实验室)

(3)卫星编队:动力学建模与轨道姿态控制——自适应控制、强化学习(合作单位:航天五院钱学森实验室)

(4)卫星天线:在轨组装和在轨制造、太空3D打印——动力学分析、视觉检测(合作单位:航天五院504所)

(5)新一代XX直升机:系统辨识和振动主动控制——强化学习、自适应控制(合作单位:中航发608所)

(6)航天增材制造:工艺参数优化、过程质量监测、智能反馈控制——视觉检测、迁移学习、强化学习、自适应控制(三院31所)

 

[1]    Wang C, Zhang Y, Zhao Z, et al. Dynamic model-assisted transferable network for liquid rocket engine fault diagnosis using limited fault samples[J]. Reliability Engineering & System Safety, 2024, 243: 109837.
[2]    Wang C, Zhang X, Zhai Z, et al. Parametric prediction model and periodic fluctuation interpretation of unidirectional CFRP edge milling force[J]. Composite Structures, 2022, 287: 115387.
[3]    Wang C, Zhang X, Liu Y, et al. Stiffness variation method for milling chatter suppression via piezoelectric stack actuators[J]. International Journal of Machine Tools and Manufacture, 2018, 124: 53-66. 
[4]    Wang C, Zhang X, Liu J, et al. Adaptive vibration reshaping based milling chatter suppression[J]. International Journal of Machine Tools and Manufacture, 2019, 141: 30-35. 
[5]    Wang C, Zhang X, Liu J, et al. Multi harmonic and random stiffness excitation for milling chatter suppression[J]. Mechanical Systems and Signal Processing, 2019, 120: 777-792. 
[6]    Wang C, Zhang X, Qiao B, et al. Dynamic Force Identification in Peripheral Milling Based on CGLS Using Filtered Acceleration Signals and Averaged Transfer Functions[J]. ASME-Journal of Manufacturing Science and Engineering, 2019, 141(6): 064501. 
[7]    Wang C, Zhang X, Chen X, et al. Time-Varying Chatter Frequency Characteristics in Thin-Walled Workpiece Milling With B-Spline Wavelet on Interval Finite Element Method[J]. ASME-Journal of Manufacturing Science and Engineering, 2019, 141(5): 051008. 
[8]    Wang C, Qiao B, Zhang X, et al. TPA and RCSA based frequency response function modelling for cutting forces compensation[J]. Journal of Sound and Vibration, 2019, 456: 272-288. 
[9]    Wang C, Zhang X, Yan R, et al. Multi harmonic spindle speed variation for milling chatter suppression and parameters optimization[J]. Precision Engineering, 2019, 55: 268-274. 
[10]    Wang C, Liu Q, Zhang X. Receptance coupling substructure analysis based FRF modeling for multi-segment shell with nonlinear joint interface[J]. Journal of Vibration and Control, 2023: 10775463231187020.
[11]    Wang C, Zhang Y, Hu J. Adaptive milling chatter identification based on sparse dictionary considering noise estimation and critical bandwidth analysis[J]. Journal of Manufacturing Processes, 2023, 106: 328-337.
[12]    Wang C, Zhang X, Cao H, et al. Milling stability prediction and adaptive chatter suppression considering helix angle and bending[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9-12): 3665-3677. 
[13]    Wang C, Zhang X, Chen X. Real time FFT identification based time-varying chatter frequency mitigation in thin-wall workpiece milling[J]. The International Journal of Advanced Manufacturing Technology, 2022: 1-11.
[14]    Wang C, Zhang X, Qiao B, et al. Milling force identification from acceleration signals using regularization method based on TSVD in peripheral milling[C]. Procedia CIRP, 2018, 77: 18-21. (国际会议)
[15]    Wang C, Zhang X, Chen X, et al. Weak chatter detection in milling based on sparse dictionary[C]. Procedia Manufacturing, 2020, 48: 839-843. (国际会议)
[16]    Zhao Z, Liu W, Ren J, Wang C*, et al. Uncertainty-driven trustworthy defect detection for high-resolution powder bed images in selective laser melting[J]. Journal of Manufacturing Systems, 2024, 72: 59-73.
[17]    Zhang X, Ma R, Zhao Y, Wang C*, et al. Differentiable sampling based efficient architecture search for automatic fault diagnosis[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107214.
[18]    Zhang X, Zhao Y, Yu X, Ma R, Wang C*, et al. Weighted domain separation based open set fault diagnosis[J]. Reliability Engineering & System Safety, 2023, 239: 109518.
[19]    Zhang X, Liu B, Ma R, Wan H, Wang C*, et al. The multi-channel signals based tensor sparse representation classification method for fault diagnosis of high-speed train[J]. Structural Health Monitoring, 2024: 14759217231220220.
[20]    Xu J, Wang C, Feng P, et al. Meso-scale cracks initiation of Nomex honeycomb composites in orthogonal cutting with a straight blade cutter[J]. Composites Science and Technology, 2023, 233: 109914.
[21]    Zhang X, Wang C, Gao R, et al. A novel hybrid error criterion-based active control method for on-line milling vibration suppression with piezoelectric actuators and sensors[J]. Sensors, 2016, 16(1): 68. 
[22]    Zhang X, Wang C, Liu J, et al. Robust active control based milling chatter suppression with perturbation model via piezoelectric stack actuators[J]. Mechanical Systems and Signal Processing, 2019, 120: 808-835. 
[23]    Liu J, Zhang X, Wang C, et al. Active Vibration Control Technology in China[J]. IEEE Instrumentation & Measurement Magazine, 2022, 25(2): 36-44.
[24]    Pan X, Zhou L, Wang C, et al. Microstructure and residual stress modulation of 7075 aluminum alloy for improving fatigue performance by laser shock peening[J]. International Journal of Machine Tools and Manufacture, 2023, 184: 103979.
[25]    Xu J, Deng Y, Wang C, et al. Numerical model of unidirectional CFRP in machining: Development of an amended friction model[J]. Composite Structures, 2021,256:113075.
[26]    Geng J, Zhang X, Wang C, et al. Predicting dynamic response of stiffened-plate composite structures in a wide-frequency domain based on Composite B-spline Wavelet Elements Method (CBWEM)[J]. International Journal of Mechanical Sciences, 2018, 144: 708-722. 
[27]    Qiao B, Zhang X, Wang C, et al. Sparse regularization for force identification using dictionaries[J]. Journal of Sound and Vibration, 2016, 368: 71-86. 
[28]    Chen T, Zhang X, Wang C, et al. Domain adversarial neural network-based nonlinear system identification for helicopter transmission system[J]. Nonlinear Dynamics, 2023: 1-17.
[29]    Yang D, Yang Z, Wang C, et al. Micromechanical Modeling of Cyclic Elasto-viscoplastic Behavior of Unidirectional Metal Matrix Composites under Elevated Temperature[J]. Mechanics of Advanced Materials and Structures, 2021.
[30]    Yang D, Yang Z, Wang C, et al. Micromechanical modeling of cyclic elasto-viscoplastic behavior of unidirectional metal matrix composites under elevated temperature[J]. Mechanics of Advanced Materials and Structures, 2022, 29(22): 3285-3300.
[31]    He Y, Zhang X, Zhang T, Wang C, et al. A wavelet immersed boundary method for two-variable coupled fluid-structure interactions[J]. Applied Mathematics and Computation, 2021, 405: 126243.
[32]    Yang D, Sun Y, Yang Z, Wang C, et al. Multiscale modeling of unidirectional composites with interfacial debonding using molecular dynamics and micromechanics[J]. Composites Part B: Engineering, 2021, 219: 108893.
[33]    Geng J, Zhang X, Chen X, Wang C, et al. Mid-frequency dynamic characteristics prediction of thin plate based on B-spline wavelet on interval finite element method[J]. Applied Mathematical Modelling, 2018, 62: 526-541.
[34]    Zhang Q, Wang J, Liu J, Li B, Wang C, et al. Instantaneous multi-frequency tracker for nonstationary vibration signal in mechanical system[J]. Mechanical Systems and Signal Processing, 2023, 203: 110695.
[35]    He Y, Zhang X, Zhang T, Wang C, et al. A Hydrodynamic/Acoustic Splitting Method with Fluid-Structure Feedback for Flow-induced Noise[C], AIAA SCITECH 2022 Forum. 2022: 0414.(国际会议)
[36]    赵志斌, 王晨希, 张兴武, 等. 激光粉末床熔融增材制造过程智能监控研究进展与挑战[J]. 机械工程学报, 2023, 59(19): 253-276.
[37]    陈雪峰,王晨希,张兴武,刘金鑫. 基于刚度变化的铣削颤振抑制方法及铣削颤振优化系统 (专利号:ZL201710598365.2,已授权)
[38]    陈雪峰,王晨希,张兴武,杨理凯. 基于铣刀螺旋角和弯曲效应的铣削优化方法及优化系统(专利号:ZL201710742399.4,已授权)
[39]    陈雪峰,王晨希,张兴武,刘金鑫,曹宏瑞. 一种基于多频变转速的铣削颤振抑制方法(专利号:ZL201811022089.6,已授权)
[40]    陈雪峰,王晨希,乔百杰,张兴武. 基于共轭梯度最小二乘算法的铣削力识别方法及识别系统(专利号:ZL201810007722.8,已授权)
[41]    张兴武,王晨希,刘金鑫,陈雪峰. 一种自适应振动频谱塑形铣削颤振抑制方法(专利号:ZL201910078104.7,已授权)
[42]    张兴武,陈雪峰,王晨希,曹宏瑞. 一种铣削加工振动的在线主动抑制方法(专利号:ZL201510768344.1,已授权)
[43]    张兴武,何燕飞,张涛,王晨希,耿佳,陈雪峰. 一种舰艇壳体的流噪声预测方法(专利号:ZL202110764648.6,已授权)
[44]    李明,张鑫海,宋志平,耿佳,刘金鑫,王晨希,丁宝庆,陈雪峰. 一种航空发动机加速控制计划的融合控制方法(专利号:ZL 202110659024.8,已授权)
[45]    张兴武,刘金鑫,王晨希,严如强. 智能主轴高速铣削颤振抑制[M]. 科学出版社, 2022(专著)