40. J. Wu; L.L. Tian; H.M. Duan; Y.H. Cheng; L. Shi*. Unveiling the working mechanism of g-C3N4 as a protection layer for lithium and sodium metal anode. ACS Appl. Mater. Interfaces. 2021. Accepted.



39. L.L. Tian; J. Wu; Y.S. Gao; Y.H. Cheng; L. Shi*. Two-dimensional aromatic polymer as a promising anchoring material for lithium-sulfur batteries. Appl. Surf. Sci. 2022. 571, 151226.


38. Y.D. Pan; J.S. Zhang; Z.L. Zhao; L. Shi; B.K. Wu; L. Zeng*. Iron-doped metal-organic framework with enhanced oxygen evolution reaction activity for overall water splitting. Int. J. Hydrogen Energy. 2021. Accepted.

37. L. L. Tian; H. M. Duan; J. M. Luo; Y. H. Cheng; L. Shi*. Density Functional Theory and Molecular Dynamics Simulations of Nanoporous Grapheen Membranes for Hydrogen Separation. ACS Appl. Nano. Mater. 2021. Accepted.


36. Y. X.  Lv; L. Shi; J. W. Shi*; Y. J. Zhang; D. D. Ma; Y. H. Cheng. In-doped LiCa2.98MgV3O12 rare-earth-free phosphor with a high photoluminescence quantum yield of 67.4%. J. Am. Ceram. Soc. 2021, 00, 1-11. 

35. Z. X. Ying; Y. S. Gao; Y. P. Meng; Y. H. Cheng; L. Shi*. Influence of stacking towards the aqueous proton penetration behavior across two-dimensional graphtetrayne. Nanoscale 2021,13, 5757-5764


34. L. Shi*; Z. X. Ying; A. Xu; Y. H. Cheng. Unraveling the hydroxide ion transportation mechanism along the surface of two-dimensional layered double hydroxide nanosheets. J. Phys. Chem. C 2021,125, 1240–1248.

33. Y. X. Lv; Y. J. Zhang; L. Shi; J. W. Shi*; J. Li; Z. H. Li; X. Ji; D. D. Ma; Y. H. Cheng; C. M. Niu. Role of oxygen vacancy in rare-earth-free LiCa3Mg(VO4)3 phosphor: Enhancing photoluminescence by heat-treatment in oxygen flow. J. Mater. Sci. Technol. 2021, 79, 123-132.




32. A. Xu*; S. Tao, L. Shi, H. D. Xi. Transport and deposition of dilute microparticles in turbulent thermal convection. Phys. Fluids 2020, 32(8), 083301.

31. L. Shi*; Z.X. Ying; A.Xu; Y.H. Cheng. Unraveling the water-mediated proton conduction mechanism along the surface of graphene oxide. Chem. Mater. 2020, 32, 6062-6069.


Highlights: 西安交通大学新闻网


30. L.Y. Hu#; X. Zeng#; X.Q. Wei; H.J. Wang; Y. Wu; W.L. Gu*; L. Shi*; C.Z. Zhu*. Interface engineering  for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe Heterostructures. Appl. Cata. B 2020, 273, 119014. (*Co-corresponding author)

29. F. Shen#; K. Wang#; Y. Yin; L. Shi; D. Zeng; X. Han*. PAN/PI functional double-layer coating for dendrite-free lithium metal anode. J. Mater. Chem. A 2020, 8, 6183-6189.

28. L. Shi*; Z.X. Ying; A. Xu; Y.H. Cheng. Anomalous proton conduction behavior across nanoporous two-dimensional conjugated aromatic polymer membrane. Phys. Chem. Chem. Phys. 2020, 22, 2978-2985.




27. A. Xu; L. Shi; H.D. Xi*. Statistics of temperature and thermal energy dissipation rate in low-Prandtl number turbulent thermal convection. Phys. Fluids 2019, 31(12), 12501.

26. L. Shi*; A. Xu; Y.H. Cheng. Ether-group-mediated aqueous proton selective transfer across graphene-embeded 18-crown-6 ether pores. J. Phys. Chem. C 2019, 123, 27429-27435.

25. A. Xu*; L. Shi; H.D. Xi.  Lattice Boltzmann simulations of three-dimensional thermal convective flows at hgih Rayleigh number. Int. J. Heat Mass Transf. 2019, 140, 359-370.

24. L. Shi; A. Xu; D. Pan; T.S. Zhao*. Aqueous proton-selective conduction across two-dimensional graphyneNat. Commun2019, 10, 1165.




23.A. Xu; L. Shi; L. Zeng; T.S. Zhao*First-principle investigations of nitrogen-, boron-, phosphorus-doped graphite electrodes for vanadium redox flow batteries. Electrochim. Acta 2019, 300, 389-395. 




22. L. Shi; A. Xu; T.S. Zhao*. Three-dimensional carbon-honeycomb as nano-porous lithium and sodium deposition scaffloldJ. Phys. Chem. C 2018122(37), 21262-21268.

21. A. Xu; T.S. Zhao*; L. Shi; J.B. Xu. Lattice Boltzmann simulation of mass transfer coefficients for chemically reactive flows in porous media. J. Heat Transf.-Trans. ASME 2018140(5), 052601.

20. A. Xu; L. Shi; T.S. Zhao*. Lattice Boltzmann simulation of shear viscosity of suspensions contaning porous particlesInt. J. Heat Mass Transf. 2018166, 969-976.

19. A. Xu; L. Shi; T.S. Zhao*. Thermal effects on the sedimentation behavior of elliptical particles. Int. J. Heat Mass Transf. 2018126, 753-764.

18. G. Zhao#; L. Shi#; J.B. Xu; X.H. Yan; T.S. Zhao*. Role of phosphorus in nitrogen, phosphorus dual-doped ordered mesoporous carbon electrocatalyst for oxygen reduction reaction in alkaline mediaInt. J. Hydrogen Energy 201843(3), 1470-1478. (# Co-first author)




17. X.H. Yan; P. Gao; G. Zhao; L. Shi; J.B. Xu; T.S. Zhao*. Transport of highly concentrated fuel in direct methanol fuel cellsAppl. Therm. Eng. 2017126, 290-295.

16. P. Tan; H.R. Jiang; X.B. Zhu; L. An; C.Y. Jung; M.C. Wu; L. Shi; W. Shyy; T.S. Zhao*. Advances and challenges in lithium-air batteriesAppl. Energy 2017204, 780-806.

15. L. Shi; A. Xu; G.H. Chen; T.S. Zhao*. Theoretical understanding of mechanism of proton exchange membranes made of 2D crystals with ultrahigh selectivityJ. Phys. Chem. Lett. 2017, 8(18), 4354-4361.

14. A. Xu; L. Shi; T.S. Zhao*. Accelerated lattice Boltzmann simulation using GPU and OpenACC with data management. Int. J. Heat Mass Transf. 2017, 109, 577-588.

13. L. Shi; T.S. Zhao*. Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries. J. Mater. Chem. A 20175(8), 3735-3758. (ESI Highly Cited Paper)

12. L. Shi; A. Xu; T.S. Zhao*. First-principle investigations of the working mechanism of 2D h-BN as an interfacial layer for the anode of lithium metal batteriesACS Appl. Mater. Interfaces 20179(2), 1987-1994.




11. A. Xu; T.S. Zhao*; L. Shi; X.H. Yan. Three-dimensional lattice Boltzmann simulation of suspensions containing both micro- and nanoparticlesInt. J. Heat Fluid Flow 201663, 560-567. 

10. L. Shi; T.S. Zhao*; A. Xu; Z.H. Wei. Unraveling the catalytic mechanism of rutile RuO2 for the oxygen reduction reaction and oxygen evolution reaction in Li-O2 batteries. ACS Catal20166(9), 6285-6293.

9. X.H. Yan; T.S. Zhao*; L. An; G. Zhao; L. ShiA direct methanol-hydrogen peroxide fuel cell with a Prussian Blue cathode. Int. J. Hydrogen. Energy 201641(9), 5135-5140.

8. P. Tan#; L. Shi#; W. Shyy; T.S. Zhao*. Morphology of the discharge product in non-aqueous lithium-oxygen batteries: furrowed toroid particles correspond to a lower charge voltageEnergy Technol20164(3), 393-400. (Co-first author)

7. H.R. Jiang; T.S. Zhao*; L. Shi; P. Tan; L. An. First-principles study of nitrogen-, boron-doped graphene and co-doped graphene as the potential catalyst in nonaqueous Li-O2 batteries. J. Phys. Chem. C 2016120(12), 6612-6618.

6. L. Shi; A. Xu; T.S. Zhao*. RuO2 monolayer: A promising bifunctional catalytic material for the nonaqueous lithium-oxygen batteries. J. Phys. Chem. C 2016120(12), 6356-6362.

5. L. Shi; T.S. Zhao*; A. Xu; J.B. Xu. Ab initio prediction of a silicene and graphene heterostructure as an anode materail for Li- and Na-ion batteries. J. Mater. Chem. A 20164(42), 16377-16382.

4. L. Shi; T.S. Zhao*; A. Xu; J.B. Xu. Ab initio prediction of borophene as an extraodinary anode material exhibiting ultrafast directional sodium diffusion for sodium-based batteries. Sci. Bull201661(14), 1138-1144. (Cover Page) Highlighted by EurekAlert!




3. A. Xu; T.S. Zhao*; L. An; L. ShiA three-dimensional pseudo-potential-based lattice Boltzmann model for multiphase flows with large density ratio and variable surface tension. Int. J. Heat Fluid Flow 201556, 261-271.

2. L. Shi; A. Xu; T.S. Zhao*. Formation of Li3O4 nano particles in the discharge products of non-aqueous lithium-oxygen batteries leads to lower charge overvoltage. Phys. Chem. Chem. Phys. 201517(44), 29859-29866.

1. L. Shi; T.S. Zhao*. Why the charge overpotential in non-aqueous Li-O2 batteries is so high and exhibits different rising trends?. Sci. bull. 201560(2), 281-282.