Basic Information

Professor, Dr. Houzhang Tan

School of Energy and Power Engineering

Xi’an Jiaotong University

Xi’an, 710049, China

Fax: 0086 29 82668703

E-mail:tanhz@mail.xjtu.edu.cn
Major Area of Research Specialization:

Emission Control of Combustion;
Optimization of Coal Combustion in Power Plant;
Fluid Engineering in Power Plant.
Recent Research Project:
(1) Mechanism study on the layer crystallization slagging during the high alkali coal combustion
(2) The investigation on formation mechanism and emission factors of fine particles in coal combustion
(3) Study on the key technologies and applications for removing PM2.5 and Hg in power plant
(4) Study on the technologies for cement kiln with low emissions
Research Funding:
Principal investigation of contracts and grants totaling about 20 Million yuan (3 Million $)
Education

1981-1985             Bachelor in Power Engineering, Huazhong University of Science and Technology

1985-1988             Master in Fluid Machinery,  Huazhong University of Science and Technology

1995-1998             Ph.D in Thermal Engineering,  Xi’an Jiaotong University
2010-2011             Senior Visiting Scholar, University of Leeds, UK.
Houzhang Tan received a B.S. in Power Engineering from the Huazhong University of Science and Technology in 1985, an M.A.Sc. in Fluid Machinery from the Huazhong University of Science and Technology in 1988, and a Ph.D. in Thermal Engineering from the Xi’an Jiaotong University in 1998. He was the advanced researcher on coal combustion and fluid engineering in Xi’an Thermal Power Research Institute Co.,Ltd. from 1988-1995. He has undergone the postdoctor in Northwestern Polytechnical University from 1999-2000. In 2001 he joined the Department of Thermal Engineering in Xi’an Jiaotong University, as associate professor until now.

Scientific Research

Journal

 

2017

(1)    Wang Yibin, Tan Houzhang, Wang Xuebin, Cao Ruijie, Wei Bo. The condensation and thermodynamic characteristics of alkali compound vapors on wall during wheat straw combustion[J]. Fuel, 2017, 187: 33-42.
(2)    Wang Xuebin, Li Shuaishuai, Adeosun A, et al. Effect of potassium-doping and oxygen concentration on soot oxidation in O 2/CO 2 atmosphere: A kinetics study by thermogravimetric analysis[J]. Energy Conversion and Management, 2017.
(3)    Wang Yibin, Tan Houzhang, Dong Kun, Liu Hexin, Xiao Jiafan, Zhang Junjie. Study of ash fouling on the blade of induced fan in a 330MW coal-fired power plant with ultra-low pollutant emission[J]. Applied Thermal Engineering, 2017.
(4)    Wei Bo, Tan Houzhang, Wang Yibin, Wang Xuebin, Yang Tao, Ruan Renhui. Investigation of characteristics and Formation Mechanisms of deposits on different positions in full-scale boiler burning high alkali-coal[J]. Applied Thermal Engineering, 2017.
(5)    Tong Zixiang, Li Mingjia, He Yalin, Houzhang Tan. Simulation of real time particle deposition and removal processes on tubes by coupled numerical method[J]. Applied Energy, 2017, 185: 2181-2193.
 
2016
(1)    Niu Yanqing, Tan Houzhang, Hui Shi’en. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Progress in Energy and Combustion Science, 2016, 52: 1-61.
(2)    Wang X, Deng S, Tan H, et al. Synergetic effect of sewage sludge and biomass co-pyrolysis: a combined study in thermogravimetric analyzer and a fixed bed reactor[J]. Energy Conversion and Management, 2016, 118: 399-405.
(3)    Deng S, Wang X, Tan H, et al. Thermogravimetric study on the Co-combustion characteristics of oily sludge with plant biomass[J]. Thermochimica acta, 2016, 633: 69-76.
(4)    Wei B, Wang X, Tan H, et al. Effect of silicon–aluminum additives on ash fusion and ash mineral conversion of Xinjiang high-sodium coal[J]. Fuel, 2016, 181: 1224-1229.
(5)    Yang T, Wang X, Tan H, et al. Existence and release of sodium in Zhundong coal: effects of treating temperature and silica additives[J]. International Journal of Oil, Gas and Coal Technology, 2016, 11(1): 63-74.
(6)    Mikulčić H, Von Berg E, Vujanović M, et al. Numerical evaluation of different pulverized coal and solid recovered fuel co-firing modes inside a large-scale cement calciner[J]. Applied Energy, 2016, 184: 1292-1305.
(7)    Niu Y, Wang Z, Zhu Y, et al. Experimental evaluation of additives and K 2 O–SiO 2–Al 2 O 3 diagrams on high-temperature silicate melt-induced slagging during biomass combustion[J]. Fuel, 2016, 179: 52-59.
(8)    Zhao S, Duan Y, Tan H, et al. Migration and Emission Characteristics of Trace Elements in a 660 MW Coal-Fired Power Plant of China[J]. Energy & Fuels, 2016, 30(7): 5937-5944.
(9)    Wei B, Tan H, Wang X, et al. Investigation on ash deposition characteristics during Zhundong coal combustion[J]. Journal of the Energy Institute, 2016.
(10)Wang X, Wang Z, Dai Y, et al. Thermogravimetric study on the flue‐cured tobacco leaf pyrolysis and combustion using a distributed activation energy model[J]. Asia‐Pacific Journal of Chemical Engineering, 2016.
(11)Wang Y, Tan H, Wang X, et al. Study on extracting available salt from straw/woody biomass ashes and predicting its slagging/fouling tendency[J]. Journal of Cleaner Production, 2016.
(12)Zhao S, Duan Y, Wang C, et al. Migration Behavior of Trace Elements at a Coal-fired Power Plant with Different Boiler Loads[J]. Energy & Fuels, 2016.
 
2015
(1)    Wang X, Xu Z, Wei B, et al. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium: a study from ash evaporating to condensing[J]. Applied Thermal Engineering, 2015, 80: 150-159.
(2)    Wang X, Hu Z, Deng S, et al. Kinetics investigation on the combustion of biochar in O2/CO2 atmosphere[J]. Environmental Progress & Sustainable Energy, 2015, 34(3): 923-932.
(3)    Niu Y, Zhu Y, Tan H, et al. Experimental study on the coexistent dual slagging in biomass-fired furnaces: Alkali-and silicate melt-induced slagging[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2405-2413.
(4)    Deng S, Wang X, Tan H, et al. Experimental and modeling study of the long cylindrical oily sludge drying process[J]. Applied thermal engineering, 2015, 91: 354-362.
(5)    Niu Y, Liu X, Zhu Y, et al. Combustion characteristics of a four-wall tangential firing pulverized coal furnace[J]. Applied Thermal Engineering, 2015, 90: 471-477.
(6)    Wang Y, Wang X, Hu Z, et al. NO emissions and combustion efficiency during biomass co-firing and air-staging[J]. BioResources, 2015, 10(3): 3987-3998.
(7)    Mikulčić H, Wang X, Vujanović M, et al. Mitigation of climate change by reducing carbon dioxide emissions in cement industry[J]. CHEMICAL ENGINEERING, 2015, 45.
(8)    Deng S, Wang X, Tan H, et al. Optimization of Operating Conditions of a Household Up-draft Biomass Gasification Stove[J]. BioResources, 2015, 10(3): 4178-4190.
(9)    Liu H, Tan H, Xiong X, et al. Development and Application of A Coal Combustion Life Cycle On-line Monitoring System[J]. Energy Engineering, 2015, 112(1): 28-46.
(10)Wang X, Wang X, Tan H, et al. Removal of Hydrogen Cyanide by Using Activated Carbon: The Effect of Adsorption Condition and Chemical Modification[J]. Journal of Biobased Materials and Bioenergy, 2015, 9(6): 545-552.
(11)Wang Y, Wang X, Tan H, et al. Extraction and quantitation of various potassium salts in straw ash[J]. Environmental Progress & Sustainable Energy, 2015, 34(2): 333-338.
 
2014
(1)    Liu Y, Wang X, Xiong Y, et al. Study of briquetted biomass co-firing mode in power plants[J]. Applied Thermal Engineering, 2014, 63(1): 266-271.
(2)    Niu Y, Zhu Y, Tan H, et al. Investigations on biomass slagging in utility boiler: Criterion numbers and slagging growth mechanisms[J]. Fuel Processing Technology, 2014, 128: 499-508.
(3)    Xiong Y, Niu Y, Tan H, et al. Experimental study of a zero water consumption wet FGD system[J]. Applied Thermal Engineering, 2014, 63(1): 272-277.
(4)    Wang X, Tan H, Yan W, et al. Determining the optimum coal concentration in a general tangential-fired furnace with rich-lean burners: from a bench-scale to a pilot-scale study[J]. Applied Thermal Engineering, 2014, 73(1): 371-379.
(5)    Wang X, Hu Z, Deng S, et al. Effect of biomass/coal co-firing and air staging on NOx emission and combustion efficiency in a drop tube furnace[J]. Energy Procedia, 2014, 61: 2331-2334.
(6)    Zhu Y, Niu Y, Tan H, et al. Short review on the origin and countermeasure of biomass slagging in grate furnace[J]. Frontiers in Energy Research, 2014, 2: 7.
(7)    Wang X, Hu Z, Deng S, et al. Investigation on the synergetic effect of biomass co-firing in the atmosphere of O2/CO2[J]. Journal of Biobased Materials and Bioenergy, 2014, 8(5): 481-488.
(8)    Hu Z, Wang X, Wang Z, et al. Segmented Kinetic Investigation on Condensed KCl Sulfation in SO2/O2/H2O at 523–1023 K[J]. Energy & Fuels, 2014, 28(12): 7560-7568.
(9)    Niu Y, Zhu Y, Tan H, et al. Experimental Study on The Synthetic Effects of Kaolin and Soil on Alkali-induced Slagging and Molten Slagging[J]. Energy Procedia, 2014, 61: 756-759.
(10)Niu Y, Liu Y, Tan H, et al. Economic feasibility study of different biomass firing models in China[J]. Energy Procedia, 2014, 61: 767-771.
(11)Xiong Y, Niu Y, Wang X, et al. Pilot Study on In-depth Water Saving and Heat Recovery from Tail Flue Gas in Lignite-fired Power Plant[J]. Energy Procedia, 2014, 61: 2558-2561.
(12)Wang X, Niu B, Deng S, et al. Optimization Study on Air Distribution of an Actual Agriculture Up-draft Biomass Gasification Stove[J]. Energy Procedia, 2014, 61: 2335-2338.
(13)Niu Y, Zhu Y, Tan H, et al. A calculation method of biomass slagging rate based on crystallization theory[J]. Asia‐Pacific Journal of Chemical Engineering, 2014, 9(3): 456-463.
(14)Xiong Y, Wang X, Zhang L, et al. Conversion Mechanism of Toxic Hydrogen Cyanide by Magnesium Oxide at High Temperatures[J]. Asian Journal of Chemistry, 2014, 26(2): 955.
(15)Yuanyi L, Houzhang T, Weigang X, et al. Study on the Influence of Dust on CO/H2 Deflagration Characteristic[J]. Procedia Engineering, 2014, 84: 460-466.
(16)Liu Y, Tan H, Zhu Y, et al. Experimental study of CO/H2 deflagration characteristics under complex conditions of boiler hopper[J]. Energy Procedia, 2014, 61: 2089-2092.
 
2013
 
(1)    Niu Y, Du W, Tan H, et al. Further study on biomass ash characteristics at elevated ashing temperatures: The evolution of K, Cl, S and the ash fusion characteristics[J]. Bioresource technology, 2013, 129: 642-645.
(2)    Sun P, Hui S, Gao Z, et al. Experimental investigation on the combustion and heat transfer characteristics of wide size biomass co-firing in 0.2 MW circulating fluidized bed[J]. Applied Thermal Engineering, 2013, 52(2): 284-292.
(3)    Zhao S, Hui S, Liang L, et al. Effect of the momentum flux ratio of vertical to horizontal component on coal combustion in an arch-fired furnace with upper furnace over-fire air[J]. Experimental Thermal and Fluid Science, 2013, 45: 180-186.
(4)    Niu Y, Liu Y, Tan H, et al. Origination and formation of NH 4 Cl in biomass-fired furnace[J]. Fuel processing technology, 2013, 106: 262-266.
(5)    Xu W, Niu Y, Tan H, et al. A new agro/forestry residues co-firing model in a large pulverized coal furnace: technical and economic assessments[J]. Energies, 2013, 6(9): 4377-4393.
(6)    Wang X, Xu W, Zhang L, et al. Char characteristics from the pyrolysis of straw, wood and coal at high temperatures[J]. Journal of Biobased Materials and Bioenergy, 2013, 7(6): 675-683.
(7)    Liu H, Tan H, Xiong X, et al. A Improved Fuzzy Analytic Hierarchy Process Application in Prevention High Temperature Corrosion[M]//Cleaner Combustion and Sustainable World. Springer Berlin Heidelberg, 2013: 697-704.
(8)    Xiong Y Y, Liu Y Y, Tan H Z. Effect of Operational Parameters of Wet Flue Gas Desulfurization on Water Consumption[C]//Advanced Materials Research. Trans Tech Publications, 2013, 726: 2026-2029.
 
2012
 
(1)    Wang X, Si J, Tan H, et al. Kinetics investigation on the combustion of waste capsicum stalks in Western China using thermogravimetric analysis[J]. Journal of thermal analysis and calorimetry, 2012, 109(1): 403-412.
(2)    Wang X, Liu Y, Tan H, et al. Mechanism research on the development of ash deposits on the heating surface of biomass furnaces[J]. Industrial & Engineering Chemistry Research, 2012, 51(39): 12984-12992.
(3)    Wang X, Xiong Y, Tan H, et al. Influences of CO and O2 on the Reduction of N2O by Biomass Char[J]. Energy & Fuels, 2012, 26(6): 3125-3131.
 
2011
 
(1)    Wang X, Tan H, Niu Y, et al. Experimental investigation on biomass co-firing in a 300MW pulverized coal-fired utility furnace in China[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2725-2733.
(2)    Wang X, Si J, Tan H, et al. Kinetics investigation on the reduction of NO using straw char based on physicochemical characterization[J]. Bioresource technology, 2011, 102(16): 7401-7406.
(3)    Tan H, Niu Y, Wang X, et al. Study of optimal pulverized coal concentration in a four-wall tangentially fired furnace[J]. Applied Energy, 2011, 88(4): 1164-1168.
(4)    Niu Y, Tan H, Wang X, et al. Fusion characteristics of capsicum stalk ash[J]. Asia‐Pacific Journal of Chemical Engineering, 2011, 6(4): 679-684.
(5)    Liu H, Tan H, Liu Y, et al. Study of the layered structure of deposit in a biomass-fired boiler (case study)[J]. Energy & Fuels, 2011, 25(6): 2593-2600.
(6)    Niu Y, Tan H, Wang X, et al. Synergistic effect on co-pyrolysis of capsicum stalks and coal[J]. African Journal of Biotechnology, 2011, 10(2): 174-179.
(7)    Tan H, Wang X, Miao Y, et al. Decision making on most economical coal for coal-fired power plants under fluctuating coal prices[J]. International Journal of Coal Preparation and Utilization, 2011, 31(5): 273-288.
(8)    Liu Y, Niu Y, Tan H, et al. Mechanism of deterioration of the deposits on secondary super-heater in biomass-fired boiler[J]. Proceedings of the CSEE, 2011, 14: 001.
 

2010


(1)  Xuebin Wang, Houzhang Tan* , Yanqing Niu, Mohamed Pourkashanian, Lin Ma, Erqiang Chen, Yang Liu, Zhengning Liu and Tongmo Xu. Experimental investigation on biomass co-firing in a 300 MW pulverized coal-fired utility furnace in China. Proceedings of the Combustion Institute2010 (DOI:10.1016/j.proci.2010.06.055)
(2)  Xuebin Wang, Jipeng Si, Houzhang Tan*, Lin Ma, Mohamed. Pourkashanian and Tongmo Xu. Nitrogen, Sulfur, and Chlorine Transformations during the Pyrolysis of Straw. Energy & Fuels 2010,24(9), 5215–5221
(3)  Yanqing Niu, Houzhang Tan,*,Lin Ma, Mohamed Pourkashanian,Zhengning Liu, Yang Liu,Xuebin Wang, Haiyu Liu, and Tongmo Xu. Slagging Characteristics on the Superheaters of a 12 MW Biomass-Fired Boiler. Energy & Fuels  2010,24(9), 5222–5227
(4)  Yanqing Niu, Houzhang Tan*, Yang Liu, Xuebin Wang, Tongmo Xu. Effect of Particle Size and Heating Rate on Pyrolysis of Waste Capsicum Stalks biomass. Energy Sources, Part A 2010(Accept)
(5)  Yanqing Niu, Houzhang Tan *, Xuebin Wang, Zhengning Liu, Haiyu Liu, Yang Liu, Tongmo Xu. Study on fusion characteristics of biomass ash. Bioresource Technology2010,101, 9373–9381

(6)  Xuebin Wang, Houzhang Tan*, Yanqing Niu, Erqiang Chen, Tongmo Xu. Kinetic investigation of the SO2 influence on NO reduction processes during methane reburning. ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING 2010(DOI: 10.1002/apj.420)
(7)  Niu, Y.; Tan, H*. W., Xuebin;Xu,Tongmo; Liu, Z.; Liu, Y., Fusion characteristics of capsicum stalk ash. ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING 2010.( DOI: 10.1002/apj.452)
(8)  Houzhang Tan*, Jinchao Wei, Yunbai Luo, and Ping Yu. Performance characteristics of NO removal by cobalt diethylenetriamine solution . Korean J. Chem. Eng2010,27(3), 848-853
(9) Liu, H. Y.; Tan, H. Z. *; Gao, Q. A.; Wang, X. B.; Xu, T. M., Microwave attenuation characteristics of unburned carbon in fly ash. Fuel 2010, 89, (11), 3352-3357.
(10) Tan, H. Z. *; Wang, X. B.; Niu, Y. Q.; Liu, H. Y.; Wang, C. L.; Xu, T. M., Studies of Interaction Mechanism Between Iron and HCN. Asian Journal of Chemistry 2010, 22, (5), 4017-4025.
(11)  Qinxin Zhao*, Xuebin Wang, Houzhang Tan*, Jipeng Si, Yanqing Niu and Tongmo Xu.Co-pyrolysis of Pyridine and Pyrrole as Nitrogenous Compounds Model of Coal. Asian Journal of Chemistry 2010, 22, (9), 6998 - 7004.
(12) Tan, H. Z. *; Wang, X. B.; Niu, Y. Q.; Xu, T. M., Influence of metal elements on the evolution of CO and CH4 during the pyrolysis of sawdust. African Journal of Biotechnology 2010, 9, (3), 331-339.
(13) Niu, Y. Q.; Tan, H. Z. *; Wang, X. B.; Liu, Z. N.; Liu, Y.; Xu, T. M., Study on Deposits on the Surface, Upstream, and Downstream of Bag Filters in a 12 MW Biomass-Fired Boiler. Energy & Fuels 2010, 24, 2127-2132
(14) Li, S.; Xu, T. M.; Zhou, Q. L.; Tan, H. Z.; Hui, S. E., Effect of coal-over-coal reburn on furnace temperature and heat flux distributions in 1 MW tangentially fired furnace. International Journal of Thermal Sciences 2010, 49, (1), 225-233.

 

2009

(1) Wang, X. B.; Zhao, Q. X. *; Tan, H. Z. ; Xu, T. M.; Hui, S. E., Kinetic analysis of nitric oxide reduction using biogas as reburning fuel. African Journal of Biotechnology 2009, 8, (10), 2251-2257.
(2)  Tan, H. Z. ; Wang, X. B. *; Wang, C. L.; Xu, T. M., Characteristics of HCN Removal Using CaO at High Temperatures. Energy & Fuels 2009, 23, 1545-1550.
(3)  Li, S.; Xu, T. M.; Hui, S. E.; Zhou, Q. L.; Tan, H. Z., Optimization of air staging in a 1 MW tangentially fired pulverized coal furnace. Fuel Processing Technology 2009, 90, (1), 99-106.


2008

 (1)   Li, S.; Xu, T. M.; Sun, P.; Zhou, Q. L.; Tan, H. Z.; Hui, S., NOx and SOx emissions of a high sulfur self-retention coal during air-staged combustion. Fuel 2008, 87, (6), 723-731.


2007

(1)   Li, S.; Xu, T. M.; Hui, S. E.; Tan, H. Z.; Zhou, Q. L.; Hu, H. L., Comparison of NOx emission reductions with exclusive SOFA and the combination of SOFA and CCOFA on tangentially-fired boilers. Challenges of Power Engineering and Environment, Vols 1 and 2 2007, 805-809.
(2)  Li, S.; Xu, T. M.; Zhou, Q. L.; Tan, H. Z.; Hui, S.; Hu, H. L., Optimization of coal reburning in a 1 MW tangentially fired furnace. Fuel 2007, 86, (7-8), 1169-1175.

Teaching

1. Combustion Theory
2. Clean Utlization of Coal
3. Development of Combustion Science and Technology
4. New Energy