Ting Liu

Ph. D, Professor 


Email:  tingliu AT mail.xjtu.edu.cn

Box 1088, Xi'an Jiaotong University, Xian Nin Xi Lu 28, Xi'an, Shaanxi, China  10086


Ph.D. in System Engineering, 2010
Xi'an Jiaotong University, China
Dissertation: IPv6 Network Worm Propagation Model, Analysis and Detection
Advisor: Prof. Xiaohong Guan, Co-advisor: Prof. Qinghua Zheng
B.S. in Information Engineering, 2003
Xi'an Jiaotong University, China

Professor  Since 2018
School of Cyber Science and Engineering, Xi'an Jiaotong University
Visiting Professor  2016 - 2017
School of Electrical and Computer Engineering, Cornell University
Associate Professor 2014 - 2018
Institute of System Engineering, Xi'an Jiaotong University
Lecturer 2010 - 2014
Institute of System Engineering, Xi'an Jiaotong University

My research is security and reliability in computer network, cyber-physical system and software system. My research focus includes:

  • Vulnerability and intrusion detection in Smart Grids
  • Integrated control of building systems for energy saving, security, and comfort
  • Software behavior model and abnormal detection
  • Software testing and verification


  • H. Wang, X. Xie, S. Lin, Y. Lin, Y. Li, S. Qin, Y. Liu, T. Liu. Locating Vulnerabilities in Binaries via Memory Layout Recovering. ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE), Estonia, 2019 
  • D. Cui, T. Liu, Y. Cai, Q. Zheng, Q. Feng, W. Jin, J. Guo, Y. Qu. Investigating the Impact of Multiple Dependency Structures on Software Defects. IEEE International Conference on Software Engineering (ICSE). Montréal, Canada, 2019
  • M. Fan, X. Luo, J. Liu, M. Wang, C. Nong, Q. Zheng, T. Liu. Graph Embedding based Familial Analysis of Android Malware using Unsupervised Learning. IEEE International Conference on Software Engineering (ICSE). Montréal, Canada, 2019
  • J. Guo, S. Li, J. Lou, Z. Yang, T. Liu. SARA: Towards Record and Replay for Android in Industrial Cases. ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), Beijing, China, 2019
  • Q. Feng, Y. Cai, R. Kazman, D. Cui, T. Liu. H. Fang. Active Hotspot: An Issue-Oriented Model to Monitor Software Evolution and Degradation. IEEE/ACM Automated Software Engineering (ASE), San Diego, US, 2019
  • J. Tian, R. Tan, X. Guan, T. Liu. Enhanced Hidden Moving Target Defense in Smart Grids. IEEE Transactions on Smart Grids, 10(2), 2208-2223, 2019
  • M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, X. Zhang, Q. Zheng, T. Liu. Android Malware Familial Classification and Representative Sample Selection via Frequent Subgraph Analysis. IEEE Transactions on Information Forensics & Security, 13(8), 1890-1905, 2018.
  • Z. Tian, T. Liu, Q. Zheng, E. Zhuang, M. Fan, Z. Yang. Reviving Sequential Program Birthmarking for Multithreaded Software Plagiarism Detection. IEEE Transactions on Software Engineering, 44(5), 491-511, 2018
  • S. Chen, T. Liu, F. Gao, Jet al. Butler, Not Servant: A Human-Centric Smart Home Energy Management System. IEEE Communications Magazine, vol. 55, no. 2, pp. 27-33, February 2017
  • H. Wang, T. Liu, X. Guan, S. Chao, Q. Zheng, Z. Yang. Dependence Guided Symbolic Execution. IEEE Transactions on Software Engineering. 2017, 43(3): 252-271
  • M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, T. Liu. DAPASA:Detecting Android Piggybacked Apps through Sensitive Subgraph Analysis. IEEE Transactions on Information Forensics & Security. 2017, 12(8), 1772-1785
  • H. Zhang, Q. Zheng, T. Liu, Z. Yang, M. Luo, Y. Qu. Improving Linguistic Pairwise Comparison Consistency via Linguistic Discrete Regions. IEEE Transactions on Fuzzy Systems, 2016, 24(3): 600-614
  • Z. Tian, Q. Zheng, T. Liu, M. Fan, et al. Software Plagiarism Detection with Birthmarks based on Dynamic Key Instruction Sequences. IEEE Transactions on Software Engineering, 2015, 41(12): 1217-1235 
  • T. Liu, Y. Liu, et al. A dynamic secret-based encryption scheme for smart grid wireless communication. IEEE Transactions on Smart Grid, 2014,5(3):1175-1182 



版权所有:西安交通大学 站点设计:网络信息中心 陕ICP备05001571号 IPhone版本下载 IPhone版本下载    Android版本下载 Android版本下载
欢迎您访问我们的网站,您是第 位访客
推荐分辨率1024*768以上 推荐浏览器IE7 Firefox 以上