期刊论文

More information can be referred to: 
 
https://www.researchgate.net/profile/Gangfeng_Wang
 

* Corresponding author.

2023

  1. X. M. Liang, C. Y. Jiang, M. R. Wang, W. L. Dai and G. F. Wang*. Experimental study on the load-area relation of rough surfaces and comparison with theoretical model. Eur. J. Mech. A. Solids. 2023, 99, 104934.
  2. X. M. Liang, Y. Ding, C. Y. Li and G. F. Wang*. An Incremental Contact Model for Rough Viscoelastic Solids. Int. J. Mech. Sci. 2023, 255, 108483.
  3. W. K. Yuan, X. R. Niu and G. F. Wang. Axisymmetric indentations of an elastic half-space with tensed surface/membrane in the Johnson–Kendall–Roberts adhesive approximation. J. Appl. Mech. 2023, 90, 061010.
  4. C.Y. Jiang, W. K. Yuan, Y. B. Zheng and G. F. Wang*.Contact of rough surfaces: an incremental model accounting strain gradient plasticity. Lubricants 2023, 11, 140.
  5. Y. Ding, X. M. Liang, C. Y. Li and G. F. Wang*. Surface effects on the spherical indentation of biological film/substrate structures. J. Phys. D. 2023, 56, 385307.
  6. S. W. Chen, W. K. Yuan, and G. F. Wang*. A theoretical contact model for rough elastic spheres. J. Tribology. 2023, 145, 114502.
  7. W. K. Yuan, Y. Ding and G. F. Wang. Universal contact stiffness of elastic solids covered with tensed membranes and its application in indentation tests of biological materials. Acta Biomaterial. 2023, 171, 202-208.
  8. C. Y. Li and G. F. Wang*. A modified Greenwood–Williamson contact model with asperity interactions. Acta Mechanica. 2023, 234(7), 2859-2868

2022

  1. X. M. Liang, Y. Ding, D.YYan, W. K. Yuan and G. F. Wang*. Elastic-perfectly plastic contact of rough surfaces: an incremental equivalent circular model. ASME J. Tribol. 2022, 144(5): 051501.
  2. W. K. Yuan, Y. B. Zheng and G. F. Wang*. Modelling tangential contact problem with surface stress. Eur. J. Mech. A. Solids. 2022, 91, 104381.
  3. S. H. Wang, W. K. Yuan, X. M. Liang and G. F. Wang*. A new analytical model for the flattening of Gaussian rough surfaces. Eur. J. Mech. A. Solids. 2022, 94,104578.
  4. Y. B. Zheng, W. K. Yuan, X. M. Liang, G. F. Wang*. Surface tension effect on the sliding inception between an elastic sphere and a rigid flat. Mech. Mater. 2022, 174, 104477.
  5. Y. Ding, X. M. Liang, W. K. Yuan and G. F. Wang*. An incremental contact model for rough surfaces of strain hardening solids. Int. J. Appl. Mech. 2022, 14(8), 2250088.
  6. X. M. Liang and G. F. Wang*. A friction model of fractal rough surfaces accounting for size dependence at nanoscale. Acta Mechanica. 2022, 233, 69–81.
  7. Y. Ding, W. K. Yuan, X. M. Liang G. F. Wang* and X. R. Niu. Identification of plastic properties through spherical indentation.Advanced Engineering Materials. 2022, 2200379.
  8. W. L. Dai, W. K. Yuan and G. F. Wang*. Elastic contact analysis of shot-peened rough surfaces. Lubricants. 2022, 10(12), 331.
  9. H. Xie, J. Liu, X. Yin, Y. Guo, D. Liu, G. F. Wang*, W. X. Que*. Perovskite/P3HT graded heterojunction by an additive-assisted method for high-efficiency perovskite solar cells with carbon electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022, 635, 128072.
  10. H. Xie, T. Liang, X. Yin*, J. Liu, D. Liu , G. F. Wang*, B. Gao, W. X. Que*. Mechanical Stability Study on PEDOT:PSS-Based ITO-Free Flexible Perovskite Solar Cells. ACS Appl. Energy Mater. 2022, 5(3), 3081-3091.
  11. M. Li, Y. Yan, S. H. Xu, G. F.Wang, J. Wu, X. Q. Feng. Surface effect on the necking of hyperelastic materials. Current Appl. Phys. 2022, 38(16), 91-98.
  12. X. P. Liu, K. Xu, Y. Ni, P. Lu, G. F. Wang, L. H. He. Strain-dependent elastic asymmetry of alkylthiol-coated gold superlattices: An atomistic molecular dynamics study. J. Applied Physics 2022, 132(7):075104
  13. K. Xu, H. Zhai, L. H. He, Y. Ni, P. Lu, G. F. Wang, X. P. Liu, Atomistic simulations of mechanical response of a heterogeneous fcc/bcc nanolayered composite. J. Physics Cond. Matter. 2022, 34(38), 385703.

2021

  1. G. F. Wang*, X. M. Liang and D. Yan. An incremental equivalent circular contact model for rough surfaces. ASME J. Tribol. 2021, 143(8): 081503.
  2. L. T. Li, X. M. Liang, Y. Z. Xing, D. Yan and G. F. Wang*. Measurement of real contact area for rough metal surfaces and the distinction of contribution from elasticity and plasticity. ASME J. Tribol. 2021, 143(7): 071501.
  3. W. K. Yuan and G. F. Wang*. Adhesion between a rigid sphere and a stretched membrane using the Dugdale model. Int. J. Solid. Struct. 2021, 208, 214-220.
  4. X. M. Liang, Y. Z. Xing, L. T. Li, W. K. Yuan and G. F. Wang*. An experimental study on the relation between friction force and real contact area. Scientific Report. 2021, 11, 20366.
  5. T. Liang, W. K. Yuan and G. F. Wang*. Influence of equi-biaxial residual stress on spherical indentation of strain hardening materials. Int. J. Appl. Mech. 2021, 13(5), 2150052
  6. J. J. Bian, L. Yang, W. K. Yuan and G. F. Wang*. Influence of hydrogenation on the mechanical properties of Pd nanoparticles. RSC Advances. 2021,11, 3115–3124.
  7. L. Yang, J. J. Bian, W. K. Yuan and G. F. Wang*. Statistical characterization of the yield stress of nanoparticles. Acta Mechanica Solida Sinica. 2021, 34(2), 149-156.
  8. H. Xie, X. T. Yin*, Y. X. Guo, D. Liu, T. Liang, G.F. Wang*, W. X. Que*. Hole transport free flexible perovskite solar cells with cost-effective carbon electrodes. Nanotechnology, 2021, 32, 105205.
  9. P. Lu, R. Liu, H. Zhai, G. F. Wang, P. Yu, Ch. Lu. A modified beam model based on Gurtin-Murdoch surface elasticity theory. Mechanica. 2021, 56(5), 1147-1164.

2020

  1. L. X. Yuan, W. K. Yuan and G. F. Wang*. Effects of residual stress on the hardness of elastoplastic material under spherical indentation. J. Appl. Mech. 2020, 87(5): 051004.
  2. Y. Ding and G. F. Wang*. Size-dependent yield hardness induced by surface energy. Extreme Mechanics Letters. 2020, 38, 100736.
  3. W. K. Yuan* and G. F. Wang*. Boundary element calculations for normal contact of soft materials with tensed surface membrane. Frontiers in Mech. Engng. 2020, 6, 57.
  4. J. Wang, W. K. Yuan, J. J. Bian, and G. F. Wang*. A semi-analytical model for the scale-dependent friction of nanosized asperity. J. Phys. Commun. 2020, 4, 095026.

2019

  1. W. K. Yuan and G. F. Wang*. Cylindrical indentation of an elastic bonded layer with surface tension. Appl. Math. Model. 2019, 65, 597.
  2. S. H. Li, W. K. Yuan, Y. Ding and G. F. Wang*. Indentation load-depth relation for an elastic layer with surface tension. Math. Mech. Solids. 2019, 24(4), 1147–1160.
  3. L. X. Yuan, W. K. Yuan and G. F. Wang*. A notification of local minimum pressure at deep elastic-plastic indentation and its application. Extreme Mechanics Letters. 2019, 29, 100446.
  4. J. Wang, J. J. Bian and G. F. Wang*. Calculation of surface energy density of rough surface by atomic simulations. Applied Surface Science. 2019, 484, 184-188.
  5. H. Xie, X Yin, P. Chen, J. Liu, C. Yang, W. Que* and G. F Wang*. Solvothermal synthesis of highly crystalline SnO2 nanoparticles for flexible perovskite solar cells application. Materials Letters 2019, 234, 311–314.
  6. H. Xie, X Yin, J. Liu, Y. Guo, P. Chen, W. Que*, G. F Wang and B. Gao. Low temperature solution-derived TiO2-SnO2 bilayered electron transport layer for high performance perovskite solar cells. Applied Surface Science. 2019, 464, 700-707
  7. H. Xie, X Yin, J. Liu, Y. Guo, W. Que*, G. F Wang. Recent Progress of Flexible Perovskite Solar Cells. Phys. Status Solidi. 2019, 1800566. 

2018

  1. W. K. Yuan, J. M. Long, Y. Ding and G. F. Wang*. Statistical contact model of rough surfaces: the role of surface tension. Int. J. Solid. Struct. 2018, 138, 217-223.
  2. J. M. Long, W. K. Yuan, W. Chen and G. F. Wang*. Analytic relations for two-dimensional indentations with surface tension. Mech. Mater. 2018, 119, 34-41.
  3. J. J. Bian, H. Zhang, X. R. Niu and G. F. Wang*. Anisotropic deformation in the compressions of single crystalline copper nanoparticles. Crystals, 2018, 8, 116.
  4. J. J. Bian, L. Yang, X. R. Niu and G. F. Wang*. Orientation-dependent deformation mechanisms of bcc niobium nanoparticles. Phil. Mag. 2018, 98(20), 1848.
  5. Y. Ding, W. K. Yuan and G. F. Wang*. Spherical indentation on biological films with surface energy. J. Phys. D. Appl. Phys. 2018, 51, 295409.
  6. Y. Ding, J. Wang, G-K. Xu and G. F. Wang*. Are elastic moduli of biological cells indent depth dependent? another clarification using a contact model with surface tension. Soft Matter. 2018,14, 7534-7541.
  7. Y. Ding, G. F. Wang*, X. Q. Feng and S. W. Yu. Micropipette aspiration method for characterizing biological materials with surface energy. J. Biomechanics. 2018, 80, 32-36.
  8. J. Wang, G. F. Wang*, W. K. Yuan and J. J. Bian. The statistical characteristics of static friction. Int. J. Appl. Mech. 2018, 10, 18500087.
  9. W. A. Gharahi, M. Dai, G. F. Wang, P. Schiavone. Interaction of a screw dislocation with a bi-material interface in anti-plane couple stress elasticity. Math. Mech. Solids. 2018, 23, 651.

2017年以前

  1. W. K. Yuan, J. M. Long, Y. Ding and G. F. Wang*. Micro-/nano-contact between a rigid ellipsoid and an elastic substrate with surface tension. ASME J. Appl. Mech. 2017, 84, 011012.
  2. J. M. Long, Y. Ding, W. K. Yuan, W. Chen and G. F. Wang*. General relations of indentations on solids with surface tension. ASME J. Appl. Mech. 2017, 84, 051007.
  3. L. Yang, J. J. Bian and G. F. Wang*. Impact of atomic-scale surface morphology on the size dependent yield stress of gold nanoparticles. J. Phys. D. 2017, 50, 245302.
  4. Y. Ding, G-K. Xu and G. F. Wang*. On the determination of elastic moduli of cells by AFM based indentation. Sci. Rep. 2017, 7, 45575.
  5. J. Wang, J. J. Bian, X. R. Niu, and G. F. Wang*. A universal method to calculate the surface energy density of spherical surface in crystals. Acta Mech. Sinica. 2017, 33, 77.
  6. J. M. Long, Y. Ding and G. F. Wang*. Contact problems at micro/nano scale with surface tension. Procedia IUTAM. 2017, 21, 40-47.
  7. J. Y. Sheng, L. Y. Zhang, B. Li, G. F. Wang and X. Q. Feng. Bulge test method for measuring the hyperelastic parameters of soft membranes. Acta Mech. 2017, 33, 77.
  8. P. Lu, L. Yang and G. F. Wang. Studies of low-loading micro-slip contacts on rough surfaces with GW model. Int. J. Appl. Mech. 2017, 9(4), 1750049.
  9. J. M. Long, G. F. Wang*, X. Q. Feng and S. W. Yu. Effects of surface tension on the adhesive contact between a hard sphere and a soft substrate. Int. J. Solid. Struct. 2016, 84, 133.
  10. L. Yang, J. Feng, Y. Ding, and G. F. Wang*. An analytical description for the elastic compression of metallic polyhedral nanoparticles. AIP Advance, 2016, 6, 085113.
  11. Y. Ding, X. R. Niu, G. F. Wang*, X. Q. Feng and S. W. Yu. Surface effects on nanoindentation of soft solids by different indenters. IOP Mater. Res. Expre. 2016, 3 115021.
  12. Y. Ding, X. R. Niu and G. F. Wang*. Compression of hyperelastic cells at finite deformation with surface energy. Int. J. Appl. Mech. 2016, 8(6), 1650080.
  13. Z. Yao, H. Zhang, Y. Hu, J. J. Bian, G. F. Wang, J. Lu, X. R. Niu. Ultrasound driven aggregation - a novel method to assemble ceramic nanoparticles. Extreme Mechanics Lett. 2016, 7, 71-77.
  14. G. F. Wang,* J. M. Long and X. Q. Feng. A self-consistent elastic model for rough surface. Acta. Mech. 2015, 226, 285.
  15. G. F. Wang,* J. J. Bian, J. Feng and X. Q. Feng. Compressive behavior of crystalline nanoparticles with atomic-scale surface steps. IOP Mater. Res. Exp. 2015, 2, 015006.
  16. G. F. Wang* and X. R. Niu. Nanoindentation of soft solids by a flat punch. Acta Mech. Sinica. 2015, 31, 531.
  17. J. M. Long, X. Qin and G. F. Wang*. Influence of surface energy on the elastic compression of nanosphere.J. Appl. Phys. 2015, 117, 054310.
  18. L. Yang, J. J. Bian, H. Zhang, X. R. Niu and G. F. Wang*. Size-dependent deformation mechanisms in hollow silicon nanoparticles. AIP Advances, 2015, 5, 077162.
  19. Y. Li and G. F. Wang*. Influence of surface tension on mixed-mode cracks. Int. J. Appl. Mech. 2015, 7, 1550070.
  20. Y. Ding, X. R. Niu and G. F. Wang*. Elastic compression of nanoparticles with surface energy. J. Phys. D. 2015, 48, 485303.
  21. X. Y. Sun, Y. Xu, G. F. Wang, Y. T. Gu, X. Q. Feng. Effects of surface atomistic modification on mechanical properties of gold nanowires. Phys. Lett. A. 2015, 379, 1893.
  22. J. M. Long, G. F. Wang*, X. Q. Feng and S. W. Yu. Influence of surface tension on fractal contact model. J. Appl. Phys. 2014, 109, 063535.
  23. J. J. Bian, X. R. Niu, H. Zhang and G. F. Wang*. Atomistic deformation mechanisms in twinned copper nanoparticles. Nanoscale Research Letters. 2014, 9, 335.
  24. J. S. Wang, T. Shimada, G. F. Wang. Effects of chirality and surface stresses on the bending and buckling of chiral nanowires. J. Phys. D. 2014, 47, 015302.
  25. G. F. Wang* and Y. Li. Influence of surface tension on Mode-I crack tip field. Eng. Fract. Mech. 2013, 109, 290-301
  26. J. M. Long and G. F. Wang*. Effects of surface tension on axisymmetric Hertzian contact problem. Mech. Mater. 2013, 56, 65-70.
  27. J. J. Bian and G. F. Wang*. Atomistic deformation mechanisms in copper nanoparticles. J. Comp. Theo. Nano. 2013, 10(9), 2299.
  28. F. Yang, G. F. Wang*, J. M. Long and B. L. Wang. Influence of surface energy on the pull-in instability of electrostatic nano-switches. J. Comp. Theo. Nano. 2013, 10(5), 1273.
  29. Y. Ru, G. F. Wang, L. C. Su, T. J. Wang. Scattering of vertical shear waves by a cluster of nanosized cylindrical holes with surface effect. Acta Mech. 2013, 224, 935.
  30. A. T. Samaei, B. Gheshlaghi, G. F. Wang. Frequency analysis of piezoelectric nanowires with surface effects. Current Applied Physics. 2013, 13, 2098
  31. Y. Wang, X. Feng, B. W. Lee and G. F. Wang. Surface effects on the mechanical behavior of buckled thin film. ASME J. Appl. Mech. 2013, 80, 021002.
  32. X. Yin, W. Que, D. Fei, H. Xie, Z. He and G. F. Wang. Strategies to prepare an efficient photoanode for ZnO nanowires-based CdS–CdSe co-sensitized solar cells. Electrochimica Acta. 2013, 89, 561-570.
  33. H. Xie, W. X. Que, Z. He, P. Zhong, Y. Liao and G. F. Wang. Preparation and photocatalytic activities of Sb2S3/Tio2 nanotube coaxial heterogeneous structure arrays via an ion exchange adsorption method. J. Alloys and Compounds. 2013, 550, 314-319.
  34. Z. He, W. X. Que, J. Chen, Y. He, G. F. Wang. Surface chemical analysis on the carbon-doped mesoporous TiO2 photocatalysts after post-thermal treatment: XPS and FTIR characterization. J. Phys. Chem. Solids. 2013, 74(7), 924–928.
  35. J. M. Long, G. F. Wang*, X. Q. Feng and S. W. Yu. Two-dimensional Hertzian contact problem with surface tension. Int. J. Solid. Struct. 2012, 49, 1588-1594.
  36. J. J. Bian and G. F. Wang*. A multi-scale approach of amorphous polymer from coarse grain to finite element. Comp. Mater. Sci. 2012, 57, 8-13.
  37. J. J. Bian, G. F. Wang* and X. Q. Feng. Atomistic calculations of surface energy of spherical copper surfaces. Acta Mechanica Solida Sinica. 2012, 25(6), 557-561.
  38. J. S. Wang, G. F. Wang, X. Q. Feng and Q. H. Qin. Surface effects on the superelasticity of nanohelices. J. Phys.: Condensed Matter. 2012, 24, 265303.
  39. A. T. Samaei, M. Bakhtiari and G. F. Wang. Timoshenko beam model for buckling of piezoelectric nanowires with surface effects. Nanoscale Research Letters. 2012, 7, 201.
  40. Z. L. He, W. X. Que, Y. C. He, J. Chen, H. X. Xie and G. F. Wang. Nanosphere assembled mesoporous titanium dioxide with advanced photocatalystic activity using absorbent cotton as template. J. Mater. Sci. 2012, 47, 7210-7216.
  41. F. Shen, W. X. Que, Y. He, Y. Yuan, X. Yin and G. F. Wang. Enhanced photocatalytic activity of ZnO microspheres via hybridization with CuInSe2 and CuInS2 nanocrystals. ACS Appl. Mater. Interfaces 2012, 4, 4087-4092.
  42. D. H. Wang and G. F. Wang*. Influence of surface energy on the stiffness of nanospring. Appl. Phys. Lett. 2011, 94, 141913.
  43. G. F. Wang* and F. Yang. Postbuckling analysis of nanowires with surface effects. J. Appl. Phys. 2011, 109, 063535.
  44. Q. F. Zhang, G. F. Wang* and P. Schiavone. Diffraction of plane compressional waves by an array of nano-sized cylindrical holes. ASME J. Appl. Mech. 2011, 78, 021003.
  45. G. F. Wang*. Effects of surface energy on the mechanical performance of nanosized beams. J. Comp. Theo. Nano. 2011, 8, 1173-1177.
  46. X. L. Fu, G. F. Wang* and X. Q. Feng. Effects of surface elasticity on mixed-mode fracture. Int. J. Appl. Mech. 2011, 3(3), 1-12.
  47. D. H. Wang and G. F. Wang*. Surface effects on the vibration and buckling of double nanobeam systems. J. Nanomaterials. 2011, 518706, 1-7.
  48. R. Xia, X. Q. Feng and G. F. Wang. Effective elastic properties of nanoporous materials with hierarchical structure. Acta Mater. 2011, 59, 6801.
  49. J. X. Wang, Z. P. Huang, H. L. Duan, S. W. Yu, X. Q. Feng, G. F. Wang, W. X. Zhang and T. J. Wang. Surface stress effect in mechanics of nanostructured materials. Acta Mechanica Solida Sinica. 2011, 24, 52-82.
  50. G. F. Wang* and X. Q. Feng. Effect of surface stresses on the vibration and buckling of piezoelectric nanowires. Europhysics Lett. 2010, 91, 56007.
  51. X. L. Fu, G. F. Wang* and X. Q. Feng. Surface effects on mode-I crack tip fields: A numerical study. Engineering Fracture Mechanics. 2010, 77, 1048-1057.
  52. X. L. Fu, G. F. Wang*. Surface effects on the elastic fields around surface defects. Acta Mechanica Solida Sinica. 2010, 23(3), 248-254.
  53. J. S. Wang, Y. H. Cui, X. Q. Feng, G. F. Wang, Q. H. Qin. Surface effects on the elasticity of nanosprings. Europhysics Lett. 2010, 92, 16002.
  54. X. P. Zheng, Y. P. Cao, B. Li, X. Q. Feng G. F. Wang. Surface effects in various bending-based test methods for measuring the elastic property of nanowires. Nanotechnology. 2010, 21, 205702.
  55. G. F. Wang*, X. Q. Feng. Surface effects on buckling of nanowires under uniaxial compression. Appl. Phys. Lett. 2009, 94, 141913.
  56. G. F. Wang*, X. Q. Feng. Timoshenko beam model for buckling and vibration of nanowires with surface effects. J of Physics D: Applied Physics. 2009, 42, 155411.
  57. G. F. Wang*. Multiple diffraction of plane compressional waves by two circular cylindrical holes with surface effects. J. Appl. Phys. 2009,105, 013507.
  58. B. Li, X. Q Feng, Y. Li and G. F. Wang. Morphological instability of spherical soft particles induced by surface charges. Appl. Phys. Lett. 2009, 95, 021903.
  59. Y. Ru, G. F. Wang and T. J. Wang Diffractions of elastic waves and stress concentration near a cylindrical nano-inclusion incorporating surface effect. ASME J. Vib. Acoust. 2009, 131(6), 061011.
  60. Z. Y. Ou, G. F. Wang and T. J. Wang. An analytical solution for the elastic fields near spheroidal nano-inclusions. Acta Mechanica Sinica. 2009, 25(6), 821-826.
  61. Z. Y. Ou, G. F. Wang and T. J. Wang. Elastic fields around a nanosized spheroidal cavity under arbitrary uniform remote loadings. Eur. J. Mech. A./Solids. 2009, 28, 110-117.
  62. Y. Q. Liao, Y. Q. Liu, J. C. Liu, G. F. Wang and K. Z. Gao. Stability analysis and optimal design of fiber winding composite circular lattice structure. J. Chinese Society of Astronautics. 2009, 30, 1693.
  63. G. F. Wang*, X. Q. Feng, T. J. Wang and W. Gao. Surface effects on the near-tip stresses for Mode-I and Mode-III cracks. ASME J. Appl. Mech. 2008, 75, 011001.
  64. G. F. Wang*. Diffraction of shear waves by a nanosized spherical cavity. J. Appl. Phys. 2008,103, 053519.
  65. X. L. Fu, G. F. Wang* and X. Q. Feng, Surface effects on the near-tip stress fields of a mode-II crack, Int. J. Fracture. 2008, 151, 95-106.
  66. Z. Y. Ou, G. F. Wang and T. J. Wang. Effect of residual surface tension on the stress concentration around a nanosized spheroidal cavity. Int. J. Engng. Sci. 2008, 46, 475.
  67. Z. Y. Ou, G. F. Wang and T. J. Wang. Stress field near a nanosized spheroidal cavity under bi-axial tension perpendicular to the revolution axis, Advanced Materials Research 2008, 33, 1005.
  68. H. M. Li, G. F. Wang and T. J. Wang. Effect of crack-tip shape on the near tip field in glassy polymer. Int. J. Solids Struct. 2008, 45, 1087-1100.
  69. J. S. Wang, X. Q. Feng, G. F. Wang and S. W. Yu. Twisting of Nanowires Induced by Anisotropic Surface Stresses. Appl. Phys. Lett. 2008, 92, 191901.
  70. J. Q. Zhang, S. W. Yu, X. Q. Feng and G. F. Wang. Theoretical analysis of adsorption-induced micro-cantilever bending. J. Appl. Phys. 2008, 103, 093506.
  71. G. F. Wang*. Diffraction of plane compressional wave by a nanosized spherical cavity with surface effects. Appl. Phys. Lett. 2007, 90, 211907.
  72. G. F. Wang*, X. Q. Feng. Effects of surface stresses on contact problems at nano scale. J. Appl. Phys. 2007, 101, 013510.
  73. G. F. Wang*, X. Q. Feng. Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 2007, 90, 231904.
  74. G. F. Wang*, X. Q. Feng and S. W. Yu. Interface effects on the diffraction of plane compressional waves by a nanosized spherical inclusion. J. Appl. Phys. 2007, 102, 043533.
  75. G. F. Wang*, X. Q. Feng and S. W. Yu. Surface buckling of a bending microbeam due to surface elasticity. Europhysics Lett. 2007, 77, 44002.
  76. G. F. Wang*, T. J. Wang and P. Schiavone. The contact problem in a compressible hyperelastic material. ASME J. Appl. Mech. 2007, 74, 829-831.
  77. G. F. Wang, P. Schiavone and C.-Q. Ru. Harmonic shapes in finite elasticity. Math. Mech. Solids. 2007, 12, 502-512.
  78. G. F. Wang and P. Schiavone. Influence of a thin film on a screw dislocation in a substrate with viscoelastic interface. Math. Mech. Solids. 2007, 12, 119-128.
  79. J. L. Liu, X. Q. Feng, G. F. Wang, S. W. Yu. Mechanisms of superhydrophobicity on hydrophilic substrates. J. of Phys.: Condensed Matter. 2007, 19, 356002.
  80. J. L. Liu, X. Q. Feng, G. F. Wang. Buoyant force and sinking conditions of a hydrophobic thin rod floating on water. Physical Review E. 2007, 76, 066103.
  81. G. F. Wang* and T. J. Wang. Deformation around a nanosized elliptical hole with surface effect. Appl. Phys. Lett. 2006, 89, 161901.
  82. G. F. Wang*, T. J. Wang and X. Q. Feng. Surface effects on the diffraction of plane compressional waves by a nanosized circular hole. Appl. Phys. Lett. 2006, 89, 231923.
  83. G. F. Wang, P. Schiavone and C-Q. Ru. Harmonic shapes in finite elasticity under non-uniform loading. ASME J. Appl. Mech. 2005, 72(5), 691-694.
  84. G. F. Wang, P. Schiavone and C.-Q. Ru. Surface instability of a semi-infinite harmonic solid under van der Waals attraction. Acta. Mechanica. 2005, 180, 1-10.
  85. G. F. Wang and E. Van der Giessen. Fields and fracture of the interface between a glassy polymer and a metal. Eur. J. Mech. A. Solids. 2004, 23(3), 395-409.
  86. G. F. Wang, S. W. Yu and X. Q. Feng. A piezoelectric constitutive theory with rotation gradient effects. Eur. J. Mech. A./Solids. 2004, 23(3), 455-466.
  87. G. F. Wang, X. Q. Feng and S. W. Yu. Interfacial effects on effective elastic moduli of nanocrystalline materials. Material Science and Engineering, A. 2003, 363, 1-8.
  88. G. F. Wang, S. W. Yu and X. Q. Feng. A continuum damage mechanics model with rotation gradient. Int. J. Damage Mechanics. 2003, 12(3), 179-192.
  89. H. Fan and G. F. Wang. Screw dislocation interacting with imperfect interface. Mech. Mater. 2003, 35(10), 943-953.
  90. H. Fan and G. F. Wang. A stability analysis for liquid-bridging induced contact. J. Appl. Phys. 2003, 93(5), 2554-2558.
  91. H. Fan and G. F. Wang. Interaction between screw dislocation and viscoelastic interface. Int. J. Solids & Struct. 2003, 40(4), 763-776.
  92. G. F. Wang, X. Q. Feng and S. W. Yu. Effective elastic moduli and interface effects in nanocrystalline materials. Chinese Science Bulletin. 2002, 47(17), 1493-1496.
  93. G. F. Wang, S. W. Yu et al. Experimental and theoretical analysis on an interface between bimaterials. Physical Mesomechanics, 2002, III, 238-245.
  94. G. F. Wang and Y. L. Kang A simplified mechanical analysis for the fracture and bucking driven delamination of functional graded materials. Engineering Mechanics. 2002, 19(1), 103-108.
  95. Y. L. Kang, D. H. Fu, G. F. Wang, S. W. Yu and X. J. Pan. Analysis of displacement and strain field around a bimaterial interfacial region by couple stress theory and experiment. J of Strain Analysis for Engineering Design. 2002, 37(4), 281-287.
  96. G. F. Wang, S. W. Yu and X. Q. Feng. Boundary layers near interface between crystals with strain gradient effects. Mech. Research. Com. 2001, 28(1), 87-95.
  97. G. F. Wang, S. W. Yu and X. Q. Feng. Strain gradient near interface of coaxial cylinders in torsion. Theoretical and Applied Fracture Mechanics. 2001, 36(3), 195-202.
  98. G. F. Wang, S. W. Yu and X. Q. Feng. Boundary layer near interfaces under torsion. J. of Tsinghua University. (Science and Technology). 2001, 11, 1-3.
  99. G. F. Wang, S. W. Yu and X. Q. Feng. An analysis of interface boundary layers based on the couple stress theory. Acta Mechanica Solida Sinica. 2000, 13(4), 299-305.
  100. G. F. Wang and S. W. Yu. The boundary layer solution of interface problem considering the strain gradients. Acta Mechanica Solida Sinica. 1999, 12(3), 206-210.