(1.)Basic Information

Wen-Tao Ji
Associate Professor
Email: wentaoji@xjtu.edu.cn
Tel:+86-29-82663232
Xi’an Jiaotong University
School of Energy and Power Engineering
Department of Thermal-Fluid Science and Engineering
Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education

 

(2.)Research

 Pool boiling, film-wise condensation, falling film evaporation, CO2 heat transfer, single phase heat transfer enhancement

(3.)Publications

2019

[33]Mao S-F,Ji W-T*, Chong G-H, et al. Numerical investigation on the nucleate pool boiling heat transfer of R134a outside the plain tube[J]. Numerical Heat Transfer, Part A, 2019(In Press)

[32]Ji W-T, Mao S-F, Chong G-H, et al. Numerical and experimental investigation on the condensing heat transfer of R134a outside plain and integral-fin tubes[J]. Applied Thermal Engineering, 2019, 159: 113878.

[31]Ji W-T, Fan J-F, Zhao C-Y, Tao WQ. A revised performance evaluation method for energy saving effectiveness of heat transfer enhancement techniques[J]. International Journal of Heat and Mass Transfer, 2019, 138: 1142-1153.

[30]Jin P-H, Zhang Z, Mostafa I, Zhao C-Y, Ji WT, Tao WQ.. Heat transfer correlations of refrigerant falling film evaporation on a single horizontal smooth tube[J]. International Journal of Heat and Mass Transfer, 2019, 133: 96-106.

[29]Li S-Y, Ji W-T*, Zhao C-Y, et al. Effects of magnetic field on the pool boiling heat transfer of water-based α-Fe2O3 and γ-Fe2O3 nanofluids[J]. International Journal of Heat and Mass Transfer, 2019, 128: 762-772.

[28]Ji W-T, Zhao E-T, Zhao C-Y, et al. Falling film evaporation and nucleate pool boiling heat transfer of R134a on the same enhanced tube[J]. Applied Thermal Engineering, 2019, 147: 113-121.

 

2018

[27]Ji W-T*, Chong G-H, Zhao C-Y, et al. Condensation heat transfer of R134a, R1234ze(E) and R290 on horizontal plain and enhanced titanium tubes[J]. International Journal of Refrigeration, 2018, 93: 259-268.

[26]Jin P-H, Zhao C-Y, Ji W-T, et al. Experimental investigation of R410A and R32 falling film evaporation on horizontal enhanced tubes[J]. Applied Thermal Engineering, 2018, 137: 739-748.

[25]Zhao C-Y, Ji W-T, Jin P-H, et al. Cross vapor stream effect on falling film evaporation in horizontal tube bundle using R134a[J]. Heat Transfer Engineering, 2018, 39 (7-8): 724-737.

[24]Zhang H, Zhang C, Ji W,T et al. Experimental Characterization of the Thermal Conductivity and Microstructure of Opacifier-Fiber-Aerogel Composite[J]. Molecules, 2018, 23 (9): 2198.

[23]Zhao C-Y, Ji W-T, Jin P-H, et al. Effect of downward vapor stream on falling film evaporation of R134a in a tube bundle[J]. International Journal of Refrigeration, 2018, 89: 112-121.

[22]JI W-T*, Zhao C-Y, Lofton J, et al. Condensation of R134a and R22 in shell and tube condensers mounted with high density low-fin tubes[J]. Journal of heat transfer, 2018, 140 (9): 091503.

[21]Ji WT*, Zhao PF, Zhao CY, Ding J, Tao WQ,Pool boiling heat transfer of water and nanofluid outside the surface with higher roughness and different wettability[J].Nanoscale and Microscale Thermophysical Engineering, 2018, in press.

[20]Zhao C-Y, Ji W-T, He Y-L, et al. A comprehensive numerical study on the subcooled falling film heat transfer on a horizontal smooth tube[J]. International Journal of Heat and Mass Transfer, 2018, 119: 259-270.

[19]Zhao C-Y, Ji W-T, Jin P-H, et al. Hydrodynamic behaviors of the falling film flow on a horizontal tube and construction of new film thickness correlation[J]. International Journal of Heat and Mass Transfer, 2018, 119: 564-576.

[18]Zhao C-Y, Ji W-T, Jin P-H, et al. Experimental study of the local and average falling film evaporation coefficients in a horizontal enhanced tube bundle using R134a[J]. Applied Thermal Engineering, 2018, 129: 502-511.

 

2017

[17]Ji W-T*, Zhao C-Y, Zhang D-C, et al. Pool boiling heat transfer of R134a outside reentrant cavity tubes at higher heat flux[J]. Applied Thermal Engineering, 2017, 127: 1364-1371.

[16]Zhao C-Y, Ji W-T, Jin P-H, Zhong YJ, Tao WQ*. The influence of surface structure and thermal conductivity of the tube on the condensation heat transfer of R134a and R404A over single horizontal enhanced tubes[J]. Applied Thermal Engineering, 2017, 125.

[15]Mou S-C, Luan Y-X, Ji W-T*, Zhang JF, Tao WQ. An example for the effect of round-off errors on numerical heat transfer[J]. Numerical Heat Transfer, Part B: Fundamentals, 2017, 72 (1): 21-32.

[14]Ji W-T*, Jacobi AM, He Y-L, Tao WQ. Summary and evaluation on the heat transfer enhancement techniques of gas laminar and turbulent pipe flow[J]. International Journal of Heat and Mass Transfer, 2017, 111: 467-483.

[13]Zhao C-Y, Jin P-H, Ji W-T, Tao WQ*. Experimental investigations of R134a and R123 falling film evaporation on enhanced horizontal tubes[J]. International Journal of Refrigeration, 2017, 75: 190-203.

 

2016

[12] W.-T. Ji, C.-Y. Zhao, D.-C. Zhang, S. Yoshioka, Y.-L. He, W.-Q. Tao*, Effect of vapor flow on the falling film evaporation of R134a outside a horizontal tube bundle, International Journal of Heat and Mass Transfer, 92 (2016) 1171-1181.

[11] C.-Y. Zhao, W.-T. Ji, P.-H. Jin, W.-Q. Tao*, Heat transfer correlation of the falling film evaporation on a single horizontal smooth tube, Applied Thermal Engineering, 103 (2016) 177-186.

 

2015

[10]Ji WT, Numata M, He Y-L, Tao Wen-Quan*. Nucleate pool boiling and filmwise condensation heat transfer of R134a on the same horizontal tubes[J]. International Journal of Heat and Mass Transfer, 2015, 86: 744-754.

[9]Ji W-T, Li Z-Y, Qu Z-G, Tao W-Q*. Film condensing heat transfer of R134a on single horizontal tube coated with open cell copper foam[J]. Applied Thermal  Engineering, 2015, 76: 335-343.

[8]Ji W-T, Jacobi AM, He Y-L, Tao W-Q*. Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow[J]. International Journal of Heat and Mass Transfer, 2015, 88: 735-754.

[7]Ji W-T, Zhao C-Y, He Y-L, Tao WQ*. Experimental validation of Cooper correlation at higher heat flux[J]. International Journal of Heat and Mass Transfer, 2015, 90: 1241-1243.

 

2014
[6] Ji W-T, Zhao C-Y, Zhang D-C, Tao W-Q*. Condensation of R134a outside single horizontal titanium, cupronickel (B10 and B30), stainless steel and copper tubes[J]. International Journal of Heat and Mass Transfer, 2014, 77: 194-201.


2012

[5].Ji WT, Zhao CY, Zhang DC, He YL,Tao WQ*. Influence of condensate inundation on heat transfer of R134a condensing on three dimensional enhanced tubes and integral-fin tubes with high fin density[J]. Applied Thermal Engineering, 2012, 38 (0): 151-159.(SCI:917UV) 

 

2011
[4].Ji WT,Qu ZG*, Li ZY, Guo JF, Zhang DC, Tao WQ, Pool boiling heat transfer of R134a on single horizontal tube surfaces sintered with open-celled copper foam[J], International Journal of Thermal Science,2011,50(1): 2248-2255.(SCI:820XE)
[3].Ji WT, Zhang DC, He, YL, Tao WQ*, Prediction of Fully Developed turbulent Heat Transfer of Internal Helically Ribbed Tubes - an Extension of Gnielinski Equation, International Journal of Heat and Mass Transfer, 2011, 55 (4): 1375-1384.(SCI:895BC)

 

2010

[2].Ji WT, Zhang DC, Feng N, Guo J. F. Numata, M. Xi G. N. Tao W Q*. Nucleate Pool Boiling Heat Transfer of R134a and R134a PVE Lubricant Mixtures on Smooth and Five Enhanced Tubes[J]. Journal of Heat Transfer- ASME, 2010, 132 (11): 8.(SCI:672VM)

 

2007

[1].Zhang DC, Ji WT, Tao WQ*. Condensation heat transfer of HFC134a on horizontal low thermal conductivity tubes[J]. International Communications in Heat and Mass Transfer, 2007, 34 (8): 917-923.(SCI:212CD)