讲授课程

 《飞行器总体设计》本科生课程

《现代飞行器设计》研究生课程

《高超声速飞行器热结构分析及应用》研究生课程

期刊论文

期刊论文:在Smart Materials and Structures, International Journal of Solids and Structures, Journal of Applied Physics, Applied Physics Letters, Science China Mechanics, Phyisics and Astronomy等国际学术期刊上发表SCI论文20余篇。

 

期刊论文目录

[32] Chen W H., Liang X(*)., Shen S P., 2020. Forced vibration of piezoelectric and flexoelectric Euler-Bernoulli beams by dynamic Green functions. Acta Mechnica, (Under Review).

[31] Deng Q., Lv S H., Li Z Q., Tan K., Liang X., Shen S P(*)., 2020. The impact of flexoelectricity on materials, devices, and physics. Journal of Applied Physics, 128: 080902(Online).

[30] 陈春林,李肇奇,梁旭(通信作者),胡淑玲,申胜平,2020,悬臂梁挠曲电俘能器的力电耦合模型及性能分析。固体力学学报,41(2):159-169。

[29] 陈春林,梁旭(通信作者),胡淑玲,申胜平,2019,聚偏氟乙烯薄膜挠曲电效应的实验研究。实验力学,(出版中)

[28] Yang W J., Liang X(*)., Deng Q., Shen S P(*) 2020. Rayleigh waves in centrosymmetric flexoelectric materials. Ultrasonics (In Press)

[27] Chen Min et al.,...Liang X.,...Xia W J(*)., Wang X F(*).,  2019. Superhydrophobic Surface with Controllable Adhesion for Anti-Roof-Collapse Application in Flexible Microfluidics. Advanced Materials Interfaces 1901178.(online)

[26] Guo Q L., Koo J., Xie Z Q.,...Liang X.,...Huang Y G., Rogers J(*).,  2019. A Bioresorbable Magnetically Coupled System for Low-Frequency Wireless Power Transfer. Advanced Functional Materials, 1905451.(online)

[25] Lu J F., Liang X(*)., Yu W S., Hu S L., Shen S P(*)., 2019. Temperature dependence of flexoelectric coefficient for bulk polymer polyvinylidene fluoride. Journal of Physics D-Applied Physics, 52: 075302.

[24] Yang W J., Deng Q., Liang X(*)., Shen S P(*)., 2018. Lamb wave propagation with flexoelectricity and strain gradient elasticity considered. Smart Materials and Structures, 27: 085003.

[23] Yang W J., Hu T T., Liang X(*)., Shen S P(*)., 2018. On band structures of layered phononic crystals with flexoelectricity. Archive of Applied Mechanics, 88: 629-644.

[22] Yu P F., Chen J Y., Wang H L.,  Liang X(*)., Shen S P(*)., 2018. Path-independent integrals in electromechanical systems with flexoelectricity. International Journal of Solids and Structures, 147: 20-28.

[21] Hu T T., Yang W J., Liang X(*)., Shen S P(*)., 2017. Wave propagation in Flexoelectric Microstructure Solids. Journal of Elasticity, 130: 197-210.

[20] Liang X., Zhang R Z., Hu S L., Shen S P(*)., 2017. Flexoelectric energy harvesters based on Timoshenko laminated beam theory. Journal of Intelligent Material Systems and Structures, 28: 2064-2073.

[19] Yang W J., Liang X(*)., Shen S P(*)., 2017. Love waves in layered flexoelectric structures. Philosophical Magazine, 97: 3186-3209.

[18] Hu T T., Deng Q., Liang X(*)., Shen S P(*)., 2017. Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment. Journal of Applied Physics, 122: 055106.

[17] Liang X., Hu S L., Shen S P(*)., 2017. Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity. Smart Materials and Structures, 26: 035020.

[16] Zhang R Z., Liang X., Shen S P(*)., 2016. A Timoshenko dielectric beam model with flexoelectric effect. Meccanica, 51: 1181-1188.

[15] Liang X., Yang W J., Hu S L., Shen S P(*)., 2016. Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads. Journal of Physics D-Applied Physics, 49: 115307. (China Top Cited Author Award)

[14] Zhang S W., Xu M L(*).,  Ma G L., Liang X., Shen S P(*)., 2016. Experimental method research on transverse flexoelectric response of poly(vinylidene fluoride). Japanese Journal of Applied Physics, 55: 071601.

 [13] Lu J F., Lv J Y.,  Liang X(*)., Xu M L., Shen S P(*)., 2015. Improved approach to measure the direct flexoelectric coefficient of bulk polyvinylidene fluoride. Journal of Applied Physics, 119: 094104.

 [12] Yang W J., Liang X(*)., Shen S P(*)., 2015. Electromechanical response of piezoelectric nanoplates with flexoelectricity. Acta Mechanica, 226: 3097-3110.

  1. [11] Lu J F., Liang X(*)., Hu S L(*)., 2015. Flexoelectricity in Solid Dielectrics: From Theory to Applications. CMC-Computer, Mechanics and Continua, 45(3): 145-162. 
  1. [10] Zhang S W., Xu M L(*)., Liang X., Shen S P., 2015. Shear flexoelectric response mu(1211) in polyvinylidene fluoride. Journal of Applied Physics, 117: 204102. 
  1. [9] Zhang S W., Liang X., Xu M L(*)., Feng B., Shen S P., 2015. Shear flexoelectric response along 3121 direction in polyvinylidene fluoride. Applied Physics Letters, 107: 142902. 
  1. [8] Liang X., Hu S L., Shen S P(*)., 2015. Size-dependent buckling and vibration of piezoelectric nanostructures due to flexoelectricity. Smart Materials and Structures, 24: 105012. 
  1. [7] Liang X., Hu S L., Shen S P(*)., 2015. Surface effects on the post-buckling of piezoelectric nanowires. Physica E-Low-Dimensional Systems & Nanostructures, 69: 61-64. 
  1. [6] Liang X., Hu S L., Shen S P(*)., 2014. Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Materials and Structures, 23: 035020. 
  2. [5] Liang X., Shen S P(*)., 2013. Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity. International Journalof Applied Mechanics, 5(2): 1350015.
  1. [4] Liang X., Hu S L., Shen S P(*)., 2013. A new Bernoulli-Euler beam model based on a simplified strain gradient elasticity theory and its applications. Composite Structures, 111: 317-323. 
  1. [3] Liang X., Hu S L., Shen S P(*)., 2013. Bernoulli-Euler Dielectric Beam Model Based on Strain-Gradient Effect. Journal of Applied Mechanics-Transactions of the ASME, 80(4): 044502. 
  2. [2] Liang X.,  Shen S P(*)., 2013. Dynamic analysis of Bernoulli-Euler piezoelectric nanobeam with electrostatic force. Science China-Physics Mechanics & Astronomy, 56(10): 1930-1937.
    1. [1] Liang X., Shen S P(*)., 2012. Effect of electrostatic force on a piezoelectric nanobeam. Smart Materials and Structures, 21: 015001. 
科研项目
项目编号 项目名称 项目来源 起讫时间 承担角色 项目类别
11602189 功能梯度材料与结构中的挠曲电效应及其表征 国家自然科学基金项目2017-1~负责人纵向项目
0 医用柔性自供电挠曲电传感器的力电耦合性能研究 中央高校基本科研业务费专项资金资助2016-3~负责人纵向项目
2015M580835 纳米俘能器的力电转换机理及性能研究 中国博士后科学基金面上资助(一等)2016-1~负责人纵向项目
共有3条记录 共有1页面 每页面显示 条记录 页索引: 1 链接到第 页面
专利
名称 申请号 专利类型 申请日期
利用挠曲电效应的霍普金森杆应力波测量系统和测量方法 201410712856.1发明 2014.11.28
一种高灵敏度叠层式挠曲电压力传感器 201410290568.1发明 2014.06.25
一种基于测量电荷的挠曲电系数直接测量装置及方法 201410114608.9发明 2014.03.25
一种高精度基于金属弹性元件的挠曲电式压力传感器 201310656546.8发明 2013.12.06
一种基于微机电系统的挠曲电式微压力传感器 201310655468.X发明 2013.12.06
共有5条记录 共有1页面 每页面显示 条记录 页索引: 1 链接到第 页面
版权所有:西安交通大学 站点设计:网络信息中心 陕ICP备05001571号 联系电话:82668579 82668902 QQ群号:496666580
欢迎您访问我们的网站,您是第 位访客
推荐分辨率1024*768以上 推荐浏览器IE7 Firefox 以上