Research and Publications

Flexo-electronics and devices; Smart Materials and Structures;

Surface and Flexoelectricity; Energy Harvesting; 

Composite Materials and Structures;

 

Publications:

 

[26] Chen Min et al.,...Liang X.,...Xia W J(*)., Wang X F(*).,  2019. Superhydrophobic Surface with Controllable Adhesion for Anti-Roof-Collapse Application in Flexible Microfluidics. Advanced Materials Interfaces 1901178.(online)

[25] Guo Q L., Koo J., Xie Z Q.,...Liang X.,...Huang Y G., Rogers J.,  2019. A Bioresorbable Magnetically Coupled System for Low-Frequency Wireless Power Transfer. Advanced Functional Materials, 1905451.(online)

[24] Lu J F., Liang X(*)., Yu W S., Hu S L., Shen S P(*)., 2019. Temperature dependence of flexoelectric coefficient for bulk polymer polyvinylidene fluoride. Journal of Physics D-Applied Physics, 52: 075302.

[23] Yang W J., Deng Q., Liang X(*)., Shen S P(*)., 2018. Lamb wave propagation with flexoelectricity and strain gradient elasticity considered. Smart Materials and Structures, 27: 085003.

[22] Yang W J., Hu T T., Liang X(*)., Shen S P(*)., 2018. On band structures of layered phononic crystals with flexoelectricity. Archive of Applied Mechanics, 88: 629-644.

[21] Yu P F., Chen J Y., Wang H L.,  Liang X(*)., Shen S P(*)., 2018. Path-independent integrals in electromechanical systems with flexoelectricity. International Journal of Solids and Structures, 147: 20-28.

[20] Hu T T., Yang W J., Liang X(*)., Shen S P(*)., 2017. Wave propagation in Flexoelectric Microstructure Solids. Journal of Elasticity, 130: 197-210.

[19] Liang X., Zhang R Z., Hu S L., Shen S P(*)., 2017. Flexoelectric energy harvesters based on Timoshenko laminated beam theory. Journal of Intelligent Material Systems and Structures, 28: 2064-2073.

[18] Yang W J., Liang X(*)., Shen S P(*)., 2017. Love waves in layered flexoelectric structures. Philosophical Magazine, 97: 3186-3209.

[17] Hu T T., Deng Q., Liang X(*)., Shen S P(*)., 2017. Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment. Journal of Applied Physics, 122: 055106.

[16] Liang X., Hu S L., Shen S P(*)., 2017. Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity. Smart Materials and Structures, 26: 035020.

[15] Zhang R Z., Liang X., Shen S P(*)., 2016. A Timoshenko dielectric beam model with flexoelectric effect. Meccanica, 51: 1181-1188.

[14] Liang X., Yang W J., Hu S L., Shen S P(*)., 2016. Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads. Journal of Physics D-Applied Physics, 49: 115307. (China Top Cited Author Award)

[13] Zhang S W., Xu M L(*).,  Ma G L., Liang X., Shen S P(*)., 2016. Experimental method research on transverse flexoelectric response of poly(vinylidene fluoride). Japanese Journal of Applied Physics, 55: 071601.

 [12] Lu J F., Lv J Y.,  Liang X(*)., Xu M L., Shen S P(*)., 2015. Improved approach to measure the direct flexoelectric coefficient of bulk polyvinylidene fluoride. Journal of Applied Physics, 119: 094104.

 [11] Yang W J., Liang X(*)., Shen S P(*)., 2015. Electromechanical response of piezoelectric nanoplates with flexoelectricity. Acta Mechanica, 226: 3097-3110.

  1. [10] Lu J F., Liang X(*)., Hu S L(*)., 2015. Flexoelectricity in Solid Dielectrics: From Theory to Applications. CMC-Computer, Mechanics and Continua, 45(3): 145-162. 
  1. [9] Zhang S W., Xu M L(*)., Liang X., Shen S P., 2015. Shear flexoelectric response mu(1211) in polyvinylidene fluoride. Journal of Applied Physics, 117: 204102. 
  1. [8] Zhang S W., Liang X., Xu M L(*)., Feng B., Shen S P., 2015. Shear flexoelectric response along 3121 direction in polyvinylidene fluoride. Applied Physics Letters, 107: 142902. 
  1. [7] Liang X., Hu S L., Shen S P(*)., 2015. Size-dependent buckling and vibration of piezoelectric nanostructures due to flexoelectricity. Smart Materials and Structures, 24: 105012. 
  1. [6] Liang X., Hu S L., Shen S P(*)., 2015. Surface effects on the post-buckling of piezoelectric nanowires. Physica E-Low-Dimensional Systems & Nanostructures, 69: 61-64. 
  1. [5] Liang X., Hu S L., Shen S P(*)., 2014. Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Materials and Structures, 23: 035020. 
  2. [4] Liang X., Shen S P(*)., 2013. Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity. International Journalof Applied Mechanics, 5(2): 1350015.
  1. [3] Liang X., Hu S L., Shen S P(*)., 2013. A new Bernoulli-Euler beam model based on a simplified strain gradient elasticity theory and its applications. Composite Structures, 111: 317-323. 
  1. [2] Liang X., Hu S L., Shen S P(*)., 2013. Bernoulli-Euler Dielectric Beam Model Based on Strain-Gradient Effect. Journal of Applied Mechanics-Transactions of the ASME, 80(4): 044502. 
  2. [1] Liang X., Shen S P(*)., 2012. Effect of electrostatic force on a piezoelectric nanobeam. Smart Materials and Structures, 21: 015001. 
(1.)Basic Information

 

 

 

Associate Professor. Liang Xu

School of Aerospace Engineering

1State Key Lab for Strength and Vibration of Mechanical Structures

2Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures

Xi'an Jiaotong University

No. 28 Xianning West Road, Xi'an 710049, Shaanxi, P.R. China

(7.)Contact

School of Aerospace Engineering

Deparment of Aeronautics

Room East 415

Email: xliang226@xjtu.edu.cn

(3.)Education

2009, Xi'an Jiaotong University, Aerocraft Design and Engineering, B.S.;

2014, Xi'an Jiaotong University, Solid Mechanics, Ph. D.

版权所有:西安交通大学 站点设计:网络信息中心 陕ICP备05001571号 联系电话:82668579 82668902 QQ群号:496666580
欢迎您访问我们的网站,您是第 位访客
推荐分辨率1024*768以上 推荐浏览器IE7 Firefox 以上