我的新闻

[小组新闻] 2019年Applied Energy发表论文获AEii国际应用能源微信平台最新原创论文推荐


2019-07-05

 

【Applied Energy最新原创论文】新型高效槽式太阳能甲醇蒸汽重整制氢吸热/反应器三维数值研究

原文链接

 

原文标题:Three-dimensional numerical study on a novel parabolic trough solar receiver-reactor of a locally-installed Kenics static mixer for efficient hydrogen production

原文链接:

https://www.sciencedirect.com/science/article/pii/S0306261919308414

 

                                                                                                          Highlights

                                            (1) A novel solar receiver-reactor of a locally-installed Kenics static mixer is proposed. 

                                            (2) A three-dimensional comprehensive model was established for solar receiver-reactors. 

                                            (3) Effects of solar flux nonuniformities and static mixers were studied comprehensively. 

                                            (4) Better comprehensive characteristics and performance are obtained in novel systems. 

                                            (5) The mechanism is that uniformities of a series of key field variables are improved.



摘 要

 

本文提出了一种局部配置Kenics静态混合器(Kenics static mixer, KSM)的新型槽式太阳能吸热/反应器,以用于高效太阳能热化学产氢。结合甲醇-水蒸气重整反应动力学模型,基于有限容积法和蒙特卡罗光线追迹法构建了槽式太阳能甲醇蒸汽重整制氢光-热-化学反应全过程三维数值分析综合模型。考虑甲醇流速和催化剂烧结温度等因素限制,初步应用所验证数学模型,研究了非均匀太阳能能流密度分布和局部安装KSM对槽式太阳能甲醇蒸汽重整制氢过程光-热-化学反应综合性能的影响机制。通过对聚光太阳能能流密度分布不均匀性的初步优化,集热器光学效率和太阳能能流分布不均匀性分别改善了6.58%和30.42%,并有助于提升热化学反应综合性能。针对所优化或未优化的槽式太阳能甲醇蒸汽重整制氢吸热/反应器,局部安装KSM均可进一步提升热化学反应综合特性。在所研究条件下,甲醇转化率最大提升了6.92%。研究结果表明,除克服仅局部安装的KSM所产生流动阻力而多消耗少量泵功外,新型槽式太阳能甲醇蒸汽重整制氢吸热/反应器的整体运行变得更加安全和高效。从机理层面分析,局部安装KSM的新型吸热/反应器可有效改善系统内光-热-化学反应各场均匀性,从而为提升太阳能甲醇蒸汽重整制氢系统综合性能提供了一种有效的解决方案。

 

Abstract

In this paper, a novel parabolic trough solar receiver-reactor (PTSRR) system of a locally-installed Kenics static mixer (KSM) is proposed for efficient solar thermal hydrogen production. A three-dimensional comprehensive model was established for PTSRRs of the methanol-steam reforming reaction (MSRR) for hydrogen production, by combining the Finite Volume Method and the Monte Carlo ray-tracing method with a MSRR comprehensive kinetic model. The validated model was preliminarily applied to study the effects and mechanisms of the concentrated solar flux nonuniformity and the locally-installed KSM on PTSRR photo-thermal-chemical comprehensive characteristics and performance, taking the methanol flow rate and the catalyst sintering temperature limitation into account. With a preliminary optimization on the concentrated solar flux nonuniformity, the optical efficiency and the solar flux nonuniformity are improved by 6.58% and 30.42% respectively. It is further revealed that these PTSRRs of better concentrated solar flux density nonuniformity also have better thermal-chemical comprehensive characteristics and performance. Novel PTSRRs of the locally-installed KSM have better comprehensive characteristics and performance than corresponding original PTSRRs or even optimized PTSRRs, with a maximum increase in the methanol conversion rate of 6.92%. It thus will operate more safely and more efficiently, by the cost of a little more pump power to overcome corresponding larger flow resistance caused by the locally-installed KSM. From the mechanism, this kind of novel PTSRR of a locally-installed KSM provides a useful option of high potential for improving uniformities of a series of key field variables in the whole photo-thermal-chemical conversion process, and thus improves the comprehensive characteristics and performance of PTSRRs.


KEYWORDS:

 

Solar receiver-reactor

Kenics static mixer

Computational fluid dynamics

Monte Carlo ray-tracing method

Field variable uniformity

Hydrogen production



Fig. 1. The schematic diagram of the novel parabolic trough solar receiver-reactor of the locally-installed Kenics static mixer (KSM). 

 

Fig. 2 Schematic of optical, thermal and chemical sub-process network of PTSRRs of MSRR for hydrogen production

 

Fig. 3 Comparisons on uniformity indexes of the packed bed temperature(σT), the gas mixture velocity(σU), the methanol mass fraction (σCH3OH) and the hydrogen mass fraction(σCH2)

 

Fig.4 Visible three-dimensional distributions of the gas mixture velocity in the KSM mixing-zone, distributions of the gas mixture temperature, the methanol mass fraction and the hydrogen mass fraction near locally-installed KSM walls

—  END

 关于我们 

 

  本期小编:白章、姜铭琨

                                          

《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975 年创刊,影响因子8.426,高被引论文ESI全球工程期刊排名第4,谷歌学术全球学术期刊第91,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。