Blank

 

         Dr. Lin-Jie Zhang
         Associate Professor
         Welding Institute
         School of Materials Science and Engineering
         Xi'an Jiaotong University
         Xi'an, Shaanxi, 710049, P.R. China
         Mobile: +86-18109271105; Fax: +86-029-82668807
                                        Home: http://gr.xjtu.edu.cn/web/zhanglinjie

  

Experience

01/2015—               Materials Processing Engineering, Xi’an Jiaotong University, Associate Professor.

01/2012—01/2013 Materials Processing Engineering, Korea Advanced Institute of Science and Technology, Postdoctoral Researcher.

07/2008—12/2014 Materials Processing Engineering, Xi’an Jiaotong University, Lecturer.

04/2006—04/2007 Materials Processing Engineering, Osaka University, Researcher.

 

Education

03/2003—03/2008 Materials Processing Engineering, Xi’an Jiaotong University, Ph.D.

09/2000—03/2003 Materials Processing Engineering, Northwestern Polytechnical University, M.S.

09/1991—06/1995 Welding technology and equipment, Harbin Institute of Technology, Bachelor.

 

Research interests

1)     Laser welding & Laser hybrid welding of copper, aluminum, titanium, molybdenum, ultra-high strength steel, etc.

2)     Wire and laser additive manufacturing.

3)     Molten weld pool behavior prediction and control based on CFD simulation of various welding processes.

4)     Metallurgical and mechanical optimization of thermal processed structures by combining the CFD simulations of processes and FEM analysis of structures.

  

Representative Publications

 2017

[43] Jian-Nan Yang, Lin-Jie Zhang*, Jie Ning, Qing-Lin Bai, Xian-Qing Yin, Jian-Xun Zhang. Single pass laser-MIG hybrid welding of 8-mm thick pure copper (T2) without preheating: Microstructure and properties [J]. Applied Thermal Engineering, 2017,126: 867–883.
[42] Ning-Nian Gou, Lin-Jie Zhang*, Jian-Xun Zhang. Increased quality and welding efficiency of laser butt welding of 2205/X65 bimetallic sheets with a lagging MIG arc [J]. Journal of Materials Processing Technology, 2017, (Available online 16 August 2017).
[41] Ning Jie, Zhang Linjie*, Zhang Xingjun. Energy Coupling Behavior in Modulated Fiber Laser Welding of High Reflectivity AZ31 Magnesium Alloy [J]. RARE METAL MATERIALS AND ENGINEERING, 2017, 46(5): 1437-1444.
[40] Jian-Nan Yang, Lin-Jie Zhang*, Jie Ning, Qing-Lin Bai, Xian-Qing Yin, Jian-Xun Zhang. Single-pass hybrid laser-MIG welding of 8-mm-thick pure copper (T2) without preheating: weld geometry and integrity [J]. International Journal of Advanced Manufacturing Technology, 2017,91(9-12):3749-3773
[39] Ning J, Zhang L J*, Bai Q L, et al. Comparison of the microstructure and mechanical performance of 2A97 Al-Li alloy joints between autogenous and non-autogenous laser welding[J]. Materials & Design, 2017, 120:144–156.
[38] Jie Ning, Lin-Jie Zhang*, Gui-chuan Jiang, Miao-xia Xie, Xian-qing Yin, Jian-xun Zhang. Narrow gap multi-pass laser butt welding of explosion welded CP-Ti/Q235B bimetallic sheet by using a copper interlayer [J]. Journal of Alloys and Compounds, 2017, 701: 587-602.
[37] Bai QL, Zhang L J*, Xie MX, et al. An investigation into the inhomogeneity of the microstructure and mechanical properties of explosive welded H62-brass/Q235B-steel clad plates [J]. International Journal of Advanced Manufacturing Technology, 2017, 90(5): 1351-1363.
[36] Jie Ning, Lin-Jie Zhang*, Meng-Jun Sun, Xian-Qing Yin, Jing Niu, Jian-Xun Zhang. Studies of the characteristics and size effects of softened zone of laser welded 20MnTiB joint [J]. Journal of Materials Processing Technology, 2017, 243: 405-419.
[35] Jie Ning, Lin-jie Zhang*, Miao-xia Xie, Han-Xin Yang, Xian-qing Yin, Jian-xun Zhang. Microstructure and property inhomogeneity investigations of bonded Zr/Ti/steel trimetallic sheet fabricated by explosive welding [J]. Journal of Alloys and Compounds, 2017, 698: 835-851.
[34]  Ning J., Zhang L. J.*, Na S. J., Yin X. Q., Niu J., Zhang J. X., et al..Numerical study of the effect of laser-arc distance on laser energy coupling in pulsed Nd:YAG laser/TIG hybrid welding [J]. International Journal of Advanced Manufacturing Technology, 2017, 91(1-4):1129-1143.
2016
[33] Zhang L J, Bai Q L*, Ning J, et al. A comparative study on the microstructure and properties of copper joint between MIG welding and laser-MIG hybrid welding [J]. Materials & Design, 2016, 110:35-50.
[32] Ning J, Zhang L J*, Wang A, et al. Effects of double-pass welding and extrusion on properties of fiber laser welded 1.5-mm thick T2 copper joints [J]. Journal of Materials Processing Technology, 2016, 237:75-87.
[31] Zhang L J, Na S J*, Zhang J X. Using arc pressure to investigate the effects of energy source distance on arc plasma behaviour in pulsed Nd:YAG laser/tungsten inert gas (TIG) arc hybrid welding [J]. Lasers in Engineering, 2016, 33(4-6): 279-292.
[30] Zhang L J, Zhang G F*, Bai X Y, et al. Effect of the process parameters on the three-dimensional shape of molten pool during full-penetration laser welding process [J]. International Journal of Advanced Manufacturing Technology, 2016, 86(5-8):1273-1286.
[29] Zhang Gui-Feng, Zhang Lin-Jie*, et al. Development of friction stir spot brazing (FSSB) [J]. Materials & Design, 2016, 94: 502-514.
[28] Gou N N, Zhang J X*, Zhang L J, et al. Single pass fiber laser butt welding of explosively welded 2205/X65 bimetallic sheets and study on the properties of the welded joint [J]. International Journal of Advanced Manufacturing Technology, 2016, 86(9-12):1-11. 

[27] Xie Miao-Xia, Zhang Lin-Jie*, et al. Microstructure and mechanical properties of CP-Ti_X65 bimetallic sheets fabricated by explosive welding and hot rolling [J]. Materials & Design, 2015, 87:181-197.

 [26] Zhang Lin-Jie, Zhang Gui-Feng*, et al. Microstructure and properties of the laser butt welded 1.5-mm thick T2 copper joint achieved at high welding speed [J]. Materials & Design, 2015, 88:720-736.

 [25] Zhang L J, Ning J*, et al. Single pass hybrid laser–MIG welding of 4-mm thick copper without preheating [J]. Materials &  Design, 2015, 74: 1-18.

[24] Wu Bo, Zhang Lin-Jie*, Zhang Jian-Xun, et al. An investigation of ultrasonic nanocrystal surface modification machining process by numerical simulation [J]. Advances in Engineering Software, 83:59-69, 2015.

[23] Liu J, Gao X L, Zhang L J*, et al. Effects of the Heterogeneity in the Electron Beam Welded Joint on Mechanical Properties of Ti6Al4V Alloy [J]. Journal of Materials Engineering and Performance, 2015, 24(1):319-328.

[22] Zhang GF*, Liao XJ, Chen B, Zhang L J, et al. Approach to In-Situ Producing Reinforcing Phase Within an Active-Transient Liquid Phase Bond Seam for Aluminum Matrix Composite[J]. Metallurgical and Materials Transactions A, 2015, 46(6):2568-2578.

[21]Powell, J., Ilar, T., Frostevarg, J., Torkamany, M. J., Na, S J, & Petring, D., L J Zhang, et al. Powell J, Ilar T, Frostevarg J, et al. Weld root instabilities in fiber laser welding[J]. Journal of Laser Applications, 2015, 27: S29008.

2014

[20] Zhang L J*, Zhang, J. X., Gumenyuk, A., Rethmeier, M., Na, S. J*. Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser [J]. Journal of Materials Processing Technology, 2014, 214(8): 1710-1720.

[19] Zhang L J*, Pei Q, Zhang J X, et al. Study on the microstructure and mechanical properties of explosive welded 2205/X65 bimetallic sheet[J]. Materials & Design, 2014, 64: 462-476.

[18] Zhang L J, Zhang X J, Ning J*, et al. Modulated fiber laser welding of high reflective AZ31[J]. The International Journal of Advanced Manufacturing Technology, 2014: 1-13.

[17] Zhang L J, Gao X L*, Sun M J, et al. Weld outline comparison between various pulsed Nd: YAG laser welding and pulsed Nd: YAG laser–TIG arc welding [J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(1-4): 153-160.

[16] Liu J, Gao X L, Zhang L J*. On the Use of Infrared Thermography for Analysis of Fatigue Damage in Ti6Al4V-Welded Joints [J]. Journal of Materials Engineering and Performance, 2014, 23(8):2965-2972.

[15] Gao X L, Zhang L J*, Liu J, et al. Porosity and microstructure in pulsed Nd: YAG laser welded Ti6Al4V sheet [J]. Journal of Materials Processing Technology, 2014, 214(7): 1316-1325.

[14] Gao X L, Zhang L J*, Liu J, et al. Effects of weld cross-section profiles and microstructure on properties of pulsed Nd: YAG laser welding of Ti6Al4V sheet [J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(5-8): 895-903.

[13] Tan L, Zhang L J*, Zhang J X, et al. Effect of geometric construction on residual stress distribution in designing a nuclear rotor joined by multipass narrow gap welding[J]. Fusion Engineering and Design, 2014, 89(4): 456-465.

[12] Liu J, Gao X L, Zhang L J*, et al. A study of fatigue damage evolution on pulsed Nd: YAG Ti6Al4V laser welded joints [J]. Engineering Fracture Mechanics, 2014, 117: 84-93.

[11] Gao X L, Liu J, Zhang L J*, et al. Effect of the overlapping factor on the microstructure and mechanical properties of pulsed Nd: YAG laser welded Ti6Al4V sheets [J]. Materials Characterization, 2014, 93: 136-149.

[10] Bo Wu, Jianxun Zhang*, Linjie Zhang, et al. Effect of ultrasonic nanocrystal surface modification on surface and fatigue properties of quenching and tempering S45C steel [J]. Applied Surface Science, 2014, 321: 318-330.

2013

[9] Gao X L, Zhang L J*, Liu J, et al. A comparative study of pulsed Nd: YAG laser welding and TIG welding of thin Ti6Al4V titanium alloy plate [J]. Materials Science and Engineering: A, 2013, 559: 14-21.

2011

[8] Zhang L J*, Zhang J X, Zhang G F, et al. An investigation on the effects of side assisting gas flow and metallic vapour jet on the stability of keyhole and molten pool during laser full-penetration welding [J]. Journal of Physics D: Applied Physics, 2011, 44(13): 135201.

[7] Zhang L J, Zhang J X, Wu B, et al. Simulation on the Melt Flow in Laser Full Penetration Welding with a Model Including a Non-Rotational Symmetry Keyhole Based on Energy Balance[J]. RARE METAL MATERIALS AND ENGINEERING, 2011, 40: 120-124.

2010

[6] L J ZhangJ X ZhangH SerizawaH Murakawa*. Efficiency comparison between iterative substructure method and commercial software [J]. Transactions of JWRI, 2010, 39(2): 187-189.

2009

[5] Zhang L J*, Zhang J X, Gong S L. Mechanism study on the effects of side assisting gas velocity during CO2 laser welding process [J]. Journal of Applied Physics, 2009, 106(2): 024912.

2007

[4] L J ZhangJ X ZhangH Kalaoui*, et al. A comparative study of the effects of weld geometry on the residual deformation of automotive gear-case assembly due to high-energy welding [J]. Journal of Materials Processing Technology, 2007, 190(1-3):109-116.

[3] Linjie Zhang, Jianxun Zhang, et al. Parametric studies of welding distortion in a fillet welded structure based on FEA using Iterative Sub-structure Method [J]. Science and Technology of Welding and Joining, 2007, 12(8):703-707.

2006

 [2] Zhang LJ, Zhang JX, Murakawa H*. An Analysis of the Role of Side Assisting Gas during CO2 Laser Welding [J]. Transactions of JWRI, 2006, 35:89-94.

[1] Linjie Zhang*, Jianxun Zhang, et al. Numerical and experimental study of the effects of side assisting gas during laser welding [J]. Modelling and Simulation in Materials Science and Engineering, 2006, 14(5): 875-890.

 

版权所有:西安交通大学 站点设计:网络信息中心 陕ICP备05001571号 IPhone版本下载 IPhone版本下载    Android版本下载 Android版本下载
欢迎您访问我们的网站,您是第 位访客
推荐分辨率1024*768以上 推荐浏览器IE7 Fifefox 以上