Basic Information

Professor (full), Dr. Qiang Zhou

Born in Jining, Shandong, 1982

 

Recipient of the National Youth Awards (2016)

Selected as "Young Talent support plan" professor of XJTU in June 2015

Contact

School of Chemical Engineering and Technology, Xi’an Jiaotong University

Email:zhou.590@mail.xjtu.edu.cn

              zhouqiangosu@163.com
Address:28 West Xianning Road, Xi’an 710049, Shaanxi, P. R. China

 

Research Interests

1. Computational & Experimental Multiphase Flow;
2. Granular Flows; Gas-Solid Flows; Fluidizations; Origin and Effects of Meso-scale Structures
;

3. Lattice Boltzmann Method; Imersed Boundary Method; Particle Resolved-Direct Numerical Simulations.
 

You're welcome to join us if you have interests in exploring the interaction between the solid phase and the fluid phase in gas-solid flows, for more details, see the page of Open Positions.

 

Research Platform:

State Key Laboratory of Multiphase Flow in Power Engineering

Shaanxi Key Laboratory of Energy Chemical Process Intensification
 

Description of the detailed research directions in the area of fundamentals of gas-solids flows:

Gas-solid flows have been attracting more and more attention due to their widespread use and popularity in various industrial processes, such as coal gasification, food production, pharmaceutical processing, environmental and energy industries, and so on. For accurate simulations of gas-solids flows in real-world reactors, the interaction between the gas phase and the solid phases needs to be formulated and installed as an external model in numerical methods that is capable of handling large-scale flows. Our group focuses on exploring the effects of the factors that could influence the interphase interaction, with drag as the primary forces between the two phases. The factors have been considered are particle rotation, particle fluctuation inhomogeneous structures and the geometries of particles. Out of these factors, it is found that inhomogeneous structures give the most significant changes of the drag force. In most occasions, it produces profound drag reduction compared to the drag forced obtained in homogenous flows. Inhomogeneous structures are composed of clusters of particles and dilute regions. It forms at the meso-scale of flows, a scale larger than the smallest scale of the flow, the particle scale and smaller than the largest scale of the flow, the reactor scale. The inherent cause of the Inhomogeneous structures is mainly related to inelastic collision between particles and the nonlinear drag between the two phases. The meso-scale inhomogeneity of the gas-solid flows, though is a widespread phenomenon in industrial processes and nature, is still poorly understood. Continunous numerical and experimental efforts are required in this area. Our group plans to use theoretical, numerical as well as experimental methods to perform careful analysis on the drag reduction mechanism due to structures in designed flows. The ultimate goal is to develop a structure-based drag model that can give accurate prediction on interaction between the two phases on various meso-scales.

 

Education

2004.9-2010.7 PhD in Fluid Mechanics, School of Aerospace Engineering,

                           Tsinghua University, Beijing, China
                            Supervisor: Feng He

2000.9-2004.7 Bachelor in Engineering Mechanics, College of Mechanical and Energy Engineering,

                            Chu Kechen Honors College,

                            Zhejiang University, Hangzhou, China

                            Supervisor: Jianzhong Lin
 

Work Experience

10/2016-present, Professor, Department of Chemical Engineering,

                                 Xi’an Jiaotong University, China

08/2015-09/2016, Research Fellow, Department of Chemical Engineering,

                                 Xi’an Jiaotong University, China

01/2014-08/2015, Research Associate, Department of Chemical and Biomolecular Engineering,

                                 The Ohio State University, U.S.

                                 Supervisor: Liang-Shih Fan
10/2010-12/2013, Post-doctoral Researcher, Department of Chemical and Biomolecular Engineering,

                                 The Ohio State University, U.S.

                                 Supervisor: Liang-Shih Fan
 

Honors

2014, American Institute of Chemists (AIC) Foundation Awards-Outstanding Postdoctoral Award. (http://www.theaic.org/award_winners/student_awards2014.html)
2012, Outstanding Post Doctoral Researcher, Department of Chemical & Biomolecular Engineering, The Ohio State University, USA
 

Journal Publications

For pdf files of these papers see https://www.researchgate.net/profile/Qiang_Zhou9

S. Du, J. Wang, Y. Yu, Q. Zhou*, 2023 Coarse-grained CFD-DEM simulation of coal and biomass co-gasification process in a fluidized bed reactor: Effects of particle size distribution and operating pressure, Renewable Energy, 202, 483-498.

X. Chen, T. Ma, Q. Zhou*, 2022 Theoretical and numerical analysis of drag force at the interface between the dilute and dense phases, Physics of Fluids, 34, 093306.

F. Duan, Y. Yu, X. Chen, Q. Zhou*, 2022 Particle-particle drag force in inertial bidisperse gas-particle suspensions, Journal of Fluid Mechanicsdoi:10.1017/jfm.2022.874.

T. Ma, Y. Li, Q. Zhou, X. Chen*, 2022 Microscale drag model considering the effect of interface between dense and dilute phases for gas-solid suspensions at moderate Reynolds numbers, International Journal of Multiphase Flow, 157, 104270.

Y. Li, S. Han, Y. Yu, X. He, Z. Huang, Q. Zhou*, 2022 Modeling filtered heat transfer model by considering dimensionless temperature difference between gas and solid phases, AIChE Journal, e17917.

Z. Huang, Q. Huang, Y. Yu, Y. Li, Q Zhou*, 2022 A comparative study of models for heat transfer in bidisperse gas–solid systems via CFD-DEM simulations. Axioms, 11, 179. DOI: 10.3390/axioms11040179

L. Zhao, Q. Zhou, B. Yang, X. Chen*, 2022 Inhomogeneous drag correction based on surrounding solid volume fraction in low-Reynolds-number regime. Powder Technology, 117292.

S. Du, L. Zhao, X. H. Chen, B. Yang, Q. Zhou*, 2022 Effect of Stefan flow on the drag force of single reactive particle surrounded by a sea of inert particles. Chemical Engineering Science, 253, 117546.

L. Wang, M. Jiang, Q. Zhou*, 2022 Development of a filtered drag model considering effect of the solid shear rate. Particuology71, 63-74.

T. Fu, Y. T. Tsai, Q. Zhou*, 2022 Numerical simulation of magnesium dust dispersion and explosion in 20 L apparatus via an Euler–Lagrange method. Energies, 15, 402. 

Y. T. Tsai, T. Fu, Q. Zhou*, 2021, Explosion characteristics and suppression of hybrid Mg/H2 mixtures. International Journal of Hydrogen Energy, 46, 38934-38943.

M. Jiang, Y. Zhang, Y. Yu, Q. Zhou*, 2021 A scale-independent modeling method for filtered drag in fluidized gas-particle flows. Powder Technology, 394, 1050-1076.

D. Zhang, T. Min, M. Jiang, Y. Yu, Q. Zhou*, 2021 Numerical simulation of fluidized bed gasifier coupled with solid oxide fuel cell fed with solid carbon. Energies, 14(10), 2800.

Y. Yu, Y. Li, X. Chen, F. Duan, Q. Zhou*, 2021 Improvement of the Coarse-Grained Discrete Element Method for Frictional Particles. Industrial & Engineering Chemistry Research, 60, 5651-5664.

Z. Huang, L. Wang, Y. Li, Q. Zhou*, 2021 Direct numerical simulation of flow and heat transfer in bidisperse gas-solid systems. Chemical Engineering Science, 239, 116645.

S. Du, S. Yuan, Q. Zhou*, 2021 Numerical investigation of co-gasification of coal and PET in a fluidized bed reactor. Renewable Energy, 172, 424-439.

L. Zhao, X. Chen, Q. Zhou*, 2021 Inhomogeneous drag models for gas-solid suspensions based on sub-grid quantities. Powder Technology, 385, 170-184.

X. H. Chen, S. Du, L. Zhao, B. Yang, Q. Zhou*, 2021 Effect of Stefan flow on the drag force in flow past random arrays of spheres. Chemical Engineering Journal, 412, 128691.

Z. Huang, L. Wang, Q. Zhou*, 2021 Development of a filtered reaction rate model for reactive gas-solid flows based on fine-grid simulations. AIChE Journal, e17185.

Y. Li,Y. Yu,C. Zhang,Z. Huang,Q. Zhou*,2021 Improved filtered mesoscale interphase heat transfer model. Particuology, 57, 176-186.

F. Duan, L. Zhao, X. Chen, Q. Zhou*, 2020 Fluid-particle drag and particle-particle drag in low-Reynolds-number bidisperse gas-solid suspensions. Physics of Fluids, 32, 113311.

Romana Basit, X. Li, Z. Huang, Q. Zhou*, 2020 Heat transfer studies of arrays of prolate particles in gas-solid flows. Mathematical Problems in Engineering, 2020, 6639172, Special Issue entitled "Recent Advances in Multiphase Flows in Engineering"

Y. Yu, L. Zhao, Y. Li, Q. Zhou*, 2020 A model to improve granular temperature in CFD-DEM simulations. Energies, 13, 4730. Special Issue entitled "DEM of Multiphase Flows and Powder Processing" by Guest Editor Prof. Yutaka Tsuji.

X. Li, M. Jiang, Z. Huang, Q. Zhou*, 2021 Effect of particle orientation on the drag force in random arrays of oblate ellipsoids in low-Reynolds-number flows. AIChE Journal, 67(1), e17040.

X. Chen, N. Song, M. Jiang, Q. Zhou*, 2020 Theoretical and numerical analysis of key sub-grid quantities' effect on filtered Eulerian drag force. Powder Technology, 372, 15-31.

Y. Zhang, M. Jiang, X. Chen, Y. Yu, Q. Zhou*, 2020 Modeling of the filtered drag force in gas-solid flows via a deep learning approach. Chemical Engineering Science, 225, 115835.

Y. Yu, Y. Li, M. Jiang, Q. Zhou*, 2020 Meso-scale drag model designed for coarse-grid Eulerian-Lagrangian simulation of gas-solid flows. Chemical Engineering Science, 223,115747.

X. Chen, N. Song, M. Jiang, T. Ma, Q. Zhou*, 2020 A microscopic gas-solid drag model considering the effect of interface between dilute and dense phases. International Journal of Multiphase Flow, 128, 103266.

T. Ma, Y. Yu, X. Chen, Q. Zhou*, 2020 Effect of anisotropic micro-structures on fluid-particle drag in low-Reynolds-number monodisperse gas-solid suspensions. AIChE Journal, 66(4), e16910.

M. Jiang, X. Chen, Q. Zhou*, 2020 A gas pressure gradient dependent subgrid drift velocity model for drag prediction in fluidized gas-particle flows. AIChE Journal, 66(4), e16884. 

Z. Huang, C. Zhang, M. Jiang, Q. Zhou*, 2020 Development of a filtered interphase heat transfer model based on fine-grid simulations of gas-solid flows. AIChE Journal, 66(1), e16755.

X. Li, M. Jiang, Z. Huang, Q. Zhou*, 2019 Effect of particle orientation on the drag force in random arrays of prolate ellipsoids in low-Reynolds-number flows. AIChE Journal, 65(8), e16621.

Z. Huang, C. Zhang, M. Jiang, H. Wang, Q. Zhou*, 2019 Effects of particle velocity fluctuations on inter-phase heat transfer in gas-solid flows. Chemical Engineering Science, 206, 375-386.

Z. Huang, H. Wang, Q. Zhou*, T. Li, 2017 Effects of granular temperature on inter-phase drag in gas-solid flows, Powder Technology, 321, 435-443.

Q. Zhou, L.S. Fan*, 2015 Direct numerical simulation of moderate-Reynolds-number flow past arrays of rotating spheres, Physics of Fluids, 27, 073306.

Q. Zhou, L.S. Fan*, 2015 Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres, Journal of Fluid Mechanics, Vol. 765, 396-423.

Q. Zhou, L.S. Fan*, 2014 A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows, Journal of Computational Physics, Vol. 268, 269-301.

Q. Zhou, L. Zeng, L.S. Fan*, 2013 Syngas chemical looping process: dynamic modeling of a moving bed reducer. AIChE Journal, 59(9), 3432-3443.

H. Yang, Q. Zhou, L.S. Fan*, 2013 Three-dimensional numerical study on droplet formation and cell encapsulation process in a micro T-junction. Chemical Engineering Science, Vol. 87, 100-110.

Z. Sun, Q. Zhou (co-first authors), L.S. Fan*, 2013 Formation of core-shell structure composite micro-particles via cyclic gas-solid reactions. Langmuir, 29(40), 12520-12529.

Z. Sun, Q. Zhou, L.S. Fan*, 2012 Reactive solid surface morphology variation via ionic diffusion. Langmuir, 28(32), 11827-11833.

Q. Zhou, Feng He*, M.Y. Shen, 2012 Direct numerical simulation of a spatially developing compressible plane mixing layer: flow structures and mean flow properties. Journal of Fluid Mechanics, Vol. 711, 437-468.

Q. Zhou, F. He*, M.Y. Shen, 2012 A family of efficient high-order hybrid finite difference schemes based on WENO schemes. International Journal of Computational Fluid Dynamics, Vol. 26(04), 205-229.

Q. Zhou, Z.H. Yao, F. He*, M.Y. Shen, 2007 A new family of high-order compact upwind difference schemes with good spectral resolution. Journal of Computational Physics, Vol. 227/2, 1306-1339.

Q. Zhou, F. He, M.Y. Shen, 2008 The evolution of three-dimensional temporally evolving plane mixing layers under strong vortex disturbances. The International Workshop on Aerospace Engineering (IWAE2008), Tsinghua Science and Technology, 2009 Vol. 14(S2), 17-21.
袁守正, 陈啸, 蒋鸣, 余亚雄, 周强*, 2023, 气固下行床中壁面对介尺度曳力的影响规律探究. 化工进展, 已接收.

余亚雄, 段凡, 张宇, 周强*, 2022, 粗粒化CFD-DEM的离散松弛模型[J/OL]. 过程工程学报, DOI: 10.12034/j.issn.1009‑606X.222036

马腾, 陈啸, 周强*, 2022, 低雷诺数下气固两相中浓稀相界面对微尺度曳力的影响及建模[J/OL]. 过程工程学报, DOI: 10.12034/j.issn.1009‑606X.222019

蒋鸣, 周强*, 2022, 气固流化床介尺度结构形成机制及过滤曳力模型研究进展[J]. 化工学报, 73(06):2468-2485.

刘怡琳, 李钰, 余亚雄, 黄哲庆, 周强*, 2022, 基于重置温度方法的双参数介尺度气固传热模型构建[J], 化工学报, 2022,73(06):2612-2621.

赵利, 陈啸, 周强*, 2020, 一种限制周期气固两相流直接数值模拟中整体质量流率的新方法[J], 工程热物理学报, 41(03):648-652.

周强, 何枫*, 沈孟育, 2014, 可压缩混合层的涡结构演化与流质混合, 空气动力学学报, 32(03), 273-279.

周强, 何枫*, 沈孟育, 2010, 可压缩混合层中的激波和涡结构, 空气动力学学报, 28(03), 245-249.

周强, 王嘉豪, 蔡昀廷. 一种二氧化碳通过金属氢化物转化为甲烷的方法: 中国, CN202111426033.9[P]‬, CN114105723A,2022-3-1[已授权].

​​​​​周强, 张东旭, 闵婷, 郝文斌. 一种固体氧化物燃料电池与流化床集成的发电装置及方法: 中国, ZL202110437325.6[P]. 2021-4-22[申请中].

周强, 张东旭, 闵婷, 郝文斌. 一种固体氧化物燃料电池与流化床集成的发电装置: 中国, ZL202120843021.5[P]. 2021-4-22[2021-11-23].

周强, 王嘉豪, 杜少华. 一种制备合成气的循环流化装置及方法:中国, ZL202211027879X[P]. 2022-08-25[申请中].

 

Books

Z.H. Yao., Q. Zhou, 2010. English to Chinese translation of the book “Computational fluid dynamics: the basics with applications” (by J. D. Anderson). Tsinghua University Press.