ResearcherID

Welcome to my Publons/ResearcherID : https://publons.com/researcher/862678/

Welcome to my Google Scholar: https://scholar.google.com/citations?user=9eJiku0AAAAJ&hl=zh-CN 

近年代表作(Selected Publication)

[1] High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture, D Zhou, LX Pang, DW Wang, C Li, BB Jin, IM Reaney, Journal of Materials Chemistry C 5 (38), 10094-10098, 2017

[2] Novel temperature stable high-εr microwave dielectrics in the Bi2O3–TiO2–V2O5 system, D Zhou, D Guo, WB Li, LX Pang, X Yao, DW Wang, IM Reaney, Journal of Materials Chemistry C 4 (23), 5357-5362, 2016

[3] Microwave Dielectric Properties of Li2WO4 Ceramic with UltraLow Sintering Temperature, D Zhou, CA Randall, LX Pang, H Wang, J Guo, et al., Journal of the American Ceramic Society 94 (2), 348-350, 2011

[4] Microwave Dielectric Ceramics in Li2O–Bi2O3–MoO3 System with UltraLow Sintering Temperatures, D Zhou, CA Randall, H Wang, LX Pang, X Yao, Journal of the American Ceramic Society 93 (4), 1096-1100, 2010

[5] Bi2O3–MoO3 binary system: an alternative ultralow sintering temperature microwave dielectric, D Zhou, H Wang, LX Pang, CA Randall, X Yao, Journal of the American Ceramic Society 92 (10), 2242-2246, 2009

申请与授权专利(Patents)

[1]一种低温烧结铋基微波介质陶瓷材料及其制备、中国发明专利、CN100358837C2008年授权、汪宏 周迪 张磊 姚熹;

[2]一种低温烧结的Ti基微波介质陶瓷材料及其制备、中国发明专利、CN100591641C2010年授权、汪宏 庞利霞 周迪 姚熹;

[3]一种低温烧结LTCC微波介质陶瓷材料及其制备方法、中国发明专利、CN101224977B2010年授权、汪宏 周焕福 丁晓言 庞利霞 周迪 姚熹;

[4]铋基钼基超低温烧结微波介质陶瓷材料及其制备、中国发明专利、CN101318815B2011年授权、汪宏 周迪 姚熹 庞利霞;

[5]一种白钨矿型钼基超低温烧结微波介质陶瓷材料及其制备方法、中国发明专利、ZL201010191401.120121128日授权周迪 汪宏 姚熹 张高群 庞利霞 吴新光 郭靖;

[6]一种硅铍石超低温烧结微波介质陶瓷材料及其制备方法、中国发明专利、ZL201010192027.720121128日授权周迪 汪宏 姚熹 庞利霞 吴新光 郭靖 张高群;

[7]一种钼基超低温烧结微波介质陶瓷材料及其制备方法、中国发明专利、ZL201010170146.220130417日授权周迪 汪宏 姚熹 庞利霞 吴新光 郭靖 张高群;

[8]一种铋基钒基低温烧结微波介质陶瓷材料及其制备方法、中国发明专利、ZL201110100849.220130522日授权周迪 汪宏 姚熹  郭靖 张高群 吴颖 吴新光;

[9]钼基钛基温度稳定型微波介质陶瓷材料及其制备方法、中国发明专利、CN102173782B2013年授权、汪宏 郭靖 周迪 姚熹;

[10]一种低温烧结微波介质陶瓷基板材料及其制备、中国发明专利、CN102390991B2013年授权、汪宏 吴新光 周迪 代伟 陈月花 曾一;

[11]一种低温烧结的铋基微波介质陶瓷及其制备方法、中国发明专利、ZL201210185088.X20131106日授权周迪 庞利霞 郭靖 姚熹;

[12]一种超低温烧结的复合微波介质陶瓷材料及其制备方法、中国发明专利、ZL201310141266.320140903日授权周迪 庞利霞 郭靖 姚熹;

[13]一种白钨矿型微波介质陶瓷材料及其制备方法、中国发明专利、ZL201310091579.22014年授权、李金艳 梁英 周迪

[14] 一种低温烧结温度稳定型微波介质陶瓷材料及其制备方法、中国发明专利、ZL201410234824.520151028日授权周迪 席海红 贺斌 谢会东;

[15] 一种温度稳定型白钨矿结构微波介质陶瓷及其制备方法、中国发明专利、ZL201410142776.720160330日授权周迪 席海红 贺斌 谢会东;

[16] 一种温度稳定型中K值微波介质陶瓷及其制备方法、中国发明专利、ZL201410578038.720160824日授权周迪 张一丁;

[17] 一种中介电常数低损耗微波介质陶瓷及其制备方法、中国发明专利、ZL201510105061.920170912日授权周迪 李文博 庞利霞 赵金雄

[18] Ti基低损耗中K值微波介质陶瓷及其制备方法、中国发明专利、ZL201510772208.X20171031日授权周迪 李文博 赵金雄 姚熹

[19]一种钒基温度稳定型微波介质陶瓷及其制备方法、中国发明专利、ZL201510815604.620180717日授权、周迪 李文博 姚熹。

 

2006~2018文章列表(Publication List)

2019

[1] Di Zhou*, Li-Xia Pang, Da-Wei Wang, Ian M. Reaney*, Novel water-assisting low firing MoO3 microwave dielectric ceramics,  Journal of the European Ceramic Society, 39 (2019) 2374–2378.

[2] Huan-Huan Guo, Di Zhou*, Li-Xia Pang and Ze-Ming Qi, Microwave Dielectric Properties of Low Firing Temperature Stable Scheelite Structured (Ca,Bi)(Mo,V)O4 Solid Solution Ceramics for LTCC applications, Journal of the European Ceramic Society, 39 (2019) 2365–2373. 

[3] Li-Xia Pang, Di Zhou*, Zhen-Xing Yue, Temperature independent low firing [Ca0.25(Nd1-xBix)0.5]MoO4 (0.2 x 0.8) microwave dielectric ceramics, Journal of Alloys and Compounds, 2019, 781, 385-388.

[4] Li-Xia Pang, Di Zhou*, Modification of NdNbO4 microwave dielectric ceramic by Bi substitutions, Journal of the American Ceramic Society, 2019;102:2278–2282.

[5] Shu-Zhao Hao, Di Zhou* and Li-Xia Pang, The Spectra analysis and Microwave Dielectric Properties of [Ca0.55(Sm1-xBix)0.3]MoO4 Ceramics, Journal of the American Ceramic Society2019, 102 (6), 3103-3109.

[6] Jing Li, Di Zhou*, Influence of Ag doping on the dielectric and magnetic properties of LiFe5O8 ceramics, Journal of Alloys and Compounds, 2019, 785, 13-18.

[7] J Li, Di Zhou*, WF Liu, JZ Su, MS Fu, Novel and facile reduced graphene oxide anchored Ni-Co-Zn-Nd-ferrites composites for microwave absorption, Scripta Materialia 2019, 171, 42-46.

[8] Li, Wenbo; Di Zhou*; Xu, Ran; Wang, Da-Wei; Su, Jinzhan; Pang, Li-Xia; Liu, Wenfeng; Chen, Guo-Hua, “BaTiO3-Based Multilayers with Outstanding Energy Storage Performance for High Temperature Capacitor Applications", ACS Applied Energy Materials, 2019, 2 (8), 5499-5506.

[9] Zhili Ma, Jinxiong Zhao, and Di Zhou*, Microwave dielectric properties of the (1−x)La(Nb0.9V0.1)O4-xCaMoO4 (0.05≤x≤0.50) scheelite solid solution ceramics, Journal of Alloys and Compounds, 789 (2019) 345-350.

[10] Dawei Wang*, Di Zhou, Kaixin Song, Antonio Feteira, Clive A. Randall, and Ian M. Reaney, Cold Sintered C0G Multilayer Ceramic Capacitors, Advanced Electronic Materials, 2019, 1900025.

[11] Feng Shi, He-Lei Dong, Di Zhou, Chun-Hai Wang, Qiu-Lin Tan, Ji-Jun Xiong, Qing Wang, Lattice dynamics and phonon characteristics of complex perovskite microwave ceramics, IET Nanodielectrics,2019, Vol. 2 Iss. 1, pp. 11-26.

[12] Dawei Wang*, Shiyu Zhang, Di Zhou, Kaixin Song, Antonio Feteira, Yiannis Vardaxoglou, Will Whittow, Darren Cadman, Ian M Reaney,* Temperature stable cold sintered (Bi0.95Li0.05)(V0.9Mo0.1)O4-Na2Mo2O7 microwave dielectric composites, Materials, 2019, 12 (9), 1370.

[13] Ge Wang, Jinglei Li, Xun Zhang, Zhongming Fan, Fan Yang, Antonio Feteira, Di Zhou, Derek C. Sinclair, Tao Ma, Xiaoli Tan, Dawei Wang* and Ian M. Reaney, Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity, 2019, Energy Environ. Sci. 2019, 12, 582-588.

[14] Huan-HuanGuo, Di Zhou,* Wen-Feng Liu, Li-Xia Pang, Da-Wei Wang, Jin-Zhan Su, and Ze-Ming Qi, Microwave Dielectric Properties of Temperature-Stable Zircon-Type (Bi, Ce)VO4 Solid-Solution Ceramics, Journal of the American Ceramic Society2020, 103[1], 423-431.

[15] Jing Li, Di Zhou,* Enhanced Microwave Absorption of Reduced Graphene Oxide/Ni0.4Zn0.4Co0.2Fe2O4 Composite at Ultrathin Thickness, Journal of Electronic Materials, accepted

[16] Qianbi Lin, Kaixin Song, Bing Liu, Hadi Barzegar Bafrooei, Di Zhou, Weitao Su, Feng Shi, Dawei Wang, Huixin Lin, Ian M Reaney, Vibrational spectroscopy and microwave dielectric properties of AY2Si3O10 (A= Sr, Ba) ceramics for 5G applications, Ceramic International, 2019, accepted, https://doi.org/10.1016/j.ceramint.2019.09.086.

2018(3、7、11)

[1] Di Zhou*, LX Pang, DW Wang, Ian M. Reaney*, BiVO4 based high k microwave dielectric materials: a review,  (Review Article) J. Mater. Chem. C, 2018, 6, 9290-9313.

[2] Di Zhou*, LX Pang, DW Wang, ZM Qi, Ian M. Reaney*, High Quality Factor, Ultralow Sintering Temperature Li6B4O9 Microwave Dielectric Ceramics with Ultralow Density for Antenna Substrates, ACS Sustainable Chem. Eng., 2018, 6 (8), pp 11138–11143.

[3] Di Zhou*, LX Pang, DW Wang, HH Guo, F Yang, ZM Qi, C Li, BB Jin, Ian M. Reaney*, Crystal structure, impedance and broadband dielectric spectra of ordered scheelite-structured Bi(Sc1/3Mo2/3)O4 ceramic, Journal of the European Ceramic Society, 2018, 38[4], 1556-1561. 

[4] Wen-Bo Li, Di Zhou*, Ran Xu, Li-Xia Pang, Ian M Reaney, BaTiO3-Bi(Li0.5Ta0.5)O3, Lead-Free Ceramics and Multilayers with High Energy Storage Density and Efficiency, ACS Applied Energy Materials, 2018, 1 (9), 5016-5023.

[5] LX Pang, Di Zhou*, WG Liu, ZM Qi, ZX Yue, Crystal structure and microwave dielectric behaviors of scheelite structured (1-x) BiVO4-xLa2/3MoO4 (0.0≤ x≤ 1.0) ceramics with ultra-low sintering temperature, Journal of the European Ceramic Society, 2018, 38[4], 1535-1540.

[6] Li-Xia Pang, Di Zhou*, Da-Wei Wang, Jin-Xiong Zhao, Wei-Guo Liu, Zhen-Xing Yue, Ian M Reaney, Temperature stable K0.5(Nd1-xBix)0.5MoO4 microwave dielectrics ceramics with ultra-low sintering temperature, Journal of the American Ceramic Society, 2018, 101[5], 1806–1810.

[7] Huan-Huan Guo, Di Zhou*, Li-Xia Pang, Jin-Zhan Su, Influence of (Mg1/3Nb2/3) complex substitutions on crystal structures and microwave dielectric properties of Li2TiO3 ceramics with extreme low loss, Journal of Materiomics, 2018, 4(4), 368-382.

[8] Dawei Wang, Di Zhou, Shiyu Zhang, Yiannis Vardaxoglou, William G Whittow, Darren Cadman, Ian M Reaney, Cold-Sintered Temperature Stable Na0.5Bi0.5MoO4-Li2MoO4 Microwave Composite Ceramics, ACS Sustainable Chem. Eng., 2018, 6 (2), 2438–2444.

[9] Dawei Wang, Zhongming Fan, Di Zhou, Amir Khesro, Shunsuke Murakami, Antonio Feteira, Quanliang Zhao, Xiaoli Tan, Ian M Reaney, Bismuth ferrite-based lead free ceramics and multilayers with high recoverable energy density, J. Mater. Chem. A, 2018, 6, 4133-4144.

[10] Dawei Wang, Zhongming Fan, Wenbo Li, Di Zhou, Antonio Feteira, Ge Wang, Shunsuke Murakami, Shikuan Sun, Quanliang Zhao, Xiaoli Tan, Ian M Reaney, High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-Doped BiFeO3-BaTiO3 ceramics, ACS Appl. Energy Mater., 2018, 1 (8) 4403-4412. 

 [11] Dawei Wang, Ge Wang, Shunsuke Murakami, Zhongming Fan, Antonio Feteira, Di Zhou, Shikuan Sun, Quanliang Zhao, Ian M Reaney,BiFeO3-BaTiO3: a new generation of lead-free electroceramicsJournal of Advanced Dielectrics, 2018. 

2017 (212)

[1] Di Zhou*, Jing Li, Li-Xia Pang, Da-Wei Wang, Ian M Reaney, Novel water insoluble and sustainable (NaxAg2-x)MoO4 (0 ≤ x ≤ 2) microwave dielectric ceramics with spinel structure sintered at 410 degrees, Journal of Materials Chemistry C, 2017, 5, 6086 - 6091. 

 [2] Di Zhou*, Li-Xia Pang, Da-Wei Wang, Chun Li, Biao-Bing Jin & Ian M. Reaney*, High permittivity, low loss microwave dielectrics suitable for 5G resonator and low temperature co-fired ceramic architecture, Journal of Materials Chemistry C, 2017, 5 (38), 10094-10098.

[3] Li-Xia Pang, Di Zhou*, Ze-Ming Qi, Wei-Guo Liu, Zhen-Xing Yue and Ian M. Reaney, Structure–property relationships of low sintering temperature scheelite-structured (1-x)BiVO4–xLaNbO4 microwave dielectric ceramics, Journal of Materials Chemistry C, 2017, 5, 2695-2701.

[4] Wen-Bo Li, Di Zhou*, Li-Xia Pang, Ran Xu and Huan-Huan Guo, Novel Barium titanate based capacitors with high energy density and fast discharge performance, Journal of Materials Chemistry A, 2017, 5 (37), 19607-19612.

[5] Li-Xia Pang, Di Zhou*, Wen-Bo Li and Zhen-Xing Yue, High quality microwave dielectric ceramic sintered at extreme-low temperature below 200 degrees and co-firing with base metal, Journal of the European Ceramic Society, 2017, 37[9], 3073–3077.

[6] Dan Guo, Di Zhou*, Wen-Bo Li, Li-Xia Pang, Yan-Zhu Dai, Ze-Ming Qi, Phase Evolution, Crystal Structure and Microwave Dielectric Properties of Water Insoluble (1-x)LaNbO4-xLaVO4 (0 < x < 0.9) Ceramics, Inorganic Chemistry, 2017,56 (15), 9321-9329.

[7] Li-Xia Pang, Di Zhou*, Ze-Ming Qi, Zhen-Xing Yue, Influence of W substitution on crystal structure, phase evolution and microwave dielectric properties of (Na0.5Bi0.5)MoO4 ceramics with low sintering temperature, Scientific Reports, 2017, 7, 3201.

[8] Wen-Bo Li, Di Zhou*, Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3 based ceramics, Applied Physics Letters, 2017, 110, 132902.

[9] Wen-Bo Li, Di Zhou*, Dan Guo, Li-Xia Pang, Guo-Hua Chen, Ze-Ming Qi, Qiu-Ping Wang, and Han-Chen Liu, Structure, Raman spectra, far-infrared spectra and microwave dielectric properties of temperature independent CeVO4-TiO2 composite ceramics, Journal of Alloys and Compounds, 2017, 694, 40-45.

[10] Wen-Bo Li, Di Zhou*, Li-Xia Pang, Structure and energy storage properties of Mn-doped (Ba,Sr)TiO3–MgO composite ceramics, J Mater Sci: Mater Electron, 2017, 28, 8749–8754.

[11] Wen-Bo Li, Di Zhou*, Shu-Zhao Hao, Guo-Hua Chen, Ze-Ming Qi, Qiu-Ping Wang, Han-Chen Liu, and Xi Yao, Ultra-low loss microwave dielectric ceramics in (Mg1/3Nb2/3)O2-ZrO2-TiO2 ternary system, Journal of the American Ceramic Society, 2017;100:3982–3989.

[12] Shu-Zhao Hao, Di Zhou*, Wen-Bo Li, Microwave Dielectric Properties of BiCu2PO6 Ceramics with Low Sintering Temperature, Journal of Electronic Materials, 2017, 46 (11), 6241-6245.

[13] VV Atuchin, AS Aleksandrovsky, MS Molokeev, AS Krylov, AS Oreshonkov, Di Zhou, Structural and spectroscopic properties of self-activated monoclinic molybdate BaSm2(MoO4)4, Journal of Alloys and Compounds, 2017, 729, 843-849.

[14] Tan, Xianghu; Zhou, Huanfu*; Tang, Yuxin; Zhou Di; Kanhere, Pushkar; Tay, Qiuling; Chen, Xiuli, Li4x/3Co2-2xTi1+2x/3O4 spinel solid solutions: order and disorder phase transition, cations distribution and adjustable microwave dielectric properties, RSC Advances, 2017, 7 [81], 51670-51677.

2016 (3、9)

[1] Di Zhou*, Dan Guo, Wen-Bo Li, Li-Xia Pang, Xi Yao, Da-Wei Wang, Ian M Reaney, Novel temperature stable high-εr microwave dielectrics in the Bi2O3–TiO2–V2Osystem, Journal of Materials Chemistry C, 2016, 4, 5357-5362. 

[2] Di Zhou*, Xiao-Qin Fan, Xiao-Wei Jin, Duan-Wei He, and Guo-Hua Chen, Structures, Phase Transformations, and Dielectric Properties of BiTaO4 Ceramics, Inorganic Chemistry, 2016, 55, 11979−11986.

[3] Di Zhou*, Jing Li, Li-Xia Pang, Guo-Hua Chen, Ze-Ming Qi, Da-Wei Wang, and Ian M. Reaney, Crystal Structure, Infrared Spectra, and Microwave Dielectric Properties of Temperature-Stable Zircon-Type (Y,Bi)VO4 Solid-Solution Ceramics, ACS Omega, 2016, 1, 963−970.

[4] Wen-Bo Li, Di Zhou*, Hai-Hong Xi, Li-Xia Pang, Xi Yao, Structure, Infrared Reflectivity and Microwave Dielectric Properties of (Na0.5La0.5)MoO4–(Na0.5Bi0.5)MoO4Ceramics, Journal of the American Ceramic Society, 2016, 99 [6] 2083–2088.

[5] Yi-Ding Zhang, Di Zhou*, Pseudo Phase Diagram and Microwave Dielectric Properties of Li2O-MgO-TiO2 Ternary SystemJournal of the American Ceramic Society, 2016, 99 [11] 3645–3650.

[6] Wen-Bo Li, Di Zhou*, Bin He, Fei Li, Li-Xia Pang, Sheng-Guo Lu, Structure and dielectric properties of Nd(Zn1/2Ti1/2)O3–BaTiO3 ceramics for energy storage applications, Journal of Alloys and Compounds, 2016, 685, 418–422.

[7] Li-Xia Pang, Di Zhou*, Wei-Guo Liu, Zhen-Xing Yue, Phase evolution and dielectric properties of fluorite-type Bi3(Nb0.9M0.1)O7+δ ceramics (M= Ti, Zr, Sn, W, δ=±0.05), Journal of Alloys and Compounds, 2016, 674, 89-92.

 [8] Li-Xia Pang, Wei-Guo Liu, Di Zhou*, Zhen-Xing Yue, Phase evolution and microwave dielectric properties of (Bi1-xLnx)2MoO6 (Ln= Nd and La, x≤ 0.3) ceramics, Ceramics International, 2016, 42[15], 17243-17247.

 [9] Li-Xia Pang, Wei-Guo Liu, Di Zhou*, Zhen-Xing Yue, Novel glass-free low-temperature fired microwave dielectric ceramics: Bi(Ga1/3Mo2/3)O4Ceramics International, 2016, 42[3], 4574-4577.

[10] Jinxiong Zhao, Yuyu Tian, Zhen Wang, Shan Cong, Di Zhou, Qingzhu Zhang, Mei Yang, Weikun Zhang, Fengxia Geng, and Zhigang Zhao*, Trace H2O2-Assisted High-Capacity Tungsten Oxide Electrochromic Batteries with Ultrafast Charging in Seconds, Angew. Chem. Int. Ed. 2016, 55, 7161 –7165.

[11] Tao, Fengqiong; Genevois, Cecile; Lu, Fengqi; Kuang, Xiaojun*; Porcher, Florence; Li, Liangju; Yang, Tao; Li, Wenbo; Zhou Di; Allix, Mathieu, The First 14-Layer Twinned Hexagonal Perovskite Ba14Mn1.75Ta10.5O42: Atomic-Scale Imaging of Cation Ordering, Chem. Mater., 2016, 28, 4686−4696.

2015 (2、12)

[1] Zhou D*, Li WB, Xi HH, Pang LX, and Pang GS, Phase composition, crystal structure, infrared reflectivity and microwave dielectric properties of temperature stable composite ceramics (scheelite and zircon-type) in BiVO4-YVO4 system, Journal of Materials Chemistry C, 2015, 3, 2582–2588.

[2] Zhou D*, Li WB, Pang LX, Yue ZX, Pang GS, and Yao X. Abnormal dielectric properties and phase transition in Bi0.783(Mo0.65V0.35)O4 scheelite-related structured ceramic, RSC Advances, 2015, 5, 19255–19258.

[3] Xi HH, Zhou D*,  Xie HH, and Li WB, Microwave dielectric properties of low firing scheelite-related (Na0.5La0.5)MoO4 ceramic, Materials Letters, 2015, 142, 221-224.

[4] Xi HH, Zhou D*,  Xie HH, He B and Wang QP, Raman Spectra, Infrared Spectra, and Microwave Dielectric Properties of Low-Temperature Firing [(Li0.5Ln0.5)1−xCax]MoO4 (Ln = Sm and Nd) Solid Solution Ceramics with Scheelite Structure, Journal of the American Ceramic Society, 2015, 98 [2] 587-593.

[5] Pang LX, Zhou D*,  Guo J, Yue ZX, and Yao X, Microwave Dielectric Properties of (Li0.5Ln0.5)MoO4 (Ln = Nd, Er, Gd, Y, Yb, Sm, and Ce) Ceramics, J. Am. Ceram. Soc., 2015, 98, 130-135.

[6] Pang LX, Liu WG, and Zhou D*, Temperature stable high K microwave dielectric ceramics of Bi3NbO7 doped by V2O5,  Ceramics International, 2015, 41, 5182–5185.

[7] Xi HH, Zhou D*,  Xie HH, and Li WB, Microwave dielectric properties of low firing (Na0.5Ln0.5)MoO4 (Ln=Nd and Ce) ceramics,  Ceramics International, 2015, 41, 6103– 6107.

[8] Li WB, Xi HH, and Zhou D*, Microwave dielectric properties of BaY2(MoO4)ceramic with low sintering temperature,  Journal of Materials Science: Materials in Electronics, 2015, 26, 1608–1611.

[9] Li, Wen-Bo; Xi, Hai-Hong; Zhou D*, Microwave dielectric properties of LiMVO4 (M = Mg, Zn) ceramics with low sintering temperatures, Ceramics International, 2015, 41, 9063-9068.

[10] Li, Wen-Bo; Xi, Hai-Hong; Zhou D*, Microwave Dielectric Properties of Temperature-Stable BaLn2(MoO4)4-TiO2 (Ln = Ce, Nd, and Sm) Ceramics, Journal of Electronic Materials, 2015, 44[11], 4250-4254.

[11] Zhang, Yi-Ding; Han, Jun; Liang, Rui;  Zhou D*, Novel temperature stable Li2TiO3-based microwave dielectric ceramics with low loss, Materials Letters, 2015, 153, 118-120.

[12] Zhai Xiao-Liu, Zheng Xu, Xi Hai-Hong, Li Wen-Bo, Han Jun, and Zhou D*, Microwave Dielectric Properties of LiKSm2(MoO4)4 Ceramics with Ultralow Sintering Temperatures, J. Am. Ceram. Soc.2015, 98 [9] 2716-2719.

[13] Zhou JH, Xu NX, Zhang QL*, Zhou D,  Tang X and Yang H, Low-temperature densification of Mg2SnO4 ceramics with LiF-Fe2O3-V2O5 additive,  Materials Letters, 2015, 139, 169-172.

[14] He Li, Mi Shao-Bo, Jin Xiaowei, Zhang Hui, Zhou Di, Xiang Feng, Yang Haibo, Wang Hong*, Order-Disorder Phase Transition and Magneto-Dielectric Properties of (1-x)LiFe5O8-xLi2ZnTi3O8 Spinel-Structured Solid Solution Ceramics,  J. Am. Ceram. Soc., 2015, 98 [7], 2122-2129.

[15] Xie HD*, Xi HH, Chen C, Zhou D, Microwave dielectric properties of two low temperature sintering ceramics in the PbO-WO3 binary system, Ceramics International, 2015, 41 [8], 10287-10292.

[16] Guo Jing, Randall Clive, Zhou Di, Zhang Gaoqun, Zhang Caihong, Jin Biaobing, Wang Hong*, Correlation between vibrational modes and dielectric properties in (Ca1−3xBi2xΦx)MoO4 ceramics, J. Eur. Ceram. Soc., 2015, 35 [16], 4459-4464.

2014 (9、13)

[1] Zhou D*, Pang LX, Xie HD, Guo J, He B, Qi ZM, Shao T, Yao X and Randall CA, Crystal structure and microwave dielectric properties of a novel ultra-low temperature fired (AgBi)0.5WO4 ceramic, European Journal of Inorganic Chemistry, 2014, 2, 296–301.

[2] Zhou D*, Pang LX, Guo J, Qi ZM, Shao T, Wang QP, Xie HD, Yao X and Randall CA, Influence of Ce Substitution for Bi in BiVO4 and the Impact on the Phase Evolution and Microwave Dielectric Properties, Inorganic Chemistry, 2014, 53[2], 1048-1055.

[3] Zhou D*, Li WB, Pang LX, Guo J, Qi ZM, Shao T, Yao X, and Randall CA, Phase evolution and microwave dielectric properties of xBi2/3MoO4-(1-x)BiVO4 (0.0≤x≤1.0) low temperature firing ceramics, Dalton Transactions, 2014, 43, 7290-7297.

[4] Zhou D*, Xu C, He DW, Fu MS, Guo J, Zhou HF, Pang LX, Yao X. Dielectric Properties and Phase Transitions of BiNbO4 Ceramic, Scripta Materialia, 2014, 81, 40-43.

[5] Zhou D*, Li, WB, Guo J, Pang LX, Qi ZM, Shao T, Xie HD, Yue ZX, and Yao X, Structure, Phase Evolution, and Microwave Dielectric Properties of (Ag0.5Bi0.5)(Mo0.5W0.5)O4 Ceramic with Ultra low Sintering Temperature, Inorganic Chemistry, 2014, 53, 5712-5716.

[6] Zhou D*, He B, Guo J, Pang LX, Qi ZM, Shao T, Wang QP, Yue ZX, and Yao X, Phase Evolution and Microwave Dielectric Properties of (Bi1–xFex)VO4 (x ≤ 0.40) Ceramics, J. Am. Ceram. Soc., 2014, 97, 2915-2920.

[7] Zhou D*, Li, WB, Pang LX, Guo J, Qi ZM, Shao T, Yue ZX, and Yao X, Sintering Behavior and Dielectric Properties of Ultra-Low Temperature Fired Silver Molybdate Ceramics, J. Am. Ceram. Soc., 2014, 97, 3597-3601.

[8] Zhou D*, Pang LX, Qi ZM, Jin BB, Yao X, Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal, Scientific Reports, 2014, 4, 5980.

[9] Zhou D*, Pang LX, Qi ZM, Yao X, Crystal Structure and Microwave Dielectric Behaviors of Ultra-Low Temperature Fired x(Ag0.5Bi0.5)MoO4−(1−x)BiVO4 (0.0 ≤ x ≤ 1.0) Solid Solution with Scheelite Structure, Inorganic Chemistry, 2014, 53, 9222-9227.

[10] Guo J, Zhou D*, Zou SL, Wang H, Pang LX, and Yao X, Microwave Dielectric Ceramics Li2MO4-TiO2 (M=Mo, W) with Low Sintering Temperatures, J. Am. Ceram. Soc., 2014, 97[6], 1819–1822.

[11] Xi HH, Zhou D*, He B, Xie XD, Microwave Dielectric Properties of PbMoO4 Ceramic with Ultra-Low Sintering Temperature, J. Am. Ceram. Soc., 2014, 97 [5], 1375–1378.

[12] Pang LX, Zhou D*, and Liu WG, Low-Temperature Sintering and Microwave Dielectric Properties of CaMoO4-Based Temperature Stable LTCC Material, J. Am. Ceram. Soc., 2014, 97 [7], 2032–2034.

[13] Zhang YD, Zhou D*, Guo J, Xi HH, He B, Microwave dielectric properties of the (1-x)(Mg0.95Zn0.05)TiO3-x(Ca0.8Sm0.43)TiO3 temperature stable ceramics, Materials Letters 132 (2014) 200–202.

[14] Guo J, Zhou D, Li Y, Shao T, Qi ZM, Jin BB, and Wang H*, Structure–property relationships of novel microwave dielectric ceramics with low sintering temperatures: (Na0.5xBi0.5xCa1−x)MoO4, Dalton Trans., 2014, 43, 11888-11896.

[15] He L, Zhou D, Yang HB, Niu YJ, Xiang F, and Wang H*, Low-Temperature Sintering Li2MoO4-Ni0.5Zn0.5Fe2O4 Magneto-Dielectric Composites for High-Frequency Application, J. Am. Ceram. Soc., 2014, 97[8], 2552–2556.

[16] Guo J, Randall CA, Zhang GQ, Zhou D, Chen YY, Wang H*, Synthesis, Structure, and Characterization of New Low-Firing Microwave Dielectric Ceramics: (Ca1-3xBi2xΦx)MoO4, Journal of Materials Chemistry C, 2014, 2, 7364-7372.

[17] Zhang GQ, Guo J, He L, Zhou D, Wang H*, Koruza J, Kosec M, Preparation and Microwave Dielectric Properties of Ultra-low Temperature Sintering Ceramics in K2O–MoO3 Binary System, J. Am. Ceram. Soc., 97 [1] 241–245 (2014).

[18] Xie HD*, Xi HH, Li F, Chen C, Wang XC, Zhou D, Microwave dielectric properties of Pb2MoO5 ceramic with ultra-low sintering temperature, Journal of the European Ceramic Society, 2014, 34 [15],  4089-4093.

2013 (1、5)

[1] Zhou D*, Pang LX, Qu WG, et al., Dielectric behavior, band gap, in situ X-ray diffraction, Raman and infrared study on (1-x)BiVO4-x(Li0.5Bi0.5)MoO4 solid solution, RSC Advances, 2013, 3, 5009-5014. 

[2] He L, Zhou D, Xiang F, Chang PP, Li Y, Wang H, A Novel Magnetodielectric Solid Solution Ceramic 0.4LiFe5O8–0.6Li2MgTi3O8 with Excellent Microwave Dielectric PropertiesJournal of the American Ceramic Society, 2013, 96 [10] 3027–3030.

[3] Pang LX, Zhou D*, Wang H, Effect of Ca substitution on phase compositions and dielectric properties of Bi2O3-ZnO-Nb2O5 pyrochlore ceramics, Ceramic   International, 2013, 39, s673-s676.

[4] Pang LX, Zhou D*, Guo J, Qi ZM, Shao T, Microwave dielectric properties of scheelite structured low temperature fired Bi(In1/3Mo2/3)O4 ceramic, Ceramic International, 2013, 39, 4719-4722.
[5] Guo J, Zhou D, Wang L, Wang H, Shao T, Qi ZM and Yao X, Infrared spectra, Raman spectra, microwave dielectric properties and simulation for effective permittivity of temperature stable ceramics AMoO4-TiO2 (A=Ca, Sr), Dalton Transactions, 2013, 42, 1483. 

[6] Pang LX, Zhou D, Chang-Long Cai, Wei-Guo Liu, Infrared spectroscopy and microwave dielectric properties of ultra-low temperature firing (K0.5La0.5)MoO4 ceramics, Materials Letters, 2013, 92, 36-38.

[7] He L, Yang HB, Zhou D, Niu YJ, Xiang F, Wang H, Improved dielectric and magnetic properties of 1-3-type Ni0.5Zn0.5Fe2O4/epoxy composites for high frequency applicationsJournal of Physics D-Applied Physics, 2013, 46(12), 125003.

[8] Wu Y, Zhou D*, Guo J, Pang LX, Microwave dielectric properties and low temperature firing of (1-x)Li2Zn3Ti4O12-xLi2TiO3 ceramics with B2O3-CuO addition,Journal of Materials Science: Materials in Electronics, 2013, 24(5), 1505-1510.

[9] Wu Y, Zhou D*, Guo J, Pang LX, Microwave dielectric properties and low temperature sintering of Li2Zn(Ti1-xSnx)3O8 (x≤0.20) ceramics with B2O3-CuO addition, Journal of Materials Science: Materials in Electronics, 2013, 24(12), 4942-4946.

2012 (2、2)

[1] Zhou D*, Pang LX, Guo J, Qi ZM, Shao T, Yao X, Randall CA, , Phase evolution, phase transition, and microwave Dielectric properties of scheelite structured xBi(Fe1/3Mo2/3)O4-(1-x)BiVO4 (0.0≤x≤1.0) low temperature firing ceramics, Journal of Materials Chemistry, 2012, 22, 21412

[2] Zhou D*, Pang LX, Guo J, et al, Phase evolution and microwave dielectric properties of (Li0.5Bi0.5)(W1-xMox)O4 (0.0≤x≤1.0) ceramics with ultra-low sintering temperatures, Functional Materials Letters, 2012, 5(4) 1250042.

[3] Wu XG, Wang H, Chen YH, Zhou D, Synthesis and Microwave Dielectric Properties of Zn3B2O6 Ceramics for Substrate Application, Journal of the American Ceramic Society, 2012, 95(6): 1793-1795.

[4] Dai W, Wang H, Chen SB, Li DC, Zhou D, Effect of point defects on band-gap properties in diamond structure photonic crystals, Journal of Applied Physics, 2012, 111(2).
[5] Pang LX, Liu H, Zhou D, JX Yang, DJ Li, WG Liu,Low-temperature sintering and microwave dielectric properties of Li3MO4 (M = Ta, Sb) ceramics, Journal of Alloys and Compounds, 2012, 525, 22-24.
[6] Guo J, Zhou D, Wang H, Chen YH, Zeng Y, Xiang F, Wu Y, Yao X, Microwave and Infrared Dielectric Response of Temperature Stable (1-x)BaMoO4-xTiO2Composite Ceramics, Journal of the American Ceramic Society, 2012, 95(1): 232-237. 
[7] Pang LX, Liu H, Zhou D, Sun GB, Qin WG, Liu WG, Microwave dielectric ceramic with intrinsic low firing temperature: BaLa2(MoO4)4Materials Letters, 2012, 72: 128-130. 
[8] He L, Zhou D, Yang HB, Guo J, and Wang H, A novel magneto-dielectric solid solution ceramic 0.25LiFe5O8–0.75Li2ZnTi3O8 with relatively high permeability and ultra-low dielectric loss, Journal of the American Ceramic Society, 2012, 95 [12] 3732–3734. 
2011 (8、9)

[1] Zhou D*, Randall CA, Pang LX, Wang H, Guo J, Zhang GQ, Wu Y, Guo KT, Shui L, Yao X, Microwave dielectric properties of (ABi)1/2MoO4 (A = Li, Na, K, Rb, Ag) type ceramics with ultra-low firing temperatures, Materials Chemistry and Physics, 2011, 129(3): 688-692. 

[2] Zhou D*, Randall CA, Pang LX, Wang H, Wu XG, Guo J, Zhang GQ, Shui L, Yao X, Microwave Dielectric Properties of Li2(M2+)2Mo3O12 and Li3(M3+)Mo3O12 (M=Zn, Ca, Al, and In) Lyonsite-Related-Type Ceramics with Ultra-Low Sintering Temperatures, Journal of the American Ceramic Society, 2011, 94(3): 802-805.

[3] Zhou D*, Randall CA, Pang LX, Wang H, Guo J, Zhang GQ, Wu XG, Shui L, Yao X, Microwave Dielectric Properties of Li2WO4 Ceramic with Ultra-Low Sintering Temperature, Journal of the American Ceramic Society, 2011, 94(2): 348-350.

[4] Zhou D*, Qu WG, Randall CA, Pang LX, Wang H, Wu XG, Guo J, Zhang GQ, Shui L, Wang QP, Liu HC, Yao X. Ferroelastic phase transition compositional dependence for solid-solution [(Li0.5Bi0.5)xBi1-x][MoxV1-x]O4 scheelite-structured microwave dielectric ceramics, Acta Materialia, 2011, 59(4): 1502-1509.

[5] Zhou D*, Pang LX, Wang H, Guo J, Yao X, Randall CA, Phase transition, Raman spectra, infrared spectra, band gap and microwave dielectric properties of low temperature firing (Na0.5xBi1-0.5x)(MoxV1-x)O4 solid solution ceramics with scheelite structure, Journal of Materials Chemistry, 2011, 21: 18412-18420.

[6] Zhou D*, Pang LX, Guo J, Wang H, Yao X, Randall CA, Phase Evolution, Phase Transition, Raman Spectra, Infrared Spectra and Microwave Dielectric Properties of Low Temperature Firing (K0.5xBi1-0.5x)(MoxV1-x)O4 Ceramics with Scheelite Related Structure, Inorganic Chemistry, 2011, 50: 12733-12738.

[7] Zhou D*, Pang LX, Guo J, Wu Y, Zhang GQ, Dai W, Wang H, Yao X, New Microwave Dielectric Ceramics BaLn2(MoO4)4 (Ln = Nd and Sm) with Low Loss, Journal of the American Ceramic Society, 2011, 94(9): 2800-2803.

[8] Zhou D*, Pang LX, Guo J, Zhang GQ, Wu Y, Wang H, Yao X, Low temperature firing microwave dielectric ceramics (K0.5Ln0.5)MoO4 (Ln =Nd and Sm) with low dielectric loss, Journal of the European Ceramic Society, 2011, 31(15): 2749-2752.

[9] Zhou D*, Pang LX, Guo J, Wu Y, Zhang GQ, Wang H, Yao X, sintering behavior and microwave dielectric properties of novel low temperature firing Bi3FeMo2O12 Ceramic, Journal of Advanced Dielectrics, 2011, 1(4): 379-382.

[10] Pang LX, Zhou D, Ca3WO6: a novel microwave dielectric ceramic with complex perovskite structure, Journal of Materials Science-Materials in Electronics, 2011, 22(7): 807-810

[11] Dai W, Wang H, Wang MJ, Shen ZY, Li DC, Zhou D, Diamond electromagnetic band gap structure based on Bi(Nb0.992V0.008)O4 ceramic, Journal of Materials Science-Materials in Electronics, 2011, 22(4): 422-425.

[12] Pang LX, Sun GB, Zhou D, Ln2Mo3O12 (Ln = La, Nd): A novel group of low loss microwave dielectric ceramics with low sintering temperature, Materials Letters, 2011 65(2): 164-166.

[13] Guo J, Zhou D, Wang H, et al. Microwave dielectric properties of (1-x)ZnMoO4-xTiO2 composite ceramics, Journal of Alloys and Compounds, 2011 509(19): 5863-5865. 

[14] Pang LX, Zhou D, Wang H, et al. Phase evolution and microwave dielectric properties of Bi3SbO7 ceramic, Journal of Physics and Chemistry of Solids, 2011 72(7): 882-885.

[15] Pang LX, Zhou D, Chen YH, et al.Structural and microwave dielectric behavior of (Li1/4Nb3/4) substituted ZrxSnyTizO4 (x+y+z=2) system, Materials Chemistry and Physics, 2011 125(3): 641-645. 

[16] Wu Y, Zhou D, Guo J, et al. Temperature stable microwave dielectric ceramic 0.3Li2TiO3-0.7Li(Zn0.5Ti1.5)O4 with ultra-low dielectric loss, Materials Letters, 2011 65(17-18): 2680-2682.

2010 (5、5)

[1] Zhou D*, Wang H, Pang LX, Yao X. Low-firing of BiSbO4 microwave dielectric ceramic with V2O5-CuO addition [J]. Materials Chemistry and Physics, 2010, 119: 149-152.

[2] Zhou D*, Randall C, Wang H, Pang LX, Yao X. Microwave dielectric ceramics in Li2O-Bi2O3-MoO3 system with ultra low sintering temperatures [J]. Journal of the American Ceramic Society, 2010, 93(4): 1096-1100.

[3] Zhou D*, Randall C, Baker A, Wang H, Pang LX, Yao X. Dielectric properties of an ultra-low temperature co-firing Bi2Mo2O9 multilayer [J]. Journal of the American Ceramic Society, 2010, 93(5): 1443-1446.

[4] Zhou D*, Randall CA, Wang H, et al. Ultra-Low Firing High-k Scheelite Structures Based on [(Li0.5Bi0.5)xBi1-x][MoxV1-x]O4 Microwave Dielectric Ceramics, Journal of the American Ceramic Society, 2010 93(8): 2147-2150. 

[5] Zhou D*, Wang H, Wang QP, et al. Microwave dielectric properties and Raman spectroscopy of scheelite solid solution [(Li0.5Bi0.5)1-xCax]MoO4 ceramics with ultra-low sintering temperatures, Functional Materials Letters, 2010 3(4): 253-257.

[6] Pang LX, Zhou D, A low-firing microwave dielectric material in Li2O-ZnO-Nb2O5 system, Materials Letters, 2010 64(22): 2413-2415.

[7] Pang LX, Wang H, Zhou D, et al. A new temperature stable microwave dielectric with low-firing temperature in Bi2MoO6-TiO2 system, Journal of Alloys and Compounds, 2011 493(1-2): 626-629. 

[8] Liu WH, Wang H, Zhou D, et al. Dielectric Properties of Low-Firing Bi2Mo2O9 Thick Films Screen Printed on Al Foils and Alumina Substrates. Journal of the American Ceramic Society, 2010 93(8): 2202-2206 

[9] Dai W, Wang H, Wang MJ, Shen ZY, Li DC, Zhou D, Shi JZ, Fabrication of three-dimensional electromagnetic band-gap structure with high-K dielectric ceramics by rapid-prototyping, Journal of Electroceramics, 2010 25(2-4): 218-222. 

[10] Pang LX, Wang H, Zhou D, et al. Low-temperature sintering and microwave dielectric properties of TiO2-based LTCC materials, Journal of Materials Science-Materials in Electronics, 2010 21(12): 1285-1292. 

[11] Pang LX, Zhou D, Microwave Dielectric Properties of Low-Firing Li2MO3 (M = Ti, Zr, Sn) Ceramics with B2O3-CuO Addition, Journal of the American Ceramic Society, 2010 93(11): 3614-3617. 

[12] Pang LX, Wang H, Zhou D, et al. Phase evolution, Raman spectroscopy and microwave dielectric behavior of (Li1/4Nb3/4) doped ZrO2-TiO2 system, Applied Physics a-Materials Science & Processing, 2010 100(4): 1205-1209. 

[13] Pang LX, Wang H, Zhou D, et al. Sintering behavior and microwave dielectric properties of Ba6-3xNd8+2xTi18O54 (x=2/3) ceramics coated by H3BO3-TEOS sol-gel, Materials Chemistry and Physics, 2010 123(2-3): 727-730.

[14] Dai W, Wang H, Zhou D, et al. The Ultra-Wide Band Gap Property Induced by Lattice Period Gradually Changing in Three-Dimensional Photonic Crystals, Journal of the American Ceramic Society, 2010 93(12): 3980-3982.

2009 (6、3)

[1] Zhou D, Wang H*, Yao X, Pang LX, Chen YH. Sintering behavior, phase evolution and microwave dielectric properties of Bi{Sb1-x(Nb0.992V0.008)x}O4 ceramics[J]. Materials Chemistry and Physics, 2009, 113:265-268.

[2] Zhou D, Wang H*, Pang LX, Yao X, Wu XG. Low temperature firing of BiSbO4 microwave dielectric ceramic with B2O3-CuO addition[J]. Journal of the European Ceramic Society, 2009, 29: 1543-1546.

[3] Zhou D*, Pang LX, Yao X, Wang H. Influence of sintering process on the microwave dielectric properties of Bi(V0.008Nb0.992)O4 ceramics[J]. Materials Chemistry and Physics, 2009, 115: 126-131.

[4] Zhou D*, Wang H, Pang LX, Randall C, Yao X. Bi2O3-MoO3 binary system: an alternative ultralow sintering temperature microwave dielectric[J]. Journal of the American Ceramic Society, 2009, 92(10): 2242-2246.

[5] Zhou D*, Randall C, Wang H, Pang LX, Yao X. Microwave dielectric properties trends in a solid solution (Bi1-xLnx)2Mo2O9 (Ln=La,Nd, 0.0≤x≤0.2) system[J]. Journal of the American Ceramic Society, 2009, 92(12): 2931-2936.

[6] Zhou D, Pang LX, Wang H*, Yao X. Phase composition and phase transformation in Bi(Sb,Nb,Ta)O4 system[J]. SolidState Sciences, 2009, 11: 1894-1897.

[7] Pang LX, Wang H, Zhou D, Yao X. Raman spectroscopy and microwave dielectric properties of Zr1-x(Li1/4Nb3/4)xTiO4 ceramics[J]. Japanese Journal of Applied Physics, 2009, 48(5): 051403.

[8] Pang LX, Wang H, Chen YH, Zhou D, Yao X. Microstructures and microwave dielectric properties of low-temperature sintered Ca2Zn4Ti15O36 ceramics[J]. Journal of Materials Science-Materials in Electronics, 2009, 20(6):528-533.

[9] Pang LX, Wang H, Zhou D, Yao X. Sintering behavior, structures and microwave dielectric properties of a rutile solid solution system: (AxNb2x)Ti1-3xO2 (A=Cu, Ni)[J]. Journal of Electroceramics, 2009, 23(1): 13-18.

2008 (9、0)

[1]  Zhou D, Wang H, Yao X, Liu Y. Microwave dielectric properties of low-firing BiNbO4 ceramics with V2O5 substitution[J]. Journal of Electroceramics,  2008, 21(1-4): 469-472.

[2]  Zhou D, Wang H, Yao X, Pang LX. Microwave dielectric properties of low temperature firing Bi2Mo2O9 ceramic[J]. Journal of the American Ceramic  Society, 2008, 91(10): 3419-3422.  

[3]  Zhou D, Wang H, Yao X, Pang LX, Wu XG. Microwave dielectric characterization of a Li3NbO4 ceramic and its chemical compatibility with silver [J]. Journal of the American Ceramic Society, 2008, 91(12): 4115-4117.  

[4]  Zhou D, Wang H, Yao X, Pang LX. Sintering behavior and microwave dielectric properties of Bi2O3-ZnO-Nb2O5-based ceramics sintered under air and N2 atmosphere [J]. Ceramics International, 2008, 34: 901-904. 

[5] Zhou D, Wang H, Yao X. Microwave dielectric properties and co-firing with copper of (Bi1-xCux)(Nb1-xWx)O4 ceramics [J]. Ceramics International, 2008, 34: 929-932.

[6]  Zhou D, Wang H, Yao X, Pang LX, Zhou HF. Nanopowder preparation and dielectric properties of a Bi2O3-Nb2O5 binary system prepared by the high-energy ball-milling method[J]. Journal of the American Ceramic Society, 2008, 91(1): 139-143.

[7]  Zhou D, Wang H,Yao X, Pang LX. Dielectric behavior and cofiring with silver of monoclinic BiSbO4 Ceramic [J]. Journal of the American Ceramic Society, 2008, 91(4): 1380-1383.

[8]  Zhou D, Wang H, Yao X, Pang LX. Sintering behavior and microwave dielectric properties of Bi3(Nb1-xTax)O7 solid solutions [J]. Materials Chemistry and Physics, 2008, 110: 212-215.  

[9]  Zhou D, Wang H, Yao X, Pang LX. Sintering behavior, phase evolution, and microwave dielectric properties of Bi(Sb1-xTax)O4 ceramics [J]. Journal of the American Ceramic Society, 2008, 91(7): 2228-2231.

[10] Zhang L, Wang H, Yao X, Zhou D. The effect of sintering atmosphere on V2O5 substituted BiNbO4 microwave ceramics [J]. Journal of Electroceramics, 2008, 21(1-4): 465-468.

[11] Pang LX, Wang H, Zhou D, Zhou HF, Yao X. Low-temperature firing and microwave dielectric properties of Ca[(Li1/3Nb2/3)0.8Ti0.2O3-δ ceramicswith ZnB2O4   glass addition [J]. International Journal of Applied Ceramic Technology, 2008, 5(4): 341-346. 

[12] Pang LX, Wang H, Zhou D, Yao X. Sintering behavior, structures, and microwave dielectric properties of (LixNb3x)Ti1-4xO2 [J]. Journal of the American Ceramic Society, 2008, 91(9): 2947-2951.

[13] Zhou HF, Wang H, Zhou D, Pang LX, Yao X. Effect of ZnO and B2O3 on the sintering temperature and microwave dielectric properties of LiNb0.6Ti0.5O3 ceramics [J]. Materials Chemistry and Physics, 2008, 109(2-3): 510-514. 

2007 (7、0)

 

[1]  Zhou D, Wang H, Yao X. Sintering behavior and dielectric Properties of Bi3NbO7 ceramics prepared by mixed oxides and high-energy ball-milling methods [J]. Journal of the American Ceramic Society, 2007, 90(1): 327-329.  

[2]  Zhou D, Wu W, Wang H, Jiang YS, Yao X. The two element antennas using BiNbO4 ceramics as the substrate [J]. Materials Science and Engineering A, 2007, 460-461: 652-655 

[3]  Zhou D, Wang H, Yao X, Wei XY, Xiang F, Pang LX. Phase transformation in BiNbO4 ceramics [J]. Applied Physics Letters, 2007, 90:172910.

[4]  Zhou D, Wang H, Yao X. Microwave dielectric properties and co-firing of BiNbO4 ceramics with CuO substitution [J]. Materials Chemistry and Physics, 2007, 104:397-402.  

[5]  Zhou D, Wang H, Zhou HF, Xie XJ, Yao X, Cheng YH. Preparation of Sb3Nb3O13 powders using molten salt method [J]. Journal of Materials Science, 2007, 42:  8387-8390.  

[6]  Zhou D, Wang H, Yao X, Pang LX. Microwave dielectric properties and co-firing of BiNbO4 ceramics with CuO-WO3 substitution [J]. Materials Science and Engineering B, 2007, 142: 106-111.  

[7]  Zhou D, Wang H, Yao X. Layered complex structures of Bi2(Zn2/3Nb4/3)O7 and BiNbO4 dielectric ceramics [J]. Materials Chemistry and Physics, 2007, 105: 151- 153.  

2006 (0、0) 

 [1]  Kamba S, Wang H, Berta M, Kadlec F, Petzelt J, Zhou D, Yao X. Correlation between infrared, THz and microwave dielectric properties of vanadium doped antiferroelectric BiNbO4 [J]. Journal of the European Ceramic Society, 2006, 26: 2861-2865.