工作简介

作者还未对该模块添加任何内容.

代表性工作

2024年:

42. H. F. Feng, B. Liu, Z. X. Guo*,Strong four-phonon processes on thermal conductivity of two-dimensional materials in the low-temperature region, arXiv:2312.16761.

41. Ping Li, Xueyang Li, Junsheng Feng, Jinyang Ni, Z. X. Guo*, Hongjun Xiang*,Origin of zigzag antiferromagnetic orders in XPS3 (X= Fe, Ni) monolayers, arXiv:2401.01203.

40. X. Zhang, B. Liu, J. Huang, X. Cao, Y. Zhang, Z. X. Guo*, Nonvolatile spin field effect transistor based on VSi2N4/Sc2CO2 multiferroic heterostructure Physical Review B (Accepted)(arXiv:2311.03690).

39. S. Yan, K. Wang, Z. X. Guo*, Y. N. Wu*, S. Y. Chen*, Tunneling field-effect transistors with two-dimensional BiN as the channel semiconductor, Applied  Physics Letters 124, 143502 (2024).

38. H. Guo, X. Zhang*, S.  Chen, L. Huang*, Yan Dong, Z. X. Guo*, High-Performance and Low-Power Sub-5 nm Field-Effect Transistors Based on 7-9-7-AGNR, Journal of Materials Chemistry C 12, 3280 (2024) (arXiv:2310.10238).

37. P. Li*, B. Liu, S. Chen, W. X. Zhang, Z. X. Guo*, Progress on two-dimensional ferrovalley materials, Chinese Physics B 33, 017505 (2024).

 

2023年:

36. H. F. Feng, B Liu, Z. X. Guo*, Giant twist-angle dependence of thermal conductivity in bilayer graphene originating from strong interlayer coupling,  Physical Review B 108, L241405 (2023) (arXiv:2302.09213).

35. M. Q. Dong, Z. X. Guo*, X. R. Wang*, Anisotropic magnetoresistance due to magnetization-dependent spin-orbit interactions, Physical Review B 108, L020401 (2023) (arXiv:2301.07886).

34. S. G. Wang, H. F. Feng, Z. X. Guo*, Stacking and Thickness Effects on Cross-Plane Thermal Conductivity of Hexagonal Boron Nitride, Computational Materials Science 228,112345 (2023) (arXiv:2303.10627).

33. B. Liu, X. X. Ren, Xian Zhang*, Y. Dong*, Ping Li, Z. X. Guo*, Electric field tunable multi-state tunnel magnetoresistances in 2D van der Waals magnetic heterojunctions, Applied  Physics Letters 122, 152408 (2023).

32. P. Li, J.-Z. Zhang, Z. X. Guo*, T. Min, X. R. Wang*, Intrinsic anomalous spin Hall effect, Science China Physics, Mechanics & Astronomy 66, 227511 (2023) (arXiv:2110.10995).

 

2022年:

31. Z. X. Guo, H. Chen, and A. H. MacDonald, Gigahertz coherent spin angular momentum transport through antiferromagnet thin films, Physical Review Letters (In revision).

30. H. Wu, Y. L. Zhang, Z. X. Guo*, and X. G. Gong*, Anomalous high thermal conductivity in heavy element compounds with van der Waals interaction, Applied  Physics Letters 121, 182204 (2022).

29. K. Wang, Y. Li, H. Mei, P. Li*, and Z. X. Guo*,Quantum anomalous Hall and valley quantum anomalous Hall effects in two-dimensional d0 orbital XY monolayers, Physical Review Materials  6, 044202 (2022).

28. Q. Lu, P. Li, Z. X. Guo*, G. Dong*, B. Peng, X. Zha, T. Min, Z. Zhou, M. Liu*, Giant tunable spin Hall angle in sputtered Bi2Se3 controlled by an electric field, Nature Communications 13, 1650 (2022).

27. P. Li, X. S. Zhou, Z. X. Guo*, Intriguing Magnetoelectric Effect in Two-dimensional Ferromagnetic/Perovskite Oxide Ferroelectric Heterostructure,  npj Computational Materials 8, 20 (2022).

26. X. X. Ren, J. S. Huang, P. Li, Y. Zhang, Z. X. Guo*, Exotic Spintronic Properties of Transition-Metal Monolayers on Graphyne, Advanced Theory and Simulations 5, 2100287 (2022). (入选Wiley-VCH Hot Topic: Magnetic Materials).

25. H. T. Wu, T. Min, Z. X. Guo, X. R. Wang, On universal butterfly and antisymmetric magnetoresistances, Front. Phys. 10, 1068605 (2022).

 

2021年:

24. J. S. Huang, P. Li, X. X. Ren, Z. X. Guo*, Promising Properties of a Sub-5-nm Monolayer MoSi2N4 Transistor, Physical Review Applied 16, 044022 (2021).

23.  P. Li*,  Z. X. Guo*, The Dirac half-semimetal and quantum anomalous Hall effect in two-dimensional Janus Mn2X3Y3 (X, Y= F, Cl, Br, I), Physical Chemistry Chemical Physics 23, 19673 (2021).

22. L. Qiu, X. H. Zhang, Z. X. Guo, Q. W. Li, Interfacial Heat Transport in Nano-Carbon Assemblies, Carbon 178, 391 (2021).

21. P. Li, Y. Ma, Y Zhang, Z. X. Guo*, Room Temperature Quantum Anomalous Hall Insulator in a Honeycomb–Kagome Lattice, Ta2O3, with Huge Magnetic Anisotropy Energy,  ACS Applied Electronic Materials 3, 1826 (2021).

2006-2020年(一作/通讯作者论文):

20. K. Wang, Y. Zhang, W. Zhao, P. Li, J. W. Ding, G. F. Xie, and Z. X. Guo*Topological Dirac states in transition-metal monolayers on graphyne, Physical Chemistry Chemical Physics 21, 9310-9316 (2019).

19. S. Li, Z. X. Guo*, J. W. Ding*, Interface thermal transport of graphene-based intralayer heterostructures, Physica B: Condensed Matter 561, 164-169 (2019).

18. Y. Zhou, Z. X. Guo*, S. Y. Chen, H. J. Xiang, and X. G. Gong*, Anisotropic in-plane thermal conductivity in multilayer silicene, Physics Letters A 382, 1499-1503 (2018).

17. P. Li, X. Li, W. Zhao, H. Chen, M. X. Chen, Z. X. Guo*, J. Feng, X. G. Gong, A. McDonald, Topological Dirac States beyond π-Orbitals for Silicene on SiC(0001) Surface, Nano Letters 17, 6195 (2017).

16. P. Li, J. X. Cao, and Z. X. Guo*, A new approach for fabricating germanene with Dirac electrons preserved: a first principles study, Journal of Materials Chemistry C 4, 1736 (2016).

15. C. Y. Chen, Y. She, H. Xiao*, J. X. Cao, and Z. X. Guo*, Enhancing the ballistic thermal transport of silicene through smooth interface coupling, Journal of Physics. Condensed matter 28, 145003 (2016).

14. Z. X. Guo*, Y. Y. Zhang, H. J. Xiang, X. G. Gong, and A. Oshiyama, Structural evolution and optoelectronic applications of multilayer silicene, Physical Review B (Raid Communications) 92, 201413 (2015).

13. Z. X. Guo and A. Oshiyama*, Crossover between silicene and ultra-thin Si atomic layers on Ag (111) surfaces,New Journal of Physics 17, 045028 (2015)

12. X. Zhang, Z. X. Guo*, J. X. Cao, S. G. Xiao, and J. W. Ding, Atomic and electronic structures of silicene and germanene on GaAs(111), Acta Physica Sinica 64, 186101 (2015).

11. Z. X. Guo and A. Oshiyama, Structural bistability and deep Dirac states in bilayer silicene on Ag(111) surfaces, Physical Review B 89, 155418 (2014).

10. Z. X. Guo, S. Furuya, J.-I. Iwata, and A. Oshiyama, Absence and presence of Dirac electrons in silicene on substrates, Physical Review B 87, 235435 (2013) (ESI 高引).

9. Z. X. Guo, S. Furuya, J.-I. Iwata, and A. Oshiyama, Absence of Dirac electrons in silicene on Ag(111) surfaces, Journal of the Physical Society of Japan 82, 063714 (2013) (Editor’s Choice).

8. Z. X. Guo*, J. W. Ding, and X. G. Gong, Substrate effects on the thermal conductivity of epitaxial graphene nanoribbons, Physical Review B 85, 235429 (2012).

7. Z. X. Guo, D. Zhang, and X. G. Gong*, Manipulating thermal conductivity through substrate coupling, Physical Review B 84, 075470 (2011).

6. Z. X. Guo, D. Zhang, Y. T. Zhai, and X. G. Gong*, The intriguing thermal conductivity of ice Nanotubes, Nanotechnology 21, 285706 (2010).

5. Z. X. Guo, D. Zhang, and X. G. Gong*, Thermal conductivity of graphene nanoribbons, Applied Physics Letters 95, 163103 (2009) (ESI 高引).

4. Z. X. Guo, and X. G. Gong, Molecular dynamics studies on the thermal conductivity of single-walled carbon nanotubesFrontiers of Physics in China 4, 389 (2009).

3. Z. X. Guo, J. W. Ding*, Y. Xiao, and D. Y. Xing, Raman frequency shift in oxygen-functionalized carbon nanotubes, Nanotechnology 18, 465706 (2007).

2. Z. X. Guo, Y. Xiao, J, W. Ding*, and X. H. Yan, Lattice dynamics of single-walled achiral BC3 nanotubes, Physical Review B 73, 045405 (2006).

1. Z. X. Guo, J. W. Ding*, Y Xiao, Y. L. MaoLattice dynamics of carbon chain inside a carbon nanotube, Journal of Physical Chemistry B 110, 21803 (2006).

 

完整的文章发表信息请参见:https://scholar.google.com/citations?user=WM5a0twAAAAJ&hl=zh-CN

                                                 https://publons.com/researcher/2428842/zhixin-guo/