Experimental and Theoretical Study of Pool Boiling Heat Transfer and its CHF mechanism on Femtosecond Laser Processed Surfaces




作者: Bin Liu, Jie. Liu, Yonghai Zhang*, Jinjia Wei*, Wenjun Wang
发表/完成日期: 2018-12-02
期刊名称: International Journal of Heat and Mass Transfer, 2019, 132, 259-270.
期卷:
相关文章:
论文简介
In the present study, the pool boiling heat transfer of micro/nano hierarchically structured surfaces, as well as that of a smooth surface in gas dissolved FC-72 (the subcooling is 1 K) was studied. Femtosecond laser processing was used to fabricate the structured surfaces. It was found that for the surfaces with small processing spacing (LS30 and LS70, where the number after LS specifies the spacing in μm), the critical heat flux (CHF) showed almost no increase, while the heat transfer coefficient (HTC) was enhanced noticeably compared to that of a smooth surface (SS). For LS100, LS200, LS200-2 (compared to LS200, LS200-2 has the same processing spacing but a much higher peak-to-valley height), LS400 and LS800, both the CHF and HTC were enhanced remarkably compared to those of SS. The maximum HTC enhancement was obtained for LS70, with the HTC being 5.87 times larger than that of SS. The most remarkable increase in the CHF was achieved for LS200-2, with an improvement of 91% relative to that of SS. The liquid supply mechanism at the CHF of the micro/nano hierarchically structured surfaces was investigated. A modified model taking into account the coalesced bubble departure frequency, Jakob number and capillary wicking effects was proposed for CHF prediction. The CHF data from this study and the literature were used to validate the model, and it was found that the predicted results agree quite well with the experimental data within ±8%.
版权所有:西安交通大学 站点设计:网络信息中心 陕ICP备05001571号 IPhone版本下载 IPhone版本下载    Android版本下载 Android版本下载
欢迎您访问我们的网站,您是第 位访客
推荐分辨率1024*768以上 推荐浏览器IE7 Fifefox 以上