联系方式

联系地址:

陕西省西安市碑林区咸宁西路28号

西安交通大学电子科学与工程学院

李璟睿 特聘研究员

 

邮政编码:710049

 

办公地点:

西安交通大学

兴庆校区教二南楼303-2

创新港校区4号巨构4-3039/40

 

电子邮件:

jingrui.li (at) xjtu.edu.cn

学术研究经历

2019-

西安交通大学电子科学与工程学院青年拔尖人才特聘研究员

2014-2019

芬兰阿尔托大学应用物理系资深博士后研究员(Patrick Rinke 课题组)

2011-2013

美国佐治亚理工学院有机光子学与电子学中心博士后研究员(Jean-Luc Brédas 课题组)

教育经历

博士学位 德国 慕尼黑工业大学化学系(导师:Michael Thoss)
硕士学位 德国 慕尼黑工业大学化学系(导师:Clemens Woywod)
学士学位 北京大学化学与分子工程学院

代表性研究论文

  1. Fangnon (Seidu) et al., Protective coating interfaces for perovskite solar cell materials: A first-principles study, ACS Appl. Mater. & Interfaces doi:10.1021/acsami.1c21785 (2022).
     
  2. Pan et al., Free and self-trapped exciton emission in perovskite CsPbBr3 microcrystals, RSC Adv. 12 1035 (2022).
     
  3. Chen et al., Highly efficient and stable perovskite solar cells enabled by low-dimensional perovskitoids, Sci. Adv. 8 eabk2722 (2022).
     
  4. Liu et al., Near-unity blue luminance from lead-free copper halides for light-emitting diodes, Nano Energy 91 106664 (2022).
     
  5. Zhu et al., High triplet energy level molecule enables highly efficient sky-blue perovskite light-emitting diodes, J. Phys. Chem. Lett. 12 11723 (2021).
     
  6. Seidu et al., Surface reconstruction of tetragonal methylammonium lead triiodide, APL Mater. 9 111102 (2021).
     
  7. Xu et al., Impermeable inorganic "walls" sandwiching perovskite layer toward inverted and indoor photovoltaic devices, Nano Energy 88 106286 (2021).
     
  8. Cao et al., Stability improvement of tin-based halide perovskite by precursor-solution regulation with dual-functional reagents, Adv. Funct. Mater. 31 2104344 (2021).
     
  9. 李淏淼 等,锡基钙钛矿太阳能电池研究进展,物理化学学报 37 2007006 (2021).
     
  10. Seidu et al., Atomic and electronic structure of cesium lead triiodide surfaces, J. Chem. Phys. 154 074712 (2021).
     
  11. Lehtomäki et al., Boron doping in gallium oxide from first principles, J. Phys. Commun. 4 125001 (2020).
     
  12. Zhang et al., Suppressing Ion Migration Enables Stable Perovskite Light-Emitting Diodes with All-Inorganic Strategy, Adv. Funct. Mater. 30 2001834 (2020).
     
  13. Li P. et al., Ligand Orientation-Induced Lattice Robustness for Highly Efficient and Stable Tin-Based Perovskite Solar Cells, ACS Energy Lett. 5 2327 (2020).
     
  14. Xu et al., Local nearly non-strained perovskite lattice approaching a broad environmental stability window of efficient solar cells, Nano Energy 75 104940 (2020).
     
  15. Yuan et al., A cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes, ACS Energy Lett. 5 1062 (2020).
     
  16. Ran et al., Conjugated organic cations enable efficient self-healing FASnI3 solar cells, Joule 3 3072 (2019).
     
  17. Seidu et al., Database-driven high-throughput study of coating materials for hybrid perovskites, New J. Phys. 21 083018 (2019).
     
  18. Gao et al., Robust stability of efficient lead-free formamidinium tin iodide perovskite solar cells realized by structural regulation, J. Phys. Chem. Lett. 9 6999 (2018).
     
  19. Järvi et al., Multi-scale model for the structure of hybrid perovskites: analysis of charge migration in disordered MAPbI3 structures, New J. Phys. 20 103013 (2018).
     
  20. Li et al., Activation energy of organic cation rotation in CH3NH3PbI3 and CD3NH3PbI3: Quasi-elastic neutron scattering measurements and first-principles analysis including nuclear quantum effects, J. Phys. Chem. Lett. 9 3969 (2018).
     
  21. Li et al., Multiscale model for disordered hybrid perovskites: The concept of organic cation pair modes, Phys. Rev. B 98 045201 (2018).
     
  22. Kivisaari et al., On the Monte Carlo description of hot carrier effects and device characteristics of III-N LEDs, Adv. Electron. Mater. 3 1600494 (2017).
     
  23. Li and Rinke, Atomic structure of metal-halide perovskites from first principles: The chicken-and-egg paradox of the organic-inorganic interaction, Phys. Rev. B 94 045201 (2016).
     
  24. Li et al., Electronic structure of the perylene-zinc oxide interface: Computational study of photoinduced electron transfer and impact of surface defects, J. Phys. Chem. C 119 18843 (2015).
     
  25. Li et al., Quantum dynamical simulation of photoinduced electron transfer processes in dye-semiconductor systems: Theory and application to coumarin 343 at TiO2J. Phys.: Condens. Matter 27 134202 (2015).