
Modern Computer Architecture

Lecture3 Review of Memory Hierarchy

Hongbin Sun
国家集成电路人才培养基地

Xi’an Jiaotong University

Recap: Who Cares About the Memory
Hierarchy?

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs) 1

10

100

1000
19

80

19
81

19
83

19

84

19
85

19

86

19
87

19

88

19
89

19

90

19
91

19

92

19
93

19

94

19
95

19

96

19
97

19

98

19
99

20

00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)

Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<1s ns

Cache
10s-100s K Bytes
1-10 ns
$10/ MByte

Main Memory
M Bytes
100ns- 300ns
$1/ MByte

Disk
10s G Bytes, 10 ms
(10,000,000 ns)
$0.0031/ MByte

Capacity
Access Time
Cost

Tape
infinite
sec-min
$0.0014/ MByte

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address

space at any instant of time.
• Two Different Types of Locality:

– Temporal Locality (Locality in Time): If an item is
referenced, it will tend to be referenced again soon (e.g.,
loops, reuse)

– Spatial Locality (Locality in Space): If an item is
referenced, items whose addresses are close by tend to
be referenced soon
(e.g., straightline code, array access)

• Last 15 years, HW (hardware) relied on locality for
speed

Memory Hierarchy: Terminology
• Hit: data appears in some block in the upper level (example: Block X)

– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the lower level (Block Y)
– Miss Rate = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor

• Hit Time << Miss Penalty (500 instructions on 21264!)

Lower Level
Memory Upper Level

Memory
To Processor

From Processor
Blk X

Blk Y

Cache Measures

• Hit rate: fraction found in that level
– So high that usually talk about Miss rate
– Miss rate fallacy: as MIPS to CPU performance,

miss rate to average memory access time in memory

• Average memory-access time
 = Hit time + Miss rate x Miss penalty
 (ns or clocks)

• Miss penalty: time to replace a block from lower level,
including time to replace in CPU
– access time: time to lower level
 = f(latency to lower level)
– transfer time: time to transfer block
 =f(BW between upper & lower levels)

Simplest Cache: Direct Mapped
Memory

4 Byte Direct Mapped Cache

Memory Address
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache Index
0
1
2
3

• Location 0 can be occupied by data from:
– Memory location 0, 4, 8, ... etc.
– In general: any memory location

whose 2 LSBs of the address are 0s
– Address<1:0> => cache index

• Which one should we place in the cache?
• How can we tell which one is in the cache?

1 KB Direct Mapped Cache, 32B blocks
• For a 2 ** N byte cache:

– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0
1
2
3

:

 Cache Data
Byte 0

0 4 31

:

Cache Tag Example: 0x50
Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:
31

Byte 1 Byte 31 :

Byte 32 Byte 33 Byte 63 :
Byte 992 Byte 1023 :

 Cache Tag

Byte Select
Ex: 0x00

9

Two-way Set Associative Cache
• N-way set associative: N entries for each Cache Index

– N direct mapped caches operates in parallel (N typically 2 to 4)

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– The two tags in the set are compared in parallel
– Data is selected based on the tag result

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Index

Mux 0 1 Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

Disadvantage of Set Associative Cache
• N-way Set Associative Cache v. Direct Mapped Cache:

– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss

• In a direct mapped cache, Cache Block is available BEFORE Hit/Miss:
– Possible to assume a hit and continue. Recover later if miss.

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Data
Cache Block 0

Cache Tag Valid

: : :

Cache Index

Mux 0 1 Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

4 Questions for Memory Hierarchy

• Q1: Where can a block be placed in the upper level?
 (Block placement)

• Q2: How is a block found if it is in the upper level?
 (Block identification)

• Q3: Which block should be replaced on a miss?
 (Block replacement)

• Q4: What happens on a write?
 (Write strategy)

Q1: Where can a block be
placed in the upper level?

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set associative
– S.A. Mapping = Block Number Modulo Number Sets

 Cache

01234567 01234567 01234567

Memory

 1111111111222222222233
01234567890123456789012345678901

Full Mapped Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0

Q2: How is a block found if it is
in the upper level?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index,
expands tag

Block
Offset

Block Address

Index Tag

Q3: Which block should be
replaced on a miss?

• Easy for Direct Mapped
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

Assoc: 2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q4: What happens on a write?

• Write through—The information is written to both the block
in the cache and to the block in the lower-level memory.

• Write back—The information is written only to the block in
the cache. The modified cache block is written to main
memory only when it is replaced.
– is block clean or dirty?

• Pros and Cons of each?
– WT: read misses cannot result in writes
– WB: no repeated writes to same location

• WT always combined with write buffers so that don’t wait
for lower level memory

Write Buffer for Write Through

• A Write Buffer is needed between the Cache and Memory
– Processor: writes data into the cache and the write buffer
– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4
– Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write cycle

• Memory system designer’s nightmare:
– Store frequency (w.r.t. time) -> 1 / DRAM write cycle
– Write buffer saturation

Processor
Cache

Write Buffer

DRAM

6 Basic Cache Optimizations

• Reducing Miss Rate
1. Larger Block size (compulsory misses)
2. Larger Cache size (capacity misses)
3. Higher Associativity (conflict misses)

• Reducing Miss Penalty
4. Multilevel Caches

• Reducing hit time
5. Giving Reads Priority over Writes
• E.g., Read complete before earlier writes in write buffer
6. Avoid address translation

5/15/2013 CS252-Fall’07 17

A Modern Memory Hierarchy
• By taking advantage of the principle of locality:

– Present the user with as much memory as is available in the cheapest
technology.

– Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

O
n-C

hip
C

ache
1s 10,000,000s

 (10s ms)
Speed (ns): 10s 100s

100s
Gs

Size (bytes):
Ks Ms

Tertiary
Storage
(Disk/Tape)

10,000,000,000s
 (10s sec)

Ts

Basic Issues in VM System Design
size of information blocks that are transferred from
 secondary to main storage (M)

block of information brought into M, and M is full, then some region
 of M must be released to make room for the new block -->
 replacement policy

which region of M is to hold the new block --> placement policy

missing item fetched from secondary memory only on the occurrence
 of a fault --> demand load policy

Paging Organization

virtual and physical address space partitioned into blocks of equal size

page frames

pages

pages
reg

cache
mem disk

frame

Address Map
V = {0, 1, . . . , n - 1} virtual address space
M = {0, 1, . . . , m - 1} physical address space

MAP: V --> M U {0} address mapping function

n > m

MAP(a) = a' if data at virtual address a is present in physical
 address a' and a' in M

 = 0 if data at virtual address a is not present in M

Processor

Name Space V

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
Memory

a

a
a'

0

missing item fault

physical address OS performs
this transfer

Implications of Virtual Memory for
Pipeline design

• Fault?
• Address translation?

Paging Organization
frame 0

1

7

0
1024

7168

P.A.

Physical
Memory

1K
1K

1K

Addr
Trans
MAP

page 0
1

31

1K
1K

1K

0
1024

31744

unit of
mapping

also unit of
transfer from
virtual to
physical
memory

Virtual Memory
Address Mapping

VA page no. disp
10

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA +

table located
in physical
memory

physical
memory
address

actually, concatenation
is more likely

V.A.

Address Translation

• Page table is a large data structure in memory
• Two memory accesses for every load, store, or instruction fetch!!!
• Virtually addressed cache?

– synonym problem
• Cache the address translations?

CPU
Trans-
lation Cache

Main
Memory

VA PA miss

hit
data

TLBs
A way to speed up translation is to use a special cache of recently
 used page table entries -- this has many names, but the most
 frequently used is Translation Lookaside Buffer or TLB

Virtual Address Physical Address Dirty Ref Valid Access

Really just a cache on the page table mappings

TLB access time comparable to cache access time
 (much less than main memory access time)

Translation Look-Aside Buffers
Just like any other cache, the TLB can be organized as fully associative,
 set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
 high end machines. This permits fully associative
 lookup on these machines. Most mid-range machines use small
 n-way set associative organizations.

CPU TLB
Lookup Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 t t 1/2 t

Translation
with a TLB

Reducing Translation Time

Machines with TLBs go one step further to reduce # cycles/cache access

They overlap the cache access with the TLB access:

 high order bits of the VA are used to look in the TLB while low order bits

are used as index into cache

Overlapped Cache & TLB Access

TLB Cache

10 2
00

4 bytes

index 1 K

page # disp
20 12

assoc
lookup 32

PA Hit/
Miss PA Data Hit/

Miss

=

IF cache hit AND (cache tag = PA) then deliver data to CPU
ELSE IF [cache miss OR (cache tag = PA)] and TLB hit THEN
 access memory with the PA from the TLB
ELSE do standard VA translation

Problems With Overlapped TLB Access
Overlapped access only works as long as the address bits used to
 index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
 n-way set associative caches if you want a large cache

Example: suppose everything the same except that the cache is
 increased to 8 K bytes instead of 4 K:

11 2
00

virt page # disp
20 12

cache
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
 go to 8K byte page sizes;
 go to 2 way set associative cache; or
 SW guarantee VA[13]=PA[13]

1K
4 4

10
2 way set assoc cache

Summary #1/4:
Pipelining & Performance

• Just overlap tasks; easy if tasks are independent
• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:

– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling
– Control: delayed branch, prediction

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup ×
+

=

CPU time = Seconds = Instructions x Cycles x Seconds
 Program Program Instruction Cycle

• Time is measure of performance: latency or
throughput

• CPI Law:

Summary #2/4: Caches
• The Principle of Locality:

– Program access a relatively small portion of the address space at any
instant of time.

• Temporal Locality: Locality in Time
• Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start misses.
– Capacity Misses: increase cache size
– Conflict Misses: increase cache size and/or associativity.

• Write Policy:
– Write Through: needs a write buffer.
– Write Back: control can be complex

• Today CPU time is a function of (ops, cache misses) vs. just
f(ops): What does this mean to
Compilers, Data structures, Algorithms?

Summary #3/4:
The Cache Design Space

• Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back

• The optimal choice is a compromise
– depends on access characteristics

• workload
• use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

Review #4/4: TLB, Virtual Memory
• Caches, TLBs, Virtual Memory all understood by examining

how they deal with 4 questions: 1) Where can block be
placed? 2) How is block found? 3) What block is repalced on
miss? 4) How are writes handled?

• Page tables map virtual address to physical address
• TLBs make virtual memory practical

– Locality in data => locality in addresses of data,
temporal and spatial

• TLB misses are significant in processor performance
– funny times, as most systems can’t access all of 2nd level cache

without TLB misses!

• Today VM allows many processes to share single memory
without having to swap all processes to disk; today VM
protection is more important than memory hierarchy

	Modern Computer Architecture��Lecture3 Review of Memory Hierarchy
	Recap: Who Cares About the Memory Hierarchy?
	Levels of the Memory Hierarchy
	The Principle of Locality
	Memory Hierarchy: Terminology
	Cache Measures
	Simplest Cache: Direct Mapped
	1 KB Direct Mapped Cache, 32B blocks
	Two-way Set Associative Cache
	Disadvantage of Set Associative Cache
	4 Questions for Memory Hierarchy
	Q1: Where can a block be placed in the upper level?
	Q2: How is a block found if it is in the upper level?
	Q3: Which block should be replaced on a miss?
	Q4: What happens on a write?
	Write Buffer for Write Through
	6 Basic Cache Optimizations
	A Modern Memory Hierarchy
	Basic Issues in VM System Design
	Address Map
	Implications of Virtual Memory for Pipeline design
	Paging Organization
	Address Translation
	TLBs
	Translation Look-Aside Buffers
	Reducing Translation Time
	Overlapped Cache & TLB Access
	Problems With Overlapped TLB Access
	Summary #1/4: �Pipelining & Performance
	Summary #2/4: Caches
	Summary #3/4: �The Cache Design Space
	Review #4/4: TLB, Virtual Memory

