F5 X A A%

AN JIAOTONG UNIVERS II‘Y

@)

Modern Computer Architecture

Lecture4 Memory Hierarchy Design

Hongbin Sun
5% B P A A S

Xi’an Jiaotong University




The Memory Wall

100,000 + -~ — - - - - -

10,000 - - e e

1,000 +---------"-"---"“-"-"“"-"-"-“"-"----- - Processor-Memory
Performance Gap

100 + - -~ -~~~ -~~~

10+

1980 1985 1990 1995 2000 2005 2010

Year



Main Memory Background

e Performance of Main Memory:

— Latency: Cache Miss Penalty
« Access Time: time between request and word arrives
« Cycle Time: time between requests

— Bandwidth: 1I/O & Large Block Miss Penalty (L2)

e Main Memory is DRAM: Dynamic Random Access Memory
— Dynamic since needs to be refreshed periodically (8 ms, 1% time)

— Addresses divided into 2 halves (Memory as a 2D matrix):
« RAS or Row Access Strobe
e CAS or Column Access Strobe

e Cache uses SRAM: Static Random Access Memory

— No refresh (6 transistors/bit vs. 1 transistor
Size: DRAM/SRAM 4-8,
Cost/Cycle time: SRAM/DRAM 8-16



Multilevel Caches

e A memory cannot be large and fast
e Increasing sizes of cache at each level

CPU [—jL1 [—L2 —1{ DRAM

Local miss rate = misses in cache / accesses to cache
Global miss rate = misses in cache / CPU memory accesses
Misses per instruction = misses in cache / number of instructions

9/25/2007 4



Anatomy of an SRAM Cell

bit | bit I . .
b 'b,me Stable Configurations

word line

S ol 3 2l o

Terminology:
bit line: carries data
word line: used for addressing

(6 transistors)

Write: Read:
1. set bit lines to new data value 1. set bit lines high
b’ is set to the opposite of b 2. set word line high
2. raise word line to “high” 3. see which bit line goes low

= sets cell to new state (may involve
flipping relative to old state)




e Inverter Amplifies

SRAM Cell Principle

— Negative gain

— Slope < -1 in middle
— Saturates at ends

e Inverter Pair Amplifies

— Positive gain

— Slope > 1 in middle
— Saturates at ends

=

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

o

V1
—_\2

o

0.4

Vin

0.6 0.8 1




Bistable Element

! {>° V1 — Require Vin = V2
'_OQ_ — Stable at endpoints
V2 « recover from pertubation
— Metastable in middle
I » Fall out when perturbed
13 ——¢)  Stable
09 /ﬂf—@ e Ball on Ramp Analogy
0.8 3 ot
0.7 E .
0.6 —i— Metastable
05 3
04 E ee Vin
03 i .... - \/2
02 3 - o
01 3 .-'.
’ :; 10.2: - =04 0.6 0.8 1 O O
Stable Vin 0 01 02 03 04 05 06 07 08 093 1




Example SRAM Configuration (16 x 8)

A0
Al
A2

A3

Address
decoder

WO

b7

W1

o

W15

.

1 [

sense/write

amps
A

Input/output lines

T

d7

bl 1 bl bO[ | b0
. .
. .
memory
cells
. .
1 L L1 rw
__|senselwrite| sense/write
amps | amps
dl do



A Typical Memory Hierarchy ¢.2007

Split instruction & data Multiple interleaved
primar_y caches memory banks
(on-chip SRAM) (off-chip DRAM)
L1
[ Instruction Memory
CPU Cache Unified L2 Memory
1td Cache Memory
— L1 Data
RF Cache Memory
Multiported Large unified secondary cache
register file (on-chip SRAM)

(part of CPU)

9/25/2007 9



Itanium-2 On-Chip Caches

21.6 mm

19.5mm

Level 1, 16KB, 4-way s.a., 64B
line, quad-port (2 load+2
store), single cycle latency

Level 2, 256KB, 4-way s.a,
128B line, quad-port (4 load
or 4 store), five cycle
latency

Level 3, 3MB, 12-way s.a.,
128B line, single 32B port,
twelve cycle latency




Core Memory

e Core memory was first large-scale reliable main memory
— invented by Forrester in late 40s/early 50s at MIT for Whirlwind project

e Bits stored as magnetization polarity on small ferrite cores threaded
onto 2-dimensional grid of wires

e Coincident current pulses on X and Y wires would write cell and also
sense original state (destructive reads)

Robust, non-volatile storage

Used on space shuttle computers
until recently

Cores threaded onto wires by
hand (25 billion a year at peak
production)

Core access time ~ 1us

DEC PDP-8/E Board,
9/25/2007 4K words x 12 bits,
(1968)




Semiconductor Memory, DRAM

Semiconductor memory began to be competitive in early
1970s

— Intel formed to exploit market for semiconductor memory

First commercial DRAM was Intel 1103

— 1Kbit of storage on single chip
— charge on a capacitor used to hold value

Semiconductor memory quickly replaced core in 1970s

Today (September 2007), 1GB DRAM < $30

— Individuals can easily afford to fill a 32-bit address space with DRAM
(4GB) 12



One Transistor Dynamic RAM

1-T DRAM Cell
as word TiN/Ta205/W
_|__,_\:’\ access Capacitor |
transistor ik
T
TiN top electrode (Vgee

VREF
Storage
capacitor (FET
gate, trench,
stack)
poly

word
line

access
transistor




DRAM Architecture

bit lines

Col. / Col. word lines
1 oM /
0 Row 1
4 [BBB a0
N Ty ey ey
B RREREERER
% o Row 2N
ol oo oo oo
\I\/Iemory cell
one bit
N+M M/ .|Column Decoder & ( )
Sense Amplifiers
DataitD

e Bits stored in 2-dimensional arrays on chip

e Modern chips have around 4 logical banks on each chip
— each logical bank physically implemented as many smaller arrays

14



DRAM Operation

Three steps in read/write access to a given bank
e Row access (RAS)

decode row address, enable addressed row (often multiple Kb in row)

bitlines share charge with storage cell

small change in voltage detected by sense amplifiers which latch whole row of bits
sense amplifiers drive bitlines full rail to recharge storage cells

e Column access (CAS)

decode column address to select small number of sense amplifier latches (4, 8, 16, or 32
bits depending on DRAM package)

on read, send latched bits out to chip pins

on write, change sense amplifier latches. which then charge storage cells to required
value

can perform multiple column accesses on same row without another row access (burst
mode)

e Precharge

charges bit lines to known value, required before next row access

Each step has a latency of around 10-20ns in modern DRAM:s.
Various DRAM standards (DDR, RDRAM) have different ways of encoding

the signals for transmission to the DRAM, but all share same core
architecture 15
e Can overlap RAS/CAS/Precharge in different banks to increase bandwidth



Quest for DRAM Performance

Fast Page mode

— Add timing signals that allow repeated accesses to row buffer
without another row access time

— Such a buffer comes naturally, as each array will buffer 1024 to 2048
bits for each access

Synchronous DRAM (SDRAM)

— Add a clock signal to DRAM interface, so that the repeated transfers
would not bear overhead to synchronize with DRAM controller

Double Data Rate (DDR SDRAM)

— Transfer data on both the rising edge and falling edge of the DRAM
clock signal = doubling the peak data rate

— DDR2 lowers power by dropping the voltage from 2.5 to 1.8 volts +
offers higher clock rates: up to 533 MHz

— DDR3 drops to 1.5 volts + higher clock rates: up to 800 MHz
Improved Bandwidth, not Latency

16



Double- Dafa RaTe (DDRZ) DRAM

2 OO M H %K# T0O ‘ ' ' T7 T5n T8 T6n
ClockCK\)\"\f |

cke W 7/ | . -
COMMAND? % NC,)PG W% e W% Nopﬁ W@< NOpﬁ W% READ? W@( Nopd W% PRE W% NOPS >W NOPS W’@( ACT ?@

_Row . Column PrecHar e " Ro
ADDRESS //// / /@( RA W . i, / f//// / //// ///// WV// i

A10////////><RAW//// ////AN/ ///)( ><7// // T K,

o0, a1 /// //><Bam W. | T fxm W/y(/ /i/%ganm)@ T, 7X@
T e O W N 1 e 20 A A
i tRC ! . \

W/////// / W, ////////// W

Case 1: 'AC (MIN) and 'DQSCK (MIN)

DQs, DOs#

DQ'

b

1z (IMIN) i, I i tHz (Vi JE

400Mb/s
9/25/2007 Data Rate 1’




DRAM Packaging

—~—

Clock and control signals
J "~|DRAM

Address lines multiplexed Ichip

row/column address 15

Data bus ,],
(4b,8b,16b,32b)

e DIMM (Dual Inline Memory Module) contains
multiple chips arranged in “ranks”

e Each rank has clock/control/address signals
connected in parallel (sometimes need buffers to
drive signals to all chips), and data pins work
together to return wide word

— e.g., arank could implement a 64-bit data bus using 16x4-bit
chips, or a 64-bit data bus using 8x8-bit chips.

e A modern DIMM usually has one or two ranks
(occasionally 4 if high capacity)

— A rank will contain the same number of banks as each
constituent chip (e.g., 4-8) 18

T2-pin S0 DIMM

L)
L
i
-
-
-
-
-
-
-
-
w
-
L
o
L
-

“ANEENL IS AR EINELE R

168-pin DIMM



DRAM Channel rax

Memory
Controller

64-bit
Data
Bus

Rank
A
N N
v, Bank FSank
14 14
16 16
/ F;ank FSank
14 14
16 16
/ F;ank FSank
14 14
16 16
/ F;ank FSank
14 14
16 16

19

Command/Address Bus

v



Need for Error Correction!

e Motivation:
— Failures/time proportional to number of bits!
— As DRAM cells shrink, more vulnerable

e Went through period in which failure rate was low enough
without error correction that people didn’t do correction

— DRAM banks too large now
— Servers always corrected memory systems

e Basic idea: add redundancy through parity bits

— Common configuration: Random error correction
 SEC-DED (single error correct, double error detect)
* One example: 64 data bits + 8 parity bits (11% overhead)

— Really want to handle failures of physical components as well
» Organization is multiple DRAMs/DIMM, multiple DIMMs
* Want to recover from failed DRAM and failed DIMM!
» “Chip kill” handle failures width of single DRAM chip

20



DRAM Technology Trend

mDDR4
BDDR3
mDDR2
HDDR
H5DRAM
B FP/EDO

Z%hztlﬂl 2

1

2 2003 Hﬂﬁz 2005 2006 2007 m:_! 2009 O01DE  2011E ZDIEE 2013E 2014k

DDR4

:

= 50%

» Technology cadence is roughly 4 years
» Technology becomes mainstream (= 50% bits) roughly 2 years after production start




DRAM Density Trend

100%

W 4Gb
m2Gb
m1Gh
m512Mb
= 256Mb

20%

10%

0%
2010E 2011F 2012F 2013 E 2014F

» 1Gb & 2Gb will be dominant densities in 2011 due to popularity of 1GB/2GB/4GB modules
» 1Gb & 2Gb driven by DDR2 & DDR3

» 4Gb driven by DDR3 & DDR4




Speed-Density-Power Comparison

Freq. Bus Width Max. Transfer rate Density Row Max
Range (per Bandwidth per pin Cycle Power
(MHz) device) (burst Time

rate) (tRC)

DDR1 100-200 x4, x8, x16 | 800 MB/s 200-400Mb/s | 128Mb-1Gb | 60ns 1W

DDR3 400-1066 x4, x8, x16 | 3.2 GB/s 800-1600Mb/s | 1Gb, 2Gb 48ns 500mW

DDR4 667-1600 x4, x8, x16, | 12.8 GB/s 1333- 4-8Gb TBD<45 | TBD-
x32 3200Mb/s ns 330mW

~» LPDRAM offers better power consideration but requires a price trade-off consideration
» Technology migration (SDR—->DDR—->DDR2->DDR3->DDR4) can improve on power/ performance/ density




DRAM Technology Comparison

DDR4 combines features from DDR3 & GDDR5 = "Best of both Worlds”

Voltage 1.5V/1.35V 1.5V/1.35V
N N Free Running
Strobe Bi-directional Bi-directional Differential WRITE
Differential Differential
Clock
Strobe Config | Per Byte Per Byte . Per Word
READ Data Capture Strobe based Strobe based Clock Data Recove
Data Termination VddQ/2 \VddQ \VddQ
Add/Cmd
Termination VddQ/2 VddQ/2 VddQ
Burst Length BC4. .8 BC4. 8 8
Bank Grouping No 4 - Bank Groups 4 - Bank Groups
. Command/Address
On Chip Error No Darit
Detection J
Configuration [ x4, x8, x16 x16 / x32
Package \/8 ball / 96 ball FBGA| 78 ball / 96 ball FEGA 170 Ball FBGA
Data Rate
(Mbps/pin) 800 - 2133 1600 — 3200+ 4000 - 7000
Component Density 1Gbh - 8Gh 2Gb - 16Gb 512Mb-2Gb
- . up to 8H (128Gb
Stacking Options DDP, QDP ! stack); single load No

Power Performance Cost




DRAM Feature Matrix

LPDDR3

DDR2

LPDDR1 LPDDR2-54B DDR3 /DDR3L DDR4
Die Density Up to 2Gb Up to 8Gb Up to 32Gb Up to 2Gb Up to 8Gb Up to 16Gb (128Gh 8H)
Prefetch Size 2Zn 4n &n 4n 8n 8n
Core Voltage (Vdd) 1.8 1.2V 1.2v 1.8V 1.5V 1.2V
' 1.8V WL supply req. 1.8V WL supply req. 1.55V 1.35V (L) Separate WL supply 2.5V
I/0 Voltage 1.8V, 1.2V 1.2V 1.2v Same as VDD Same as VDD Same as VDD
Max Clock Freq./Data 933MHz/DDR1866
rate 200Mhz/DDR400 533MHz/DDR1066 800MHz/DDR1600 533MHz/DDR1066 1066MHz/DDR2133 (L) 1600MHz+/DDR3200+
Burst Lengths 2,4, 8, 16 4,8, 16 B 4,8 BC4, 8 BC4, 8
Configurations x16, x32 x16, x32 x16, ¥32 x4, %8, x16 x4, xB, x16 x4, x8, x16, x32
;F'drﬁlﬁf Command 22 pin 14 pins [Mux%:ld}cﬁ:nsmand 25 pins 27 pins 29 pins
ignals E . ' : .
(Mux'd command address) address) {partial mux'd)
Address/ Command SDR DDR DDR SOR SDR DR
Data Rate (rising edge of dock |  (both rising and falling (bath rising and falling (rising edge of dock (rising edge of clock (rising edge of only)
only) edges of clock) edges of dock) only) only) rising edge of clock anly
On Die Temperature .
Sensor Yes Yes Yes Mo Optional (Lm) TBD
PASR full, half, quarter-
full, half, quarter-amay L
e with individual bank and | dMidual bank and full, 3, half, %,
optional partial-bank i segment masking for Mo No
A segment masking for ) A 1/8 array, and none
for rtial-bank modes Fbank
1/8th and 1/16th - e m
Drive Strength 34-chm
40-ohm
25-ohm (full) 48-0hm 34-chm 34-0hm 34-ohm
37-ohm (3/4)* 40-chm 40-chm
&0-ohm 18-ohm (full) 40-ohm
55-ohm (haif) 80-ch &-ohm 35-ohm (hakf) libeation for +/- rED-ohm
80-ohm (quarter)® m 2Q calibration for +/- m Qea 7Q calibration for
*JEDEC optional ) 10%. accuracy 10% accuracy +/-10% accuracy
70 calibration for +/-10%
acouracy
Per Bank Refresh ;
No ‘f&ei: Yes No No Fine Granularity Refresh
(8-bank devices only) (1x, 2x, 4x)
Dutput Driver LVCMOS_18 HSUL_12 HSUL_12 S55TL_18 "SSTL_15" POD 12
DPD Yes Yes Yes Mo No Mo
DLL/ODT MofNo No/Mo MofYes Yes/Yes Yes/Yes Yes/Yes
Package Options POP, MCP, discrate POP, MCP, discrete POP, MCP, discrete Discrete Discrete Diiscrete
Temperature Grades AIT (-40°C to 85°C) ATT (-40°C to 85C) AIT (-40°C to 85'C) AIT (40" to 95°C) AIT (-40° to 95°C) TBD
AAT (-40'Cto 105°C) |  AAT (-40°Cto 105C) AAT (-40°Cto 105'C) | AAT (-40°Cto 105°C) | AAT (-40°Cto 105°C) TED




11 Advanced Cache Optimizations

e Reducing hit time .
1. Small and simple caches 7.
2. Way prediction 8
3. Trace caches N

e |Increasing cache
bandwidth .

4. Pipelined caches

Reducing Miss Penalty
Critical word first

. Merging write buffers

Reducing Miss Rate

. Compiler optimizations

Reducing miss penalty or
miss rate via parallelism

10.Hardware prefetching

5. Multibanked caches
6. Nonblocking caches

9/25/2007

11.Compiler prefetching

26



1. Fast Hit times via
Small and Simple Caches

Index tag memory and then compare takes time

= Small cache can help hit time since smaller memory takes less time to
index

— E.g., L1 caches same size for 3 generations of AMD microprocessors: K6, Athlon, and
Opteron

— Also L2 cache small enough to fit on chip with the processor avoids time penalty of
going off chip

Simple = direct mapping

— Can overlap tag check with data transmission since no choice

Access time estimate for 90 nm using CACTI model 4.0

— Maedian ratios of access time relative to the direct-mapped caches are 1.32, 1.39, and
1.43 for 2-way, 4-way, and 8-way caches

2.50

200 4 [ 1-way 00 2-way H4-way [0 8-Way\
1.50

1.00

o« gl il KL

16 KB 32 KB 64KB 128KB 256KB 512 KB 1 MB 27
Cache size



2. Fast Hit times via Way Prediction

e How to combine fast hit time of Direct Mapped and have the
lower conflict misses of 2-way SA cache?

e Way prediction: keep extra bits in cache to predict the “way,”
or block within the set, of next cache access.

— Multiplexor is set early to select desired block, only 1 tag comparison
performed that clock cycle in parallel with reading the cache data

— Miss = 15t check other blocks for matches in next clock cycle

Hit Time

«

Way-Miss Hit Time Miss Penalty

v

e Accuracy =~ 85%
e Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles

— Used for instruction caches vs. L1 data caches

— Also used on MIPS R10K for off-chip L2 unified cache, way-prediction table
on-chip
28



Way Predicting Caches
(MIPS RI0000 L2 cache)

e Use processor address to index into way prediction table

e Look in predicted way at

Return copy
of data from

cache \

iven index, then:

MISS

Look in other way

/ MISS

SLOW HIT
(change entry in
prediction table)

Y

Read block of data from
next level of cache

29



Way Predicting Instruction Cache

(Alpha 21264-like)

Jump targIe
. Ox4
Jump N\ /
control

PC
— *laddr :
4 A Primary Inst
] - Instruction
J Way  cache

Sequential Way
Branch Target Way

30



3. Fast (Instruction Cache) Hit times
via Trace Cache

Key Idea: Pack multiple non-contiguous basic blocks
into one contiguous trace cache line

BR BR BR
BR BR BR

e Single fetch brings in multiple basic blocks

« Trace cache indexed by start address and next n
branch predictions

9/25/2007 31



3. Fast Hit times via Trace Cache
(Pentium 4 only; and last time?)

e Find more instruction level parallelism?
How avoid translation from x86 to microops?

Trace cache in Pentium 4

1. Dynamic traces of the executed instructions vs. static sequences of
instructions as determined by layout in memory
—  Built-in branch predictor

2. Cache the micro-ops vs. x86 instructions
— Decode/translate from x86 to micro-ops on trace cache miss

+ = better utilize long blocks (don’t exit in middle of block,
don’t enter at label in middle of block)

- = complicated address mapping since addresses no longer
aligned to power-of-2 multiples of word size

- =>instructions may appear multiple times in multiple
dynamic traces due to different branch outcomes

9/25/2007 32



4: Increasing Cache Bandwidth by Pipelining

* Pipeline cache access to maintain bandwidth, but
higher latency

e Instruction cache access pipeline stages:
1: Pentium
2: Pentium Pro through Pentium lli
4: Pentium 4
- = greater penalty on mispredicted branches

- => more clock cycles between the issue of the load
and the use of the data

9/25/2007

33



5. Increasing Cache Bandwidth:
Non-Blocking Caches

e Non-blocking cache or lockup-free cache allow data cache to
continue to supply cache hits during a miss
— requires Full/Empty bits on registers or out-of-order execution
— requires multi-bank or pipelined memories

e “hit under miss” reduces the effective miss penalty by
working during miss vs. ignoring CPU requests

e “hit under multiple miss” or “miss under miss” may further
lower the effective miss penalty by overlapping multiple
misses

— Significantly increases the complexity of the cache controller as there
can be multiple outstanding memory accesses

— Requires pipelined or banked memory system (otherwise cannot
support)

— Pentium Pro allows 4 outstanding memory misses

— (Cray X1E vector supercomputer allows 2,048 outstanding memory

misses) 34



Value of Hit Under Miss for SPEC
"(61d~data)

18 +

= o 0 = o5 0> T

S 2 8 %)% 8 2§ 888 ¢ 99
o % = w0 a @9 N o~ © = <4

o} 2 1= =] S n T X
) 3 S 7 E <

Integer Floating Point

alvinn

nasa’7

spice2g6

D 0->1
- 1->2

M 2564

. Base

ora

e FP programs on average: AMAT=0.68 -> 0.52 -> 0.34 -> 0.26
¢ Int programs on average: AMAT=0.24 ->0.20 -> 0.19 -> 0.19

e 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss, SPEC 92
35

0->1
1->2
2->64
Base

“Hit under n Misses”



6: Increasing Cache Bandwidth via
Multiple Banks

e Rather than treat the cache as a single monolithic block,
divide into independent banks that can support
simultaneous accesses

— E.g.,T1 (“Niagara”) L2 has 4 banks

e Banking works best when accesses naturally spread
themselves across banks = mapping of addresses to banks
affects behavior of memory system

e Simple mapping that works well is “sequential interleaving”

— Spread block addresses sequentially across banks

— E,g, if there 4 banks, Bank 0 has all blocks whose address modulo 4 is
0; bank 1 has all blocks whose address modulo 4 is 1; ...

36



7. Reduce Miss Penalty:
Early Restart and Critical Word First

e Don’t wait for full block before restarting CPU

e Early restart—As soon as the requested word of the block
arrives, send it to the CPU and let the CPU continue
execution

— Spatial locality = tend to want next sequential word, so not clear
size of benefit of just early restart

e Critical Word First—Request the missed word first from
memory and send it to the CPU as soon as it arrives; let the
CPU continue execution while filling the rest of the words in
the block

— Long blocks more popular today = Critical Word 15t Widely used

- block
37




8. Merging Write Buffer to
Reduce Miss Penalty

Write buffer to allow processor to continue while waiting
to write to memory

If buffer contains modified blocks, the addresses can be
checked to see if address of new data matches the address
of a valid write buffer entry

If so, new data are combined with that entry

Increases block size of write for write-through cache of
writes to sequential words, bytes since multiword writes
more efficient to memory

The Sun T1 (Niagara) processor, among many others, uses
write merging

9/25/2007 38



9. Reducing Misses by Compiler
Optimizations

McFarling [1989] reduced caches misses by 75%
on 8KB direct mapped cache, 4 byte blocks in software

Instructions

— Reorder procedures in memory so as to reduce conflict misses
— Profiling to look at conflicts (using tools they developed)

Data

— Merging Arrays: improve spatial locality by single array of compound
elements vs. 2 arrays

— Loop Interchange: change nesting of loops to access data in order
stored in memory

— Loop Fusion: Combine 2 independent loops that have same looping
and some variables overlap

— Blocking: Improve temporal locality by accessing “blocks” of data

. 39
repeatedly vs. going down whole columns or rows



Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {

int val;

int key;
}s

struct merge merged _array[SIZE];

Reducing conflicts between val & key;
improve spatial locality

9/25/2007 40



Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)
for (J = 0; j < 100; j = j+1)
for (i = 0; 1 <5000; i = i+1)
x(lo1 = 2 > x[ljl;
/* After */
for (k = 0; k < 100; k = k+1)
for (i = 0; i1 <5000; i = i+l)
for (J = 0; jJ <100; j = j+1)
x(lol = 2 > xpljl;

Sequential accesses instead of striding through memory every
100 words; improved spatial locality

9/25/2007 41



Loop Fusion Example

/* Before */
for (i = 0; 1 < N; 1 = i+l)
for g =0; J <N; jJ = jJ+1)
alilpl = /bd1 * clillil;
for (i = 0; 1 < N; 1 = i+l)
for g =0; J <N; jJ = J+1)
dilpl = afilfl + chilil;

/> After */
for (i = 0; 1 < N; 1 = i+l)
for (J = 0; jJ <N; j = j+1)
{ alilbl = /bl * clidlil:
diadls] = alilbal + chilbl:}

2 misses per access to a & C vs. one miss per access; improve spatial
locality

42



Blocking Example

/* Before */

for (i = 0; 1 < N; 1 = i+l)

for (. =0; J <N; j = j+1)
{r = 0;
for (k = 0; k < N; k = k+1){
r = r + y[il[kl*z[k1[ 1:}:
(][ 1 = r;
};
e Two Inner Loops:

— Read all NxN elements of z[]

— Read N elements of 1 row of y[] repeatedly
— Write N elements of 1 row of x[]

e Capacity Misses a function of N & Cache Size:
— 2N3+ N2 => (assuming no conflict; otherwise ...)

e |dea: compute on BxB submatrix that fits in cache
43




Blocking Example

/* After */
for (. = 0; < Nj; = +B)
for (kk = 0; kk < N; kk = kk+B)
for (1 =0; 1 < N; 1 =1+1)
for ( = ; < min(C +B-1,N); = +1)

{r = 0;

for (k = kk; k < min(kk+B-1,N); k = k+1) {
r=r + y[iJ[kI*z[K1L 1:};

}>_<[i][ 1 =0l 1 + r;

e B called Blocking Factor
e Capacity Misses from 2N3 + N2 to 2N3/B +N?
e Conflict Misses Too?

44



Reducing Conflict Misses by Blocking

0.15 1
e 0.1 Il
& Direct Mapped Cache
%
= 0.05 +

Fully Associative Cache
0 | ! |
0 50 100 150

Blocking Factor

e Conflict misses in caches not FA vs. Blocking size

— Lam et al [1991] a blocking factor of 24 had a fifth the misses vs. 48
despite both fit in cache

45



Summary of Compiler Optimizations to
Reduce Cache Misses (by hand)

vpenta (nasa7)

gmty (nasa?7)

tomcatv

btrix (nasa?)

mxm (nasa7)

spice

cholesky (nasa7)

compress

1 1.5 2 2.5 3

Performance Improvement

Emerged arrays Bloop interchange ™ loop fusion Oblocking

46



10. Reducing Misses by Hardware Prefetching

i
e Prefetching relig.f ogl:pgl?;\glé)c(;c!—a %gﬁlocrg\(/ gﬁl vﬂdth that can be used
without penalty

e Instruction Prefetching

— Typically, CPU fetches 2 blocks on a miss: the requested block and the next
consecutive block.

— Requested block is placed in instruction cache when it returns, and prefetched block
is placed into instruction stream buffer

e Data Prefetching

— Pentium 4 can prefetch data into L2 cache from up to 8 streams from 8 different 4
KB pages

Prefetching invoked if 2 successive L2 cache misses to a page,

if distance between those cache blocks is < 256 bytes
2.20
200
1.80
160 4145 140149
1.40 |z ain - -

120 422 ||
100 LI

=
(IR
(o))
bmd o
=
=
@
=
N
<
=
=
N
o

Performance Improvement

Z
P
Y, -
%\S‘
&
%,
%
/6)0
%,

*,

SPECint2000 SPECfp2000



e Usefulness — should produce hits

Issues in Prefetching

e Timeliness — not late and not too early

e Cache and bandwidth pollution

9/25/2007

CPU
11l

RF

h

L1
Instruction

L1 Data

Unified L2
Cache

Prefetched data

48



Hardware Instruction Prefetching

Instruction prefetch in Alpha AXP 21064

— Fetch two blocks on a miss; the requested block (i) and the next
consecutive block (i+1)

— Requested block placed in cache, and next block in instruction stream

buffer

— If miss in cache but hit in stream buffer, move stream buffer block into

cache and prefetch next block (i+2)

CPU
11l

RF

Prefetched

Req Strea instruction block
block m
Buffer
| L1 4___|—> Unified L2
Instruction |Req Cache
block

49



Hardware Data Prefetching

¢ Prefetch-on-miss:

— Prefetch b + 1 upon misson b

e One Block Lookahead (OBL) scheme

— Initiate prefetch for block b + 1 when block b is accessed
— Why is this different from doubling block size?
— Can extend to N block lookahead

e Strided prefetch

— If observe sequence of accesses to block b, b+N, b+2N, then prefetch b+3N etc.

Example: IBM Power 5 [2003] supports eight independent streams of strided
prefetch per processor, prefetching 12 lines ahead of current access

9/25/2007 50



11. Reducing Misses by
Software Prefetching Data

e Data Prefetch
— Load data into register (HP PA-RISC loads)

— Cache Prefetch: load into cache
(MIPS IV, PowerPC, SPARC v. 9)

— Special prefetching instructions cannot cause faults;
a form of speculative execution

e |ssuing Prefetch Instructions takes time
— Is cost of prefetch issues < savings in reduced misses?
— Wider superscalar reduces difficulty of issue bandwidth

9/25/2007

51



Technique

Small and simple caches
Way-predicting caches
Trace caches

Pipelined cache access
Nonblocking caches

Banked caches

Critical word first and early
restart

Merging write buffer

Compiler techniques to
reduce cache misses

Hardware prefetching of
instructions and data

Compiler-controlled
prefetching

Hit
Time

Band-
width

Mi
Ss

na
Ity

Mis

rate

HW cost/
complexit

y

0

2 instr., 3
data

Comment

Trivial; widely used
Used in Pentium 4
Used in Pentium 4
Widely used

Widely used

Used in L2 of Opteron and
Niagara

Widely used

Widely used with write
through

Software is a challenge;
some computers have
compiler option

Many prefetch instructions;
AMD Opteron prefetches
data

Needs nonblocking cache;
in many CPUs



Next Time

e Address translation and protection for virtual
memory systems

9/25/2007 53



