FEXAA]

AN JIAOTONG UNIVERS II‘Y

@

Modern Computer Architecture

Lectured Virtual Memory

Hongbin Sun
5% B P A A S

Xi’an Jiaotong University

Recap: Memory Hierarchy

e DRAM is dominant form of main memory today

— Holds values on small capacitors, requires refresh, and long time to
sense bit values (destructive reads)

— Row access brings internal row into sense amps, column access reads
out bits from sense amps.

— Most DRAM interface innovations improve bandwidth of column
accesses across chip pins, not access latency

— Individual chips packaged in ranks on DIMMs, multiple independent
banks/rank
e Many forms of cache optimization, targeting: hit time, miss
rate, miss penalty

— Increasing number of levels of cache, and sophisticated prefetching
schemes - difficult to tune code for hierarchy

2

Memory Management

e From early absolute adressing schemes, to modern virtual
memory systems with support for virtual machine monitors

e (Can separate into orthogonal functions:
— Translation (mapping of virtual address to physical address)
— Protection (permission to access word in memory)
— Virtual memory (transparent extension of memory space using
slower disk storage)
e But most modern systems merge support for above
functions with a common page-based system

9/27/2007 3

Absolute Addresses
EDSAC, early 50’s

e Only one program ran at a time, with unrestricted
access to entire machine (RAM + 1/0 devices)

e Addresses in a program depended upon where the
program was to be loaded in memory

e But it was more convenient for programmers to write
location-independent subroutines

How could location independence be achieved?

Linker and/or loader modify addresses of subroutines
and callers when building a program memory image

9/27/2007 4

Dynamic Address Translation

Motivation
In the early machines, 1/0 operations were slow
and each word transferred involved the CPU

Higher throughput if CPU and 1/0 of 2 or more
programs were overlapped.
How?= multiprogramming

Location-independent programs
Programming and storage management ease
= need for a base register

Protection
Independent programs should not affect
each other inadvertently

— need for a bound register

9/27/2007 5

progl

Physical Memory

Simple Base and Bound Translation

....................... Segment Length

Bound P Bounds

Register "\ Violation?
: : Physical current
' load X | Effective Address segment
Address +

Base

: Register

Base Physical Address
Program
Address
Space

Base and bounds registers are visible/accessible only
when processor is running in the supervisor mode

Main Memory

Separate Areas for Program and Data

Data Bound :f\ Bounds
Register =/ Violation?

Effective Addr data
Load X Register segment

Data Base J(+
Register \./

Program Program Bound
Address Register

Space

Main Memory

Bpunds
Violation?

program
segment

Program
Counter

Program Base ‘
Register \-_l-/
l

What is an advantage of this separation?
(Scheme used on all Cray vector supercomputers prior to X1, 2002)

Memory Fragmentation

Users4 & 5 Users 2 & 5 free

0S arrive OS leave 0S
Space :> Space ::> Space
user 1] 16K user 1 16K user 1 16K
user 21 24K user 2| 24K 24K

ser 4
24K Y 16K user 4 16K
8K 8K

user 3 32K user 3 32K user 3 32K
24K user 5 24K 24K

As users come and go, the storage is “fragmented”.
Therefore, at some stage programs have to be moved
around to compact the storage.

Paged Memory Systems

Processor generated address can be interpreted as a pair <page

number, offset>

page number

offset

A page table contains the physical address of the base of each

page

N0

3

Address Space
of User-1

W N = O

1

/ 0

. |

Page Table \ 2
of User-1

Page tables make it possible to store the
pages of a program non-contiguously.

9

Private Address Space per User

User 1 VA1 — = > O
S5 pages
Page Table > g
& = oo 0
User 2| vA1
Page Table
User 3 | VAL AN
Page Table free
e Each user has a page table
= Page table contains an entry fof,each user page

Where Should Page Tables Reside?

e Space required by the page tables (PT) is
proportional to the address space,
number of users, ...

—> Space requirement is large
—> Too expensive to keep in registers

e |dea: Keep PTs in the main memory

— needs one reference to retrieve the page base address and
another to access the data word

=> doubles the number of memory references!

11

Page Tables in Physical Memory

, PT User 1

VA1l 1

PT er 2

User 1

VAL &
User 2

9/27/2007 12

A Problem in Early Sixties

e There were many applications whose data could not fit
in the main memory, e.g., payroll

— Paged memory system reduced fragmentation but still required
the whole program to be resident in the main memory

e Programmers moved the data back and forth from the

secondary store by overlaying it repeatedly on the
primary store

tricky programming!

9/27/2007 13

Manual Overlays

e Assume an instruction can address all the

storage on the drum 40K bits
main
e Method 1: programmer keeps track of addresses I
in the main memory and initiates an I/O transfer
when required 640k bits
drum
e Method 2: automatic initiation of 1/0 transfers Central Store

by software address translation _
Ferranti Mercury

Brooker’s int ti ding, 1960
rooker’s interpretive coding 1056

Methodl: Difficult, error prone
Method?2: Inefficient

Not just an ancient black art, e.g., IBM Cell microprocessor
oo72007 €Xplicitly managed local sipre has same issues

Demand Paging in Atlas (1962)

“A page from secondary
storage iIs brought into the
primary storage whenever
It is (implicitly) demanded
by the processor.”

Tom Kilburn

Primary memory as a cache
for secondary memory

User sees 32 X 6 x 512 words
of storage

9/27/2007 15

Primary
32 Pages
512 words/page

Central
Memory

Secondary
(Drum)
32X6 pages

Hardware Organization of Atlas

Effective

| 16 ROM pages

Address | Initial H
Address

0.4 —1 usec

Decode T

48-bit words
512-word pages

"2 subsidiary pages

1 Page Address
Register (PAR)
per page frame

1.4 usec
Main Drum (4)
32 pages 192 pages
1.4 usec

<effective PN , status>

system code
(not swapped)

system data
(not swapped)

8 Tape decks
88 sec/word

Compare the effective page address against all 32 PARs

match

no match

9/27/2007

= normal access

= page fault
save the state of the partially executed
Instruction

16

Atlas Demand Paging Scheme

e On a page fault:
— Input transfer into a free page is initiated

— The Page Address Register (PAR) is updated

— If no free page is left, a page is selected to be replaced
(based on usage)

— The replaced page is written on the drum

* to minimize drum latency effect, the first empty page
on the drum was selected

— The page table is updated to point to the new location

of the page on the drum
9/27/2007 17

Caching vs. Demand Paging

CPU |«—

Caching
cache entry
cache block (—32 bytes)

cache

| primary

memory

secondary
memory

CPU primary e

memory S———0

Demand paging
page frame
page (—4K bytes)

cache miss rate (1% to 20%) page miss rate (<0.001%)
cache hit (—1 cycle)

cache miss (—100 cycles)

a miss is handled

9/27/2007

in hardware

18

page hit (—100 cycles)

page miss (—5M cycles)

a miss is handled
mostly in software

Modern Virtual Memory Systems

I/lusion of a large, private, uniform store

Protection & Privacy OS
several users, each with their private
address space and one or more

shared address spaces user;
page table = name space
: Swappin

Demand Paging Gﬁﬁ%

Provides the ability to run programs Primary [N——

larger than the primary memory Memo_ry//:

]
Hides differences in machine <
configurations

The price is address translation on

each memory reference VA [Mapping | pa
9/27/2007 19 TLB

Linear Page Table

e Page Table Entry (PTE)

contains:

— A bit to indicate if a page

exists

— PPN (physical page number)
for a memory-resident page

— DPN (disk page number) for a

page on the disk

— Status bits for protection and

usage

e OS sets the Page Table Base
Register whenever active

user process changes

9/27/2007

Page Table

PPN

PPN

| DPN

PPN

7

2

| DPN

PPN

PPN

DPN

DPN

DPN

PPN

\4

Offset

e

VPN

PPN

Data Pages

Data word

PT Base Register VPN

Offset

—————

Virtual address

Size of Linear Page Table

With 32-bit addresses, 4-KB pages & 4-byte PTEs:

— 229 PTEs, i.e, 4 MB page table per user

— 4 GB of swap needed to back up full virtual address
space

Larger pages?
¢ Internal fragmentation (Not all memory in a page is used)
e Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
e Even 1MB pages would require 2%* 8-byte PTEs (35 TB!)

What is the ““saving grace™ ?

9/27/2007 21

Hierarchical Page Table

Virtual Address

3 22 1 1 0 — |

1 pl2 |1 p2 2|1 offset

\ A J

10-Bit 10%bit

L1 index L2 index 000 offse{

Root of the Current

Page Table W, pZI

p1

\

(Processor Level 1
Register) Page Table %

Level 2

page in primary memory Page Tables

page in secondary memory

V] PTE of a nonexistent page 29

Data Pages

Address Translation & Protection

Virtual Address | Virtual Page No. (VPN) offset

Kernel/User Mode

Read/Write

Address
Translation

Protection
Check

Exception?
Physical Address | Physical Page No. (PPN) | offset

e Every instruction and data access needs address
translation and protection checks

A good VM design needs to be fast (— one cycle) and space
efficient

23

Translation Lookaside Buffers

Address translation is very expensive!
In a two-level page table, each reference
becomes several memory accesses

Solution: Cache translations in TLB

TLB hit = Single Cycle Translation
TLB miss — Page Table Walk to refill
virtual address VPN offset
]
V [RwW| D] t!ig PPN (VPN = virtual page number)

(PPN = physical page number)

1 | 1

9/27/2007 hit? physical address PPN offset

24

TLB Designs

Typically 32-128 entries, usually fully associative

— Each entry maps a large page, hence less spatial locality across pages
=» more likely that two entries conflict

— Sometimes larger TLBs (256-512 entries) are 4-8 way set-associative
Random or FIFO replacement policy

No process information in TLB?
TLB Reach: Size of largest virtual address space that can be

simultaneously mapped by TLB
Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach = 64 entries * 4 KB = 256 KB (if contiguous) 2

25

Variable-Sized Page Support

Virtual Address

3 2 2 1 1 0]
1 pl2 |1 p2 2|1 offset
\ A)

10-Bit 10%bit

L1 index L2 index

7 offse+A

Page Table w7

Root of the Current _OT’T J
L' P

(Processor Level 1
Register) Page Table %

Level 2

page in primary memory

NN |arge page in primary memory Page Tables

page in secondary memory

w4 PTE of a nonexistent page
9/27/2007 26

Data Pages

Variable-Size Page TLB

Some systems support multiple page sizes.

virtual address VPN offset
_ 15 |
¥
VRV[O [Tag PPN L
hit? N

physical address PPN offset

27

Handling a TLB Miss

Software (MIPS, Alpha)
TLB miss causes an exception and the operating system
walks the page tables and reloads TLB. A privileged
“untranslated” addressing mode used for walk

Hardware (SPARC v8, x86, PowerPC)

A memory management unit (MMU) walks the page
tables and reloads the TLB

If a missing (data or PT) page is encountered during the

TLB reloading, MMU gives up and signals a Page-Fault
exception for the original instruction

9/27/2007 28

Hierarchical Page Table Walk:
SPARC v8

Virtual Address |Index 1 Index 2 Index 3 Offset
31 23 17 11 0
Context | Context Table
Table —
Register L1 Table
—|root ptr >
Context
Register L2 Table
PTP > L3 Table
PTP >
PTE
31 11 3
Physical Address PPN Offset

MMU does this table walk ip hardware on a TLB miss

Translation for Page Tables

e Can references to page tables cause TLB misses?
e Can this go on forever?

T

User Page Table
(in virtual space)

User PTE Base

' 5
System PTE\ G,

Base
System Page Table
(in physical space)

9/27/2007 30 Data Page

Address Translation:
putting it all together

Virtual Address

1

TLB

Lookup

NIES

Page Table
Walk

the | page is
¢ memory Ymemory

[] hardware

[] hardware or software

[] software

hit

Protection
Check

denieywd

Page Fault
(OS loads page) Update TLB

Protection

Fault

Hhere? 31 SEGFAULT

Physical
Address
(to cache)

Address Translation:
putting it all together

Restart instruction TLB

1

Lookup

NIES

Walk

Page Table

the| page is
¢ memory Ymemory

Page Fault
(OS loads page)

Virtual Address

[1 hardware
[] hardware or software

[] software

hit

Protection
Check

denieywd

Update TLB

Protection Physical

Fault Address
(to cache)

320 SEGFAULT

Address Translation in CPU Pipeline

L Inst i Inst. | 54 Decode , i Data i Data AR
PE1T1LB [1cache [1P El P+ MR 1B [cache [TW
TLB miss? Page Fault? TLB miss? Page Fault?
Protection violation? Protection violation?

e Software handlers need a restartable exception on page fault or
protection violation

e Handling a TLB miss needs a hardware or software mechanism to refill
TLB

e Need mechanisms to cope with the additional latency of a TLB:
— slow down the clock
— pipeline the TLB and cache access
— virtual address caches
— parallel TLB/cache access 33

Virtual Address Caches

PA

cpu |[YA_, LB | Physical Primary
Cache Memory

Alternative: place the cache before the TLB

VA
. Primary

cpu LL| Virtual J T PA J{Memory (StrongARM)
Cache

e one-step process in case of a hit (+)

e cache needs to be flushed on a context switch unless address space
identifiers (ASIDs) included in tags (-)

e aliasing problems due to the sharing of pages (-)

oW, |
o Ly

Aliasing in Virtual-Address Caches

Page Table Tag Data
VA,—
Data Pages VA1 1St COQM Of Data. at PA
PA VA, 2nd Copy of Data at PA
VA,— .
Virtual cache can have two

copies of same physical data.
Writes to one copy not visible
to reads of other!

Two virtual pages share
one physical page

General Solution: Disallow aliases to coexist in cache
Software (i.e., OS) solution for direct-mapped cache
VAs of shared pages must agree in cache index bits; this
ensures all VAs accessing same PA will conflict in direct-
mapped cache (early SPARCSs)
35

Concurrent Access to TLB & Cache

/ \ Virtual
VA VPN L b Index
3 \ / v
Direct-map Cache
LB Ai' : 2L blocks
Y 2b-pyte block
PA PPN Page Offset
< 7 \
Tag o —

_k[/ Physical Tag Data
hit?

Index L is available without consulting the TLB
— cache and TLB accesses can begin simultaneously
Tag comparison is made after both accesses are completed

Cases: L +b =k L+ b <k L+ b >k

Virtual-Index Physical-Tag Caches:

Associative Organization

|
/ Virtual
VA VPN a | = k-b b 2° Index
l \ / [I I]
Direct-map Direct-map
TLB + k 2L blocks 2L blocks
l ' Phy.
PA PPN Page Offset Tag
\
I o 00—
Tag 261
\ Data

After the PPN is known, 2% physical tags are compared

Is this scheme realistic?

Concurrent Access to TLB & Large L1

The problem with L1 > Page size

VA

PA

Virtual Index

\

VA,

VA,

L1 PA cache
Direct-map

PPN Data

VPN Page Offset |b
TLB
PPN Page Offset |b
|
Tag

Can VA, and VA, both map to PA ?

38

A solution via Second Level Cache

L1
= |nstruction Memory
Selc Unified L2 Memory
CPU Cach
. AChic Memory
— ata
RF Cache Memory

Usually a common L2 cache backs up both
Instruction and Data L1 caches

L2 I1s “inclusive” of both Instruction and Data caches

9/27/2007 39

VA

PA

Anti-Aliasing Using L2: mzrs rio000

/ : Virtual Index| L1 PA cache
VPN a | Page Offset |b | Direct-map
> — into L2 tag VA, [PPN, | Data
TLB
VA, | PPN, Data
PPN Page Offset | b
N\ / PPN
' - — hit?
Tag
Suppose VAl and VA2 both map to PA and VAl is
already in L1, L2 (VA1 # VA2) oA Dat
After VA2 is resolved to PA, a collision will be detected in | A ata
L2.

VA1 will be purged from L1 and L2, and VA2 will be

loaded = no aliasing ! 20

Direct-Mapped L2

Virtually-Addressed L1:

Anti-Aliasing using L2

|
= > Virtual
VA VPN Page Offset| b Index & Tag
VA,| Data
TLB
1 VA,| Data
PA PPN Page Offset| b L1 VA Cache
AN /
“Virtual
Tag Physical) l Tag”
Index & Tag

PA | VA;| Data

Physically-addressed L2 can also be
used to avoid aliases in virtually-
addressed L1

L2 PA Cache
a1 L2 “contains” L1

Page Fault Handler

e When the referenced page is not in DRAM:

— The missing page is located (or created)
— ltis brought in from disk, and page table is updated

Another job may be run on the CPU while the first job
waits for the requested page to be read from disk

— If no free pages are left, a page is swapped out
Pseudo-LRU replacement policy

e Since it takes a long time to transfer a page
(msecs), page faults are handled completely in
software by the OS

— Untranslated addressing mode is essential to allow kernel to access
page tables

42

Swapping a Page of a Page Table

A PTE In primary memory contains

primary or secondary memory addresses

A PTE in secondary memory contains

only secondary memory addresses

— a page of a PT can be swapped out only
If none its PTE’s point to pages in the
primary memory

Why?

43

Atlas Revisited

One PAR for each physical page

PAR’s contain the VPN’s of the pages
resident in primary memory

PPN
Advantage: The size is proportional to the
size of the primary memory

What is the disadvantage ?

44

PAR’S

VPN

Hashed Page Table:

Approximating Associative Addressing

VPN d Virtual Address

l

PID

Page Table

Offset PA of PTE
" hash "\ + -)

Base of Table

Hashed Page Table is typically 2 to 3 times larger
than the number of PPN’s to reduce collision
probability

It can also contain DPN’s for some non-resident
pages (not common)

If a translation cannot be resolved in this table
then the software consults a data structure that

VPN

PI1D| PPN

VPN

PID| DPN

VPN

\
N

PID

Primary
Memory

has an entry for every existing page
45

Global System Address Space

User = map
\{ Global

Level A | System | map|= Physical
Address Memory

/- Space Level B

User [—| Map

e Level A maps users’ address spaces into the global space
providing privacy, protection, sharing etc.

e Level B provides demand-paging for the large global system
address space

e Level A and Level B translations may be kept in separate

TLB’s
46

Hashed Page Table Walk:

PowerPC Two-level, Segmented Addressing

64-bit user VA Seg ID Page | Offset
0 35 51 53
hashg| <
Hashed Segment Table
PA of Seg Table —»é
per process PA
80-bit System VA Global Seg ID Page | Offset
0 51 67 79
hashg/* Hashed Page Table
PA of Page Table Aé
. PA
system-wide
[IBM numbers 0 l 57 lao
bits with MSB=0] 40-bit PA PPN Offset

Power PC: Hashed Page Table

VPN d 80-bit VA
} Page Table
ff PA of Slot I
hash|—202et @ : VPN PPN
. VPN V777
Base of Table
Each hash table slot has 8 PTE's <VPN,PPN> that are
searched sequentially
If the first hash slot fails, an alternate hash function is used
to look in another slot
All these steps are done in hardware!
Hashed Table is typically 2 to 3 times larger than the
number of physical pages Pri mary
The full backup Page Table is a software data structure Memory

48

Virtual Memory Use Today - 1

e Desktops/servers have full demand-paged virtual memory
— Portability between machines with different memory sizes
— Protection between multiple users or multiple tasks
— Share small physical memory among active tasks
— Simplifies implementation of some OS features

e Vector supercomputers have translation and protection but
not demand-paging
— Older Crays: base&bound, Japanese & Cray X1: pages

— Don’t waste expensive CPU time thrashing to disk (make jobs fit in
memory)

— Mostly run in batch mode (run set of jobs that fits in memory)
— Difficult to implement restartable vector instructions

49

Virtual Memory Use Today - 2

e Most embedded processors and DSPs provide physical
addressing only

Can’t afford area/speed/power budget for virtual memory support
Often there is no secondary storage to swap to!

Programs custom written for particular memory configuration in
product

Difficult to implement restartable instructions for exposed
architectures

But where software demands are more complex (e.g., cell
phones, PDAs, routers), even embedded devices have TLBs!

50

