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• When B is close to the threshold value Bth ≈ 0.33, the azimuthon
may switch between swinging and rotating (see angular momentum
below). We attribute this behavior to numerical fluctuations.
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Higher-order azimuthons

Straightforwardly, it is possible to construct higher-order azimuthons
from pairs of degenerated waveguide modes, similar to Eq. (5), and
study the purely nonlinearity induced propagation dynamics. In order
to obtain stable solutions, we increase the normalized index contrast V0
[7].

• In a circular waveguide with V0 = 40, we can observe a stable rotating
quadrupole azimuthon. Here, we show exemplary propagation for
A = 1 and B = 0.2.
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• In a square waveguide, higher-order azimuthons always swing back
and forth during propagation. Here, the next pair of degenerated
waveguide modes are hexapoles. The quadrupole modes are not
degenerated, and propagation dynamics of a superposed state in
weakly nonlinear regime is dominated by linear mode beating. The
following figure shows propagation of the hexapole azimuthon with
A = 1 and B = 0.2.
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Unlike in the case of the dipole azimuthon, we do not find a
threshold value for B. Numerical simulations demonstrate the
azimuthon is always twisting periodically during propagation.

Conclusions

• By means of numerical simulations we have demonstrated stable prop-
agation of azimuthons in weakly nonlinear waveguides.

• Depending on the shape of the waveguide, different nonlinear induced
propagation dynamics can be observed.

• Our findings may open a relatively easy route to experimental obser-
vations of stable rotating solitons.

• Due to the very simple model equation, we hope to gain a more pro-
found theoretical understanding of rotating nonlinear localized struc-
tures in further investigations.
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• Angular frequency ω of the rotating dipole azimuthon versus param-
eters A and B.
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In the range of stability of the azimuthons the angular frequen-
cies predicted by Eq. (4) coincide with those obtained from the
numerical simulations (red stars).

Square waveguide

In a square waveguide, azimuthons in the strict sense of Eq. (3) are not
possible, since the beam profile changes considerably during propaga-
tion. However, we can still find two degenerated dipole modes D1, D2
and superpose them in a similar manner as before to form a “dipole
azimuthon”,

ψ(Z = 0) = A (D1 + iBD2) ,

∫∫

|D1,2|
2dXdY = 1. (5)

Numerical simulations demonstrate that for given A there exists a
threshold value for B above which the solution rotates. Below this
threshold, the “azimuthon” swings back and forth.

• Rotation of the azimuthon for A = 1.5 and B = 0.4 (above threshold
Bth ≈ 0.33).

The beam rotates about π/4 over a propagation distance of 4.0,
so the averaged angular frequency ω̄ is about ω̄ ≈ 0.2.
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The angular momentum −i
∫∫

ψ∗∂φψdXdY is changing peri-
odically, because the angular frequency of the azimuthon is not
constant during propagation.

0.25 1 2.25 4
0

0.1

0.2

0.3

0.4

A2

ω̄

 

 

B=0.4

Numerical
Fitting

0.4 0.5 0.6 0.7
0.07

0.09

0.11

0.13

0.15

0.17

B

ω̄

 

 

A=1.0

Numerical
Fitting

Red stars represent numerical results, blue lines are fittings.
The averaged angular frequency of the azimuthons in the square
waveguide is still proportional to A2 and B.

• When B is smaller than the threshold value (A = 1.5 and B = 0.2),
the azimuthon swings back and forth instead of rotating during
propagation.
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The angular momentum is changing sign periodically, because
the azimuthon swings back and forth during propagation.

Abstract

• We show that a weakly guiding nonlinear waveguide supports propa-
gation of stable rotating solitons, so-called azimuthons.

• In a circular waveguide, we calculate the rotation frequencies of the
dipole azimuthons analytically and find them in excellent agreement
with numerical simulations.

• In a square waveguide, we find dipole solitons either swinging back
and forth or rotating during propagation, depending on amplitude
and modulation depth.

• Higher-order azimuthons are also investigated in both configurations,
we find simple rotation in the circular case, and complex periodic
twisting in the square waveguide.

Introduction

Recently, there has been a lot of interest in a generalized type of spatial
solitons, so-called azimuthons [1-3]. Those multiple peak ring-shaped
solitons, which exhibit angular rotation during propagation, have been
studied almost exclusively in nonlocal nonlinear media, because higher
order solitonic structures are generally unstable in material with local
(Kerr) response. In spite of the fact that there are various physical
settings exhibiting nonlocality [4-6], their experimental realization is al-
ways quite involved. Moreover, from the theoretical point of view, non-
local media are quite challenging for numerical modeling and analytical
treatment. Here, we propose a much simpler optical system to study
the propagation of azimuthons: a weakly nonlinear optical waveguide.
We show that in such system azimuthons occur as the natural nonlinear
counterparts of linear waveguide modes. Following [7], we can expect
that weakly nonlinear azimuthons are stable in multi-mode waveguides.

Mathematical modeling

The following dimensionless equation describes the propagation of the
slowly varying optical field envelope Ψ in a weakly-guiding optical waveg-
uide with Kerr nonlinearity

i
∂

∂Z
Ψ +

(

∂2

∂X2
+

∂2

∂Y 2

)

Ψ + |Ψ|2Ψ + V Ψ = 0, (1)

where V represents the waveguide index profile.

• We restrict ourselves to circular and square step-index waveguides.

• The index profile meets the condition V (X2+Y 2 ≤ 1) = V0 (circular)
or V (|X| ≤ 1 ∩ |Y | ≤ 1) = V0 (square), and V = 0 elsewhere.

• We choose V0 = 20, which guarantees a multi-mode waveguide with
stable vortex soliton in the weakly nonlinear regime [7].

Numerical simulations

Circular waveguide

• We seek approximate solutions of the form

Ψ(r, φ, Z) = U(r, φ − ωZ) exp(iλZ), (2)

where r is the radius in the (x, y)-plane and φ the azimuthal an-
gle, U is the stationary profile, ω the angular frequency, and λ the
propagation constant.

• As stationary profile, we consider the simplest so-called rotating dipole
azimuthon with the ansatz

U(r, φ − ωZ) = AF (r) [cos(φ − ωZ) + iB sin(φ − ωZ)] , (3)

where F is the radial shape of the linear vortex mode and is normal-
ized according to π

∫

r|F (r)|2dr = 1, A is the amplitude factor, and
1 − B is the azimuthal modulation depth.

• According to [8], we insert Eq. (2) into Eq. (1), multiply by Ψ∗ and
∂Ψ∗/∂φ respectively, and solve for the angular frequency:

ω =
π

2

∫

r|F (r)|4dr · A2B. (4)

(i) B = 0 corresponds to the stationary dipole soliton (two out-of-
phase humps), which does not rotate for symmetry reasons.
(ii) B = 1 corresponds to the vortex soliton with circularly symmetric
amplitude distribution and a phase singularity in the origin.

• Exemplary propagation of the rotating dipole azimuthon in the
circular waveguide with A = 2.0 and B = 0.2.

X

Y

A=2.0, B=0.2 @Z=0.00

−1 0 1

−1

0

1

X

Y

A=2.0, B=0.2 @Z=3.30

−1 0 1

−1

0

1

X

Y

A=2.0, B=0.2 @Z=10.00

−1 0 1

−1

0

1

X

Y

Phase

−1 0 1

−1

0

1

X

Y

Phase

−1 0 1

−1

0

1

X

Y

Phase

−1 0 1

−1

0

1


