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Recently, topological insulators (TIs) have attracted much attention, since a TI, as a new phase of matter, only allows 
conducting electrons to exist on the surfaces, and the moving electrons are not affected by defects or disorder. There are 
edge states in TIs that lie in a bulk energy gap in momentum space and are spatially localized on the boundaries of the TIs. 
The edge states are predicted to be useful in performing quantum computations. Topological insulators, as well as some 
graphene-based structures, have also found potential applications in optical modulators and optical diodes. Photonic 
topological insulators (PTIs), fabricated by using metamaterials or helical waveguides [1], can break the time-reversal 
symmetry and lead to oneway edge states, which are robust against defects. 
    So far, research on PTIs has been mostly based on graphene-like structures. A honeycomb lattice also exhibits certain 
graphene-like properties and can be obtained by using the femtosecond laser writing technique or the three-beam 
interference method [2-5]. The first method is valid only in solid materials, whereas the second method can be used in 
both solid and gaseous materials. We note that the three-beam interference will generally induce a hexagonal lattice 
instead of the honeycomb lattice. However, the corresponding refractive index modulation will exhibit a honeycomb 
profile in a saturable nonlinear medium or an atomic vapor. The interference pattern (in the form of a hexagonal lattice) 
produced by the three-beam interference will exhibit many pairs of singularities, and the band structure of the 
corresponding refractive index change ( in the form of a honeycomb lattice) will feature conical singularities at the corners 
of the first Brillouin zone. In an atomic (e.g. rubidium) vapor, when the three-beam interference pattern serves as the 
dressing field, the dressed atomic system will exhibit controllable optical properties, which were extensively investigated 
in the past decade. 

Introduction 

• A photonic Floquet topological insulator (PFTI) in an atomic ensemble is demonstrated numrically and 
theoretically.  

• The interference of three coupling fields will split energy levels periodically, to form a periodic refractive index 
structure with honeycomb profile that can be adjusted by different frequency detunings and intensities of the 
coupling fields.  

• When the honeycomb lattice sites are helically ordered along the propagation direction, gaps open at Dirac 
points, and one obtains a PFTI in an atomic vapor.  

• The appearance of Dirac cones and the formation of a photonic Floquet topological insulator can be shut down by 
the third-order nonlinear susceptibility and opened up by the fifth-order one. 
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• Mathematical realization: Transform the coordinates with 𝑥′ = 𝑥 + 𝑅cos(𝜔𝑧), 𝑦′ = 𝑦 + 𝑅sin(𝜔𝑧) and 𝑧′ = 𝑧 with 𝑅 the radius of the helix and 

𝜔 the frequency of rotation. 

• Potential experimental method – nonlinear phase shift (NPS) modulation: 𝐸3 in Fig. 1 splits  +  into  + ± . In cylindrical coordinate, the NPS 

can be written as 𝑆𝑁𝐿 𝑟, 𝜙, 𝑧 = 2𝑘2𝑛2
𝑋𝐼3𝑧 exp 𝑟2 + 𝑙2 + 2𝑟𝑙𝑐𝑜𝑠 𝜙 − 𝜙′ /𝑛0, in which 𝑛2

𝑋 is the cross-Kerr nonlinear index from 𝐸3. 

• The NPS will induce a transverse vector 𝛿𝐤⊥ 𝑟, 𝜙 = 𝑟 
𝜕𝑆𝑁𝐿

𝜕𝑟
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𝑟
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= 𝐤𝑟 + 𝐤𝜙, with 𝑟  and 𝜙  being the unit vectors. 

• 𝐤𝑟 and 𝐤𝜙 will drive the honeycomb lattice move radially and azimuthally along with 𝑧. 

Conclusions 

• We have proposed a scheme for construction of PFTIs in multi-level atomic vapor ensembles. 

• The formed PFTIs in atomic ensembles can be easily controlled and reconfigured by adjusting the frequency detunings, 

coupling field intensities, and high-order nonlinear susceptibilities. 

• The PFTIs should also exist in other types of multi-level atomic systems. 

• An inverted Y-type electromagnetically induced transparency (EIT) system,as shown in Fig. 1(a). 
• 𝐸𝑝 probes the transition  0 →  1 , 𝐸2 drives the transition  1 →  2 , and 𝐸3 connects  1 →  3 .  

• If three coupling fields are used with the same frequency and launched along the same direction 𝑧, the resulting Rabi 
frequency of such optically induced interference pattern can be written as 

𝐺 =    𝐺2

3

𝑖=1

 exp 𝑖𝑘2 𝑥cos 𝜃𝑖 + 𝑦sin𝜃𝑖 , 

• 𝜃𝑖 = [0,2𝜋/3,4𝜋/3] are the relative phases of the three laser beams, 
• 𝑘2 is the wavenumber of the coupling fields, 
• 𝐺2 = 𝜇12𝐸2/ℏ represents the Rabi frequencies of the coupling fields  where 𝜇12 is the electric dipole moment.  
• Level  1  can be dressed by the coupling fields and split into two sublevels  +  and  − , as shown in Fig. 1(b). 

 
 
 
 
 

 
 

Figure 1. Schematic digram. 
 
• The susceptibility can be written as 
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• The linear, third-order, and fifth-order susceptibilities are  
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• N is the atomic density, 𝜇10 the electric dipole moment, 𝑑10 = Γ10 + 𝑖Δ1 and 𝑑20 = Γ20 + 𝑖(Δ1−Δ2)  the complex 
relaxation rates.  

• Γ𝑖𝑗 is the decay rate between  𝑖  and  𝑗 , Δ1 = Ω10 − 𝜔𝑝 and  Δ2 = Ω12 − 𝜔2 are the frequency detunings.  

• Ω𝑖𝑗  is the transition frequency between  𝑖  and  𝑗 , and 𝜔𝑝 (𝜔2) is the frequency of the probe (coupling) field. 

 

The model 

Figure 2. Refractive index (RI) Δ𝑛(𝑥, 𝑦) 
with Δ1 = −Δ2 = −10  MHz (a), −9 
MHz (b), −8 MHz (c), −7 MHz (d), −6 
MHz (e),  −5 MHz (f), −4 MHz (g), −3 
MHz (h), −2 MHz (i), −1 MHz (j), 0 (k), 
1 MHz (l), 2 MHz (m)  3 MHz (n), 4 MHz 
(o), 5 MHz (p), 6 MHz (q), 7 MHz (r), 8 
MHz (s), 9 MHz (t), and 10 MHz (u). 

Figure 3. Photonic band structures 
corresponding to Fig. 2.  Insets in (s)-(u) 
only show the upper two bands. 

Figure 4. Photonic band structures 
corresponding to Δ1 = −Δ2 = 7.63 
MHz (a), 7.64 MHz (b), 7.65 MHz (c), 
7.66 MHz (d), 7.67 MHz (e), 7.68 MHz 
(f), and 7.69 MHz (g), respectively. 

Figure 5. (a) The RI change along the 
cross section 𝑥 = 0  versus different 
frequency detunings.  (b) RI change in 
the 𝑥 = 0 plane, corresponding to Fig. 
2(f).  (c) Same as (b), but corresponding 
to Fig. 2(p). 

• Δ1 = −Δ2 < 0: Honeycomb lattice 
is composed of circle-like 
structures, because the RI at the 
sites is the smallest and the RI 
immediately around the sites is the 
biggest. 

• Δ1 = −Δ2 = 0 : No honeycomb 
lattice  - homogeneous  meidum. 

• Δ1 = −Δ2 > 0: Honeycomb lattice 
is composed of the sites, because 
the RI at the site is the biggest. 

• Δ1 = −Δ2 < 0 : There are always 
Dirac cones between upper two 
bands. 

• Δ1 = −Δ2 = 0: No Dirac cone. 
• Δ1 = −Δ2 > 0 : Appearance of 

Dirac cones between upper two 
bands can be controlled by 
adjusting frequency detunings. 

• Δ1 = −Δ2 < 0 : No potential 
barrier between lattice sites. 

• Δ1 = −Δ2 > 0 : Potential barrier 
blocks the hopping between 
nearest neighbore sites. With the 
increasing of the frequency 
detuning, the barrier decreases, 
and the blockade effect also 
weakens. 
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Figure 6. Band structures when the 
honeycomb waveguides are not 
spiraling (a) and spiraling (b). 
(c) Edge band structure of the 
strained honeycomb waveguides 
with zigzag boundaries.  (d) Same 
as (c), but corresponding to (b). 

Figure 7.  
(a) Input beam in Fourier space.  
(b-d) Simulated probe beam 
intensities at 𝑧 = 0, 𝑧 ≈ 6.3 𝜇m, 
and 𝑧 ≈ 18.6 𝜇m, respectively. The 
inverted triangle presents the PFTI 
with modulated RI and zigzag 
boundaries.  The parameters are 
Δ1 = −Δ2 = −1  MHz, 𝑉0 = 150 ,  

𝑅 ≈ 24.8 nm, and 
𝜔

2𝜋
≈ 0.8 GHz 

(the period is ~1.2 nm).   
(e1-e3) Same as (c) but under 
Δ1 = −Δ2 = −11 MHz,  −9 MHz, 
and −8 MHz, respectively. 
(f) Beam propagates to 𝑧 ≈ 4.7 𝜇m 
with a disorder. 

Figure 8.  
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