
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 9, MAY 1, 2014 2317

Regularization: Convergence of Iterative Half
Thresholding Algorithm
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Abstract—In recent studies on sparse modeling, the nonconvex
regularization approaches (particularly, regularization with

) have been demonstrated to possess capability of
gaining much benefit in sparsity-inducing and efficiency. As
compared with the convex regularization approaches (say,
regularization), however, the convergence issue of the corre-
sponding algorithms are more difficult to tackle. In this paper, we
deal with this difficult issue for a specific but typical nonconvex
regularization scheme, the regularization, which has been
successfully used to many applications. More specifically, we study
the convergence of the iterative half thresholding algorithm (the
half algorithm for short), one of the most efficient and important
algorithms for solution to the regularization. As the main
result, we show that under certain conditions, the half algorithm
converges to a local minimizer of the regularization, with
an eventually linear convergence rate. The established result
provides a theoretical guarantee for a wide range of applications
of the half algorithm. We provide also a set of simulations to
support the correctness of theoretical assertions and compare the
time efficiency of the half algorithm with other known typical
algorithms for regularization like the iteratively reweighted
least squares (IRLS) algorithm and the iteratively reweighted
minimization (IRL1) algorithm.

Index Terms—Convergence, iterative half thresholding algo-
rithm, regularization, nonconvex regularization.

I. INTRODUCTION

T HE sparsity problems emerging inmany areas of scientific
research and engineering practice have attracted consid-

erable attention in recent years ([1]–[7]). In a typical setup, an
unknown sparse vector is reconstructed from measure-
ments

(1)
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or more generally, from

(2)

where , (commonly, ) is a mea-
surement matrix and represents the noise. The problem can be
modeled as the so called regularization problem

(3)

where , formally called quasi-norm, denotes the number
of nonzero components of , and is a regularization
parameter. In general, regularization is challenging to solve,
due to it is NP-hard [8]. In order to overcome such difficulty,
regularization was proposed as an alternative ([1], [2], [9], [10])

(4)

where represents the norm.
It is well known that regularization is a convex optimiza-

tion problem, and therefore, can be solved very efficiently. It can
also result in sparse solution of the considered problem, with the
guarantee that, under certain conditions, the resultant solution
coincides with the solution of regularization ( equiv-
alence) [11]. Because of these, regularization gets its pop-
ularity and has been widely used in various applications such
as signal/image processing, biomedical informatics and com-
puter vision [12]–[14]. Nevertheless, regularization has been
shown to be suboptimal in many cases (particularly, it cannot
enforce further sparsity when applied to compressed sensing)
([15]–[20]), since the norm is a loose approximation of the
norm and often leads to an over-penalized problem. Conse-

quently, some further improvements are required. Among such
efforts, a very natural improvement is the suggestion of the use
of regularization ([17]–[20])

(5)

where represents the quasi-norm, defined by

.
The regularization is a nonconvex and nonsmooth op-

timization problem, which is in general difficult to be solved
fast and efficiently. Moreover, even when solvable, which
should be selected to yield the best result is also a problem. Re-
cent studies have provided some insights into these problems
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([19]–[23]). On one hand, the high efficiency of regulariza-
tion and regularization when applied to image deconvolu-
tion was demonstrated in [22] and [23], and, on the other hand, a
representative role of regularization among all the regu-
larization with in (0,1) was revealed in [21] by a phase diagram
study. Furthermore, through developing a thresholding repre-
sentation theory, an iterative half thresholding algorithm (called
half algorithm in brief) was proposed in [20] for fast solution
to regularization. Inspired by the well developed theoret-
ical properties and the fast algorithm, regularization has
been successfully used to many applications including hyper-
spectral unmixing [24], synthetic aperture radar (SAR) imaging
[25], [26], machine learning [27], [28], gene selection [29] and
practical engineering [30].
Although widely applied, the theoretical behavior on conver-

gence of regularization is still unclear. This is not sur-
prising because strikingly different from the convex case, the
convergence analysis of the nonconvex case is more difficult
to tackle. The convergence issue, however, is very crucial as
it characterizes the circumstance in which an algorithm can or
cannot be successfully applied, and thus underlies the feasibility
of an approach. By applying a dynamic system methodology,
Xu et al. [20] has ever verified the convergence of the half algo-
rithm to a stationary point under some restricted conditions, but
it is not answered the question what the convergent stationary
point is. In particular, the following two questions are open:
1) Does the half algorithm converge to a local or global min-
imizer of regularization?

2) How fast does the half algorithm converge?
Our purpose of the present paper is to provide answers to

these questions. More specifically, due to the nonconvex fea-
ture, it is hardly possible to identify the global minimizer. In-
stead, we focus on characterizing the conditions under which
the algorithm converges to a local minimizer, and how fast the
algorithm converges eventually.
As the main contributions of the present research, we first ex-

tend the convergence result established in [20] to a more general
case, that is, we show that the half algorithm converges to a sta-
tionary point under the same condition as that of convergence
of the iterative soft thresholding algorithm (the soft algorithm in
brief) in regularization case [31]. Thus, the well known con-
vergence result of the convex regularization case has been
generalized to the nonconvex regularization case. We then
formulate two sufficient conditions under which the convergent
stationary point is a local minimizer of regularization. The
first condition states that the regularization parameter should
be relatively small, which means that the square of term,

should be penalized not too heavily. The second
condition concerns that the measurement matrix satisfies a
certain concentration assumption. Particularly, when satisfies
a certain restricted isometry property (RIP), the second condi-
tion can be satisfied naturally. Under the same conditions, we
further verify that the eventual convergence speed of the half
algorithm is linear, that is, when the iteration number is suf-
ficiently large, the iterations in the remaining steps converge
with at least a linear rate. Thus, under the condition, the half
algorithm can converge to a local minimizer of regulariza-
tion with an eventually linear speed. Finally, we provide simu-

lations to support the correctness of theoretical assertions and
compare the convergence speed of the half algorithm with other
known typical algorithms for regularization like the itera-
tively reweighted least squares (IRLS) algorithm and the itera-
tively reweighted minimization (IRL1) algorithm.
The rest of the paper is organized as follows. In Section II,

we introduce the related regularization theory and the half
algorithm. In Section III, we state the main convergence re-
sults with some remarks. In Section IV, we present an eventu-
ally linear convergence rate estimation of the half algorithm. In
Section V, we conduct the simulations to substantiate the the-
oretical results in Sections III and IV. In Section VI, we com-
pare the obtained theoretical results with some other known re-
sults. We then present the proofs of all the theoretical results in
Section VII and conclude the research in Section VIII.

II. ITERATIVE HALF THRESHOLDING ALGORITHM

In this section, we review the related thresholding represen-
tation theory of regularization and the corresponding half
algorithm, which then serves as the basis of further analysis in
the next sections.

A. Thresholding Representation Theory

The regularization is concerned with the nonconvex and
nonsmooth optimization model

(6)

where is a regularization parameter. It was shown in [20]
that regularization permits a thresholding representation
for its solution, detailed as the following.
Lemma 1. ([20]): With any real parameter ,

any minimizer of regularization satisfies

(7)

where is the half thresholding operator defined by
(8)–(10), , and is the
transpose of .
In (7), the half thresholding operator is defined by

(8)

where

(9)

with

(10)

and for .

For the convenience of expression, we also define

The following two propositions summarize some useful prop-
erties of the half thresholding operator.
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Proposition 1. ([20]): For any , has the
following properties:
(1) is an odd function.

(2) For any , is strictly in-

creasing and .

(3) For any , solves the equa-
tion

where is the sign function.
Proposition 2: For any fixed point of (that is,

), let be the support set of , i.e., ,
then there holds

where denotes the -th column of and denotes
the transpose of .
Proposition 2 can be easily derived from the form of the half

thresholding representation (7)–(10) and Proposition 1(3).
Remark 1: For comparison, we list the hard thresholding op-

erator for regularization and the soft thresholding operator
for regularization also as follows:
(a) the hard thresholding operator ([32])

,

(b) the soft thresholding operator ([33])

.

B. Half Algorithm

From the thresholding representation form (7), an iterative
thresholding algorithm, called the half algorithm, for solution
to regularization was naturally developed in [20], which
reads as

(11)

where is a step size parameter. Note that if, instead of
using the half thresholding operator by the soft and hard thresh-
olding operators, (11) then corresponds to the iterative soft and
hard thresholding algorithms for regularization [33] and
regularization [32].
The convergence of the half algorithm has been partially ana-

lyzed in [20], which implies that the half algorithm can converge
to a stationary point of (7) when is sufficiently small. In the
following, we refine this result by relaxing the restriction on
to a very loose condition, i.e., , which is the
condition widely imposed for convergence of other convex reg-
ularization, say, regularization [31].

Lemma 2: Let be the sequence generated by the half
algorithm and suppose that the step size satisfies

. Then converges to a stationary point of (7).
The proof of Lemma 2 will be presented in Section VII.
In the next, we present an important property of the half al-

gorithm, that is, the support sets of the iterations of (11) will
remain stable within finite steps.
Lemma 3: Assume that is the sequence generated by

the half algorithm which converges to . If and are re-
spectively the support sets of and , then there exists an
such that whenever , there holds

(1) ;
(2) ; and
(3) .
We present the proof of Lemma 3 in Section VII.

III. CONVERGENCE TO A LOCAL MINIMIZER

In the last section we have justified the convergence of the
half algorithm to a stationary point of the iteration (7). However,
in practice, we may be more interested in whether the algorithm
converges to a global minimizer or more possibly, a local min-
imizer due to the nonconvexity of the regularization problem.
In this section, we report the convergence of the algorithm to a
local minimizer of regularization under certain conditions,
followed then with some remarks.

A. Results Characterized With Regularization Parameter

Let . For any vector ,
we denote by the support set of , i.e.,

. For any index set , we denote by
the submatrix of with the columns restricted to and

the minimal singular value of . With those
notations, we can state our main result in the following.
Theorem 1: Assume that and the sequence

generated by the half algorithm converges to . Let
and . If and

(12)

then there exists a constant such that for any
satisfying , there holds the estimation

that is, is a local minimizer of regularization.
We provide the proof of Theorem 1 in Section VII. Theorem

1 implies that when the regularization parameter is taken to be
relatively small, the convergent stationary point of the half
algorithm is indeed a local minimizer of regularization.
Intuitively, a small means that the term of

regularization is penalized not too heavily. More specifically,
we observe from Lemma 3 that when with

, there holds the identity

for any and
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where represents the complementary set of . For any sat-
isfying , we reformulate as

(13)

where and represent respectively the first and second
parts of the above expression of . Then we have

where the inequality was deduced from
and . Furthermore, since

that can be sufficiently small when is very small, then
can be very small. Thus, in this case, the second part of (13),
, becomes dominant in (13). In consequence, to guarantee

being a local minimizer of , we only need to justify the
strict convexity of at .
Since the regularization term is differential at the

neighborhood of , is strictly convex at if the following
second order condition holds, i.e.,

(14)

where is a diagonal matrix with for
and, for any matrix , the notation represents the posi-
tive definetness of . Apparently, if satisfies the condition in
Theorem 1, the second order condition (14) is satisfied. There-
fore, is a local minimizer of .
Moreover, we can observe from (14) that a weaker condition

than (12) can be adopted, say,

where is the -th singular value of .
Remark 2: From the procedure of proof of Theorem 1, we

can observe that when is taken smaller, can be larger, which
then implies that the attraction basin of gets larger, thus
becomes a more stable local minimizer. This fact is important in
practice, since it is hardly possible in general to achieve a global
minimizer for a nonconvex method, and, instead, a more stable
local minimizer is usually expected in application.

B. Results Characterized With Measurement Matrix

By analyzing the condition (12) in Theorem 1, we can see
that the constraints on is mainly controlled by two quantities,
the absolute value of the minimal nonzero component of and
the minimal singular value of . Moreover, by Proposition
1(2), we have

From these facts, we can conclude that if

and the step size satisfies

then

That is, under these conditions, must be a local minimizer
of regularization. We state this formally as the following
Theorem 2.
Theorem 2: Assume that the sequence generated by

half algorithm converges to . Let . If

(15)

and

(16)

then is a local minimizer of .
Note that the condition (15) implies

naturally. (16) thus is a natural and reachable condition and,
furthermore, whenever this condition is satisfied, the sequence

is indeed convergent by Lemma 2. This shows that only
the condition (15) is essential in Theorem 2. We notice that (15)
is a concentration condition on singular values of the submatrix

and, in particular, it implies

or equivalently

(17)

where is the condition number of . (17)
thus shows that the submatrix is well-conditioned with
the condition number lower than 4.
In recent years, a property called the restricted isometry prop-

erty (RIP) of a matrix was introduced to characterize the con-
centration degree of the singular values of its submatrix with
columns [3]. A matrix is said to be of the -order RIP (de-
noted then by -RIP) if there exists a such that

(18)

In other words, the RIP ensures that all submatrices of with
columns are close to an isometry, and therefore distance-pre-

serving. Let . It can be seen from (18) that if pos-
sesses -RIP with , then
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Thus, we can claim that when satisfies a certain RIP, the con-
dition (15) in Theorem 2 can be satisfied. In particular, we have
the following proposition.
Proposition 3: Assume that and satisfies -RIP

with or -RIP with , then (15)
holds.
This can be directly checked by the facts that

, , ,
and (c.f. Proposition 1 in [34]).

From Proposition 3, we can see, for instance, when
and satisfies -RIP with or -RIP with

, the condition (15) is satisfied, and therefore, by
Theorem 2, the half algorithm converges to a local minimizer
of regularization. It is noted that in the condition of Propo-
sition 3, we always have and .
Remark 3: The RIP based conditions presented in Propo-

sition 3 are just examples of sufficient conditions for the va-
lidity of Theorem 2. It is by no means the weakest one. Also,
it is known that verifying the RIP for a given matrix is very
often NP-hard [35]–[37], thus using RIP directly as a criterion
of convergence of regularization is pessimistic in applica-
tions. On the positive side, however, in the field of compressed
sensing, it has been demonstrated that if is generated via a
certain random design, then satisfies the RIP conditions stated
in Proposition 3 with high probability (c.f., [3], [6], [38], [39]).
More specifically, if the entries of the matrix are chosen from
a certain random distribution such as Gaussian, sub-Gaussian
and Rademacher random distributions independently and iden-
tically, then the corresponding random matrix satisfies the re-
stricted isometry property with high probability [3], [38]. Re-
cently, [39] proved that if is generated from a dis-
tribution satisfying the so-called concentration of measure in-
equality, then is of the RIP with the probability no
less than provided that ,
where and are two constants only depend on .
Thus, in applications, if we have known that the measurement
matrix was generated via certain a random distribution dis-
cussed above, we may verify the RIP conditions presented in
Proposition 3 via comparing the number of measurements
with the theoretical lower bound , though the
constant may be very large in theory.
Remark 4: In the seminal paper [40], Candes and Tao con-

sidered the Dantzig selector method for recovering the sparse
signal from the noisy measurements, which is concerned with
solving the following convex optimization model

(19)

where denotes the -norm, which provides the largest
magnitude entry in a vector and is a positive constant param-
eter that controls the level of the noise. They showed that under a
RIP related condition, the Dantzig selector can identify the true
sparse signal stably with high probability. More specifically, the
RIP related condition reads as

(20)

where is the so called restricted orthogonality constant
(ROC) of order . For any positive integers and ,

is defined to be the smallest non-negative number such
that

for all -sparse vector and -sparse vector with disjoint
supports. Recently, Cai and Zhang [41] improved the condition
(21) to a sharper condition, i.e.,

(21)

According to [41], the condition (21) is mostly weaker than
and and therefore, weaker than the

RIP conditions we formulated in Proposition 3. Nevertheless, it
should be observed two remarkable differences between these
two types of results: First, the conditions (20) and (21) are for
the model not for a specific algorithm, while the condition (15)
and Proposition 3 are, however, just for a specific algorithm (i.e.,
the half algorithm) not for regularization model itself. This
difference makes usually not completely comparable between
these two types of results. Second, the Dantzig selector model
(19) is a convex model, while regularization model (6) is
a nonconvex model.
Remark 5: For a nonconvex algorithm, it is generally hard to

guarantee that the algorithm achieves a global minimum. How-
ever, there are still some feasible strategies that may be adopted
to achieve this aim. In the following, we will give some dis-
cussions on this in the perspectives of both theory and practice.
Theoretically, some stringent conditions such as mutual coher-
ence [42] and restricted isometry property (RIP) [3] are often
used in the field of compressed sensing to guarantee that a non-
convex algorithm can recover the sparsest signal, which is also
a global minimizer of the optimization problem under such con-
ditions. In practice, there may be several possible ways that can
be adopted to a nonconvex algorithm such that the algorithm
can achieve a global minimum indeed or in probability. One of
the possible ways is to choose a good initialization. It is well
known that the convergent point of a nonconvex algorithm is
commonly dependent on the initialization. Once the initializa-
tion is taken so good that it lies in the neighborhood of the global
minimizer, then the algorithm can possibly achieve such global
minimizer. Therefore, in practice, we may take a solution of the
corresponding -minimization problem as an initialization for
half algorithm, since the solution of the -minimization can be
usually regarded as a good approximation of the global mini-
mizer. Another possible way is to adopt some strategies of the
global optimization such as simulated annealing (SA) and ge-
netic evolution (GE) to avoid achieving a local minimizer. Re-
cently, Xu and Wang has adopted the simulated annealing (SA)
procedure to the half algorithm and then proposed a new hy-
brid thresholding algorithm [43]. It was demonstrated that under
certain assumptions, the hybrid thresholding algorithm can con-
verge to a global minimum in probability.

IV. EVENTUALLY LINEAR CONVERGENCE RATE

In Section III, we have justified the convergence of the half
algorithm to a local minimizer of regularization. How fast
the half algorithm converges then is a problem that needs to be
further answered. In this section, we derive an upper bound for
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the rate of convergence. We mainly show that the half algorithm
possesses an eventually linear convergence speed.
Theorem 3: Assume that the sequence generated by

the half algorithm converges to , and
. If either of the following two conditions satisfies

(1) and ;

(2) and ,
then there exists a sufficiently large positive integer and a
constant such that when ,

We present the proof of Theorem 3 in Section VII.
By Theorems 1 and 2, under the conditions of Theorem 3, the

convergent limit is also a local minimizer. Thus, in this set-
ting, the half algorithm converges to a local minimizer of
regularization with an eventually linear convergence speed.
According to the proof of Theorem 3, we can find that

(22)

where

and . Since

, we have , and, furthermore,
through simplifying the formula (22), we can find

(23)

which shows that the bound of can be monotonically in-
creasing as increases. Thus, it can be directly checked that

. Moreover, it can be seen from (22) also that is mono-
tonically increasing with and decreasing with
and . Consequently, when the regularization parameter is
taken smaller or , taken larger, may be smaller
and thus the half algorithm can converge faster. This latter ob-
servation coincides clearly with the common understanding that
a lager step size will lead to a faster convergence. Accordingly,
we recommend that in practical application of regulariza-
tion, a larger step size will be taken.

V. COMPARISONS WITH RELATED WORK

In this section, we compare the obtained theoretical results on
half algorithm with some other related algorithms and work.
The first class of the tightly related algorithms are the iterative

shrinkage and thresholding (IST)methods for regularization.
Among them, the hard algorithm and the soft algorithm are two
representatives, which respectively solves the regularization
and regularization [32], [33]. It was demonstrated in [32],
[33] that when both hard and soft algorithms can con-
verge to a stationary point whenever . These classical

convergence results can be generalized when a step size param-
eter is incorporated with the IST procedures, and in this case,
the convergence condition becomes

(24)

It can be seen that (24) is the exact condition of the convergence
of half algorithmwe have imposed in Lemma 2, which then sup-
ports that the classical convergence results of IST has been ex-
tended to the nonconvex regularization case. Furthermore,
it was shown in [31] that when the measurement matrix sat-
isfies the so-called finite basis injective (FBI) property and the
stationary point possesses a strict sparsity pattern, the soft algo-
rithm can converge to a global minimizer of regularization
with a linear convergence rate. Such result is not surprising be-
cause of the convexity of regularization. As for convergence
speed of the hard algorithm, it was demonstrated in [32] that
under the condition and , hard algorithm will
converge to a local minimizer with an eventually linear conver-
gence rate (as far as we know, no result was given however for
the case when step size is taken into consideration). However,
both as algorithms for solving nonconvex models, Theorem 3
reveals that the half algorithm shares the same eventual conver-
gence speed with the hard algorithm.
A generic IST algorithm has been also developed for solving

the following general nonconvex regularization model

(25)

where is assumed to be a proper lower-semicontinuous (l.s.c.)
convex function with gradient being Lipschitz contin-
uous and a nonconvex regularization term satisfying certain
assumptions. The generalized gradient projection (GGP) algo-
rithm proposed in [45] and the general iterative shrinkage and
thresholding (GIST) algorithm suggested in [46] are two typical
algorithms of IST for solving the general model. Nevertheless,
it was only justified that both GGP and GIST algorithms can
converge subsequentially to a stationary point [45], [46] (that
is, there is a subsequence of the algorithm that converges to a
stationary point). However, as a specific case of GGP algorithm,
we have justified that the half algorithm can assuredly converge
to a local minimizer with an eventually linear convergence rate.
Besides IST, another class of tightly related algorithms are the

reweighted techniques that have been also widely used for solu-
tion to regularizationwith . Twowell known exam-
ples of such reweighted techniques are the iteratively reweighted
least squares (IRLS) method [47] and the reweighted mini-
mization (IRL1) method [15]. When specified to regular-
ization, the convergence analysis conducted in [48] shows that
the IRLS method converges with an eventually superlinear con-
vergence rate under the assumption possesses a certain null-
space property (NSP). Such superlinear convergence seems very
attractive. It should be observed that this is actually at the cost of
that at each step of IRLS, a least squares problemhas tobe solved,
which is time-consuming. We will provide a simulation study in
the next section to show that although the eventual superlinear
convergence rate, IRLS performs much slower than the half al-
gorithm in practice, even the half algorithm is known only with
eventual linear convergence rate.
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Fig. 1. Experiment for eventual linear convergence rate. (a) The trend of the
objective function value, i.e., . (b) The trend of iteration error, i.e.,

. (c) Recovery signal (Recovery MSE is ). (a)
Objective function; (b) iteration error; (c) recovery signal.

It was shown also in [49] that the IRL1 algorithm can con-
verge to a stationary point and the eventual convergence speed
is approximately linear. This convergence result seems to be
worse than that we have obtained for the half algorithm (The-
orem 3). Moreover, a series of simulations will be presented in
the next section to support that the half algorithm can be faster
than IRL1 algorithm in the perspective of time efficiency.

VI. NUMERICAL EXPERIMENTS

We conduct a set of numerical experiments in this section to
substantiate the validity of the theoretical analysis on conver-
gence of the half algorithm.

A. Convergence Rate Justification

We start with an experiment to confirm the linear rate of even-
tual convergence. For this purpose, given a sparse signal with
dimension and sparsity shown as in Fig. 1(c),
we considered the signal recovery problem through observation

, where the measurement matrix is of dimension
with Gaussian i.i.d. en-

tries. Such measurement matrix is known to satisfy (with high
probability) the RIP with optimal bounds [38], [39] and thus the
well-conditioned condition of Theorem 3 can be satisfied. We
then applied the half algorithm to the problem with
and . The experiment results are reported in
Fig. 1.
It can be seen from Fig. 1(a) that the iterative sequence of

the objective function is monotonically decreasing
and converges to . Fig. 1(b) then shows how the recovery
MSEs of the iterations varies, from which
we can see that, after approximately 2500 iterations, the half
algorithm converges to a stationary point with a linear decay
rate. Fig. 1(c) shows the comparison of recovered signal
and the original signal, from which we see that the original
sparse signal has been recovered with very high accuracy

Fig. 2. Experiment for comparison of CPU times of different algorithms in-
cluding half, IRLS and IRL1 algorithms. (a) The trends of CPU times of dif-
ferent algorithms. (b) The trends of the ratios of CPU times (divided by the cpu
time of half algorithm). (a) CPU time; (b) ratio of CPU time.

. This experiment clearly
justifies the convergence properties of the half algorithm we
have verified in Lemma 2 and Theorems 3, particularly the ex-
pected eventually linear convergence rate of the half algorithm
is substantiated.

B. Comparisons With Reweighted Techniques

This set of experiments were conducted to compare the time
costs of the half algorithm, IRLS algorithm [48] and IRL1 al-
gorithm [15] for solving the same signal recovery problem with
different settings , where, as in Subsection 8.2 in
[48], we took ,
and . We implemented the three algorithms using
Matlab without any specific optimization. In particular, we used
the CVX Matlab package by Michael Grant and Stephen Boyd
(http://www.stanford.edu/~boyd/cvx/) to perform the weighted
-minimization at each iteration step of IRL1 algorithm.
Again, the measurement matrix was taken to be the
dimensional matrices with i.i.d. Gaussian entries.
The experiment results are shown in Fig. 2.
As shown in Fig. 2(a), when is lower than 500, IRLS al-

gorithm is slightly faster than the half algorithm. This is due to
that in the low dimension cases, the computational burden of
solving a low dimensional least square problem in IRLS is rela-
tively low. Nevertheless, when , it can be observed that
the half algorithm outperforms both IRLS and IRL1 algorithms
in the perspective of CPU time. Furthermore, we can observe
from Fig. 2(b) that as increases, the CPU times cost by IRL1
and IRLS algorithms increase much faster than the half algo-
rithm, that is to say, the outperformance of the half algorithm in
time cost can get more significant as dimension increases.
In addition, we analyze the computational complexity per it-

eration of three algorithms. At per iteration step of the half al-
gorithm, some productions between matrix and vector are only
required, and thus the computational complexity per iteration of
the half algorithm is .While for IRLS algorithm, at each
iteration, the solution of a least squares problem is required, of
which the computational complexity is . Moreover, for
IRL1 algorithm, at each iteration, a weighted minimization is
required to solve, and thus the computational complexity per
iteration of IRL1 algorithms is also . It demonstrates
that when is large, then the computational complexities per
iteration of IRLS and IRL1 algorithms are much higher than that
of half algorithm.



2324 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 9, MAY 1, 2014

VII. PROOFS

In this section we present the proofs of Lemma 2, Lemma 3,
Theorem 1 and Theorem 3.

A. Proof of Lemma 2

The proof of Lemma 2 can follow that of Theorem 3 in [20].
We provide here, however, a much simplified proof. We first
recall some known facts.
Claim 1 ([20]): Let be the sequence generated by the

half algorithm with the step size satisfying
and . Then

1) is a minimization sequence and converges
to , where is any limit point of ;

2) is asymptotically regular, i.e.,
.

By Claim 1, we easily conclude that the half algorithm is
subsequentially convergent. We next claim that any limit point
of is a stationary point of (7).
Claim 2: Under the setting of Claim 1, any limit point of

is a stationary point of (7).
Proof: Denote

and let . Then
and by Lemma 1, we have

Suppose that is a limit point , then there is a subse-
quence , say, such that as .
Since , we have

which implies

(26)

By (26), it then follows that

Since , we get

and, by Claim 1, we have

This implies that , and hence , as
claimed.
To complete the proof of Lemma 2, we need using also the

following known property of the half algorithm.
Claim 3 ([20]): The number of the stationary points of (7) is

finite.
With Claims 1–3, we can verify Lemma 2 as follows. From

Claims 1 and 2, we first can conclude that the half algorithm
converges subsequentially to a stationary point of (7). By Claim
3, any stationary point of (7) is isolated, which then, combined
with the asymptotic regularity of the sequence (Claim 1(2)), im-
plies that the whole sequence of must be convergent to
a stationary point. Thus, the proof of Lemma 2 is completed.

B. Proof of Lemma 3

By the assumption that converges to , it is obvious
that there is an such that whenever , there holds

.

We now prove by contradiction that the support set of
is the same as , the support set of whenever . As-
sume this is not the case, namely, that . Then we easily
derive a contradiction through distinguishing the following two
possible cases:
Case 1: and . In this case, then there

exists an such that . By Proposition 1(2), it then
implies

which contradicts to .
Case 2: and . In this case, it is obvious

that . Thus, there exists an such that . By
Proposition 1(2), we still have

and it contradicts to .
Thus we have justified that .
We further check by contradiction.

As when , it suffices to test that
for any . Assume this is not the case. Then there

exists an such that , and hence,

From Proposition 1(2), it then implies

contradicting again to . This contra-

diction shows .
With this, the proof of Lemma 3 is completed.
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C. Proof of Theorem 1

Let . Since

we have . For any , we define

Since is monotonically decreasing with respect to , there
exists a such that and . We will proceed to
show that whenever , it holds

Actually, we have

(27)

By Proposition 2, for any ,

(28)

and for any ,

(29)

By Taylor expansion, for any , we then obtain

(30)

for some constant . Furthermore, since

we have for any ,

which shows

(31)

From (27)–(31), it thus follows that

(32)

Due to , we find for any ,

(33)

Consequently,

(34)

By (32)–(34), we then obtain

Since , this implies
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and furthermore,

Thus, is a local minimizer of regularization. This im-
plies Theorem 1.

D. Proof of Theorem 3

Let

and

Since

it follows that and . For any , we
define

As is monotonically increasing with respect to , there exists
a constant such that and . By
assumption, since converges to , for a given constant

, there exists an such that when ,

By Lemma 3, we have and
when . Denote

and . Then and
when . For simplicity, we will assume henceforth
is always satisfied.
On one hand, by Proposition 1(3), for any , and
satisfy the following equations respectively,

(35)

(36)

which, combined with , then implies
that for any ,

(37)
By applying Taylor’s formula, we can conclude that for any
, there exists a such that

(38)

where . From (37) and (38),
it then follows that

Denote by and the two diagonal matrices with

and

Then we can write

(39)

where is the Hadamard product or elementwise product.
On the other hand, for any , there holds the following

identity

Therefore, we have

(40)

where is the identity matrix.
Combining (39) and (40) gives

By applying Proposition 1(2), we easily check that for any ,

, and
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Thus, it follows that

Furthermore, we have

Denote

Since

and

we find

Consequently, we obtain

(41)

We further derive an relationship between and

via the quadratic inequality (41). First, we observe
that

which implies

Furthermore, since , we conclude

Denote

Then, for sufficiently large , we find

Since

it follows that

Thus, the convergence of is eventually linear. This jus-
tifies Theorem 3 in the first condition case.
Note that the condition (2) implies the condition (1) in The-

orem 3. Theorem 3 thus follows. This completes the proof of
Theorem 3.

VIII. CONCLUSION

We have conducted a study of a specific regularization frame-
work, i.e., regularization, for better solution to the spar-
sity problem. Among various algorithms for regulariza-
tion, half algorithm has been recognized one of the most effec-
tive algorithms. The main contribution of this paper is the estab-
lishment of the convergence analysis of half algorithm. In sum-
mary, we have verified that (i) the half algorithm converges to a
stationary point in the loose circumstance ; (ii)
The algorithm can converge to a local minimizer of reg-
ularization if either the regularization parameter is relatively
small or the measurement matrix satisfies a certain concentra-
tion assumption (In particular, when possesses a certain RIP);
(iii) The convergence speed is eventually linear. The obtained
convergence result to stationary point generalizes those known
for the soft and hard algorithms.
We have also provided a set of simulations to support the cor-

rectness of the established theoretical assertions. The efficiency
of the half algorithm is further compared through simulations
with the known reweighted techniques, another type of typical
nonconvex regularization algorithms. The comparison shows
that for higher dimensional problems and in terms of the time
efficiency, the half algorithm outperforms the typical iteratively
reweighted least squares (IRLS) algorithm and the iteratively
reweighted minimization (IRL1) algorithm.
As shown in Fig. 1(c), given an appropriate regularization

parameter, the half algorithm can indeed recover the true sparse
signal with high precision. However, the corresponding theoret-
ical guarantee have not been developed in the present research.
We will investigate this problem in our future work.
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