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a b s t r a c t

Recently, the spherical data processing has emerged in many applications and attracted a lot of attention.
Among all the methods for dealing with the spherical data, the spherical neural networks (SNNs)
method has been recognized as a very efficient tool due to SNNs possess both good approximation
capability and spacial localization property. For better localized approximant, weighted approximation
should be considered since different areas of the sphere may play different roles in the approximation
process. In this paper, using the minimal Riesz energy points and the spherical cap average operator,
we first construct a class of well-localized SNNs with a bounded sigmoidal activation function, and then
study their approximation capabilities. More specifically, we establish a Jackson-type error estimate
for the weighted SNNs approximation in the metric of Lp space for the well developed doubling
weights.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Spherical data abound in geophysics, astrophysics, computer
graphics and other areas. These data are used to synthesize a func-
tion with a certain purpose (regression, classification, clustering,
etc.). Generally, to implement a synthesizing process, a set of pa-
rameterized functions called the approximation model should be
specified in advance. Such a model is commonly selected to en-
code the prior knowledge of the data, and has significant influence
on the performance of the synthesizing process. To measure the
performance of the selected model, the approximation capability
is one of the most important factors.

The spherical approximation model can be generally repre-
sented as a span of some basis functions,

Hn :=


n

i=1

aigi(x) : ai ∈ R


,
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where gi(i = 1, . . . , n) are functions defined on the unit sphere
Sd ⊂ Rd+1. The approximation capability and other attributions of
Hn are obviously determined by the properties and structures of
gi. For example, if gi(x) = φ(xi · x), where φ is a positive definite
radial function (Wendland, 2005) and {xi}ni=1 is a set of spherical
data, then Hn is the spherical basis function model (Narcowich &
Ward, 2002). Up till now,we havewitnessed enormous emergence
of spherical approximation models such as spherical polynomials
(SPs) (Brown & Dai, 2005; Dai, 2006a, 2006b; Ditzian, 2004; Wang
& Li, 2000; Xu, 2005), spherical basis functions (SBFs) (Freeden,
Gervens, & Schreiner, 1998; Jetter, Stökler, &Ward, 1999;Mhaskar,
2006; Mhaskar, Narcowich, & Ward, 1999; Narcowich, Sun, Ward,
&Wendland, 2007; Narcowich &Ward, 2002) and spherical neural
networks (SNNs) (Lin, Cao, Chang, & Xu, 2012; Lin, Cao, & Xu, 2011;
Lin, Zeng, & Xu, 2014; Mhaskar, Narcowich, & Ward, 2000, 2003).
All of them have been proved to possess universal approximation
property (Lin et al., 2011; Sun & Cheney, 1997; Wang & Li, 2000).
However, on one hand, the localization theory (Freeden & Michel,
1999) shows that SPs are rarely spacial localized and therefore
incapable of representing local features of some phenomena,
which are particularly important in the studies of geodesy and
geophysics (Freeden et al., 1998). On the other hand, the data-
dependent property of SBFs leads to poor approximation capability
provided the spherical data are ‘‘badly’’ located (Levesley & Sun,
2005).
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Under this circumstance, SNNs come into our sights. SNNs can
be mathematically expressed as

Nn(x) :=

n
i=1

ciσ(hi(x)), x ∈ Sd, (1.1)

where hi : Sd → R is a hidden processing function, ci ∈ R is an
outputweight, and σ : R → R is an activation function.We denote
byΦσ ,n the family of SNNs formed as (1.1), i.e.,

Φσ ,n :=


Nn(x) =

n
i=1

ciσ(hi(x)) : ci ∈ R


.

It is easy to see that SBFs are special types of SNNs inwhich hi(x) =

xi · x and σ is (conditional) positive definite. Another widely used
SNNs are to take hi(x) = wi · x + bi, where wi ∈ Rd+1 and bi ∈ R.
For such SNNs, Lin et al. (2011) found that there exists an activation
function such that the approximation capability of SNNs can be es-
sentially better than that of SBFs. More recently, Lin et al. (2012)
constructed a well-localized SNN via introducing a hidden pro-
cessing function. Such a hidden processing function is generated
according to a general distance. Furthermore, they provided a
pointwise Jackson-type error estimate for the constructed SNNs.

Although, the SNNs constructed in Lin et al. (2012) (see also Lin
et al., 2014) have been proved to possess both good approximation
capability and localized property, there are still certain flaws that
should be remedied. At first, the SNNs proposed in Lin et al.
(2012) were constructed based on the spherical data, whichmakes
the approximation capabilities of the corresponding SNNs depend
heavily on the geometric distribution of the data. Secondly, the
approximation result was only available to continuous functions.
At last, as a well localized approximant, weighted approximation
capability should be analyzed since different areas of the sphere
may play different roles in the approximation process.

The main purpose of this paper is to construct a similar SNNs
approximation model to overcome the above flaws, and then
develop the corresponding theoretical results. The main novelty
can be concluded as the following three aspects. Firstly, the
SNNs constructed in this paper are based on the minimal s-
Riesz energy points (Kuijlaars & Saff, 1998) with s ≥ d − 1.
Thus, the approximation capability of the SNNs depends on the
number of neurons rather than the geometric distribution of the
spherical data. Secondly, using the well developed spherical cap
average operator (Ditzian & Runovskii, 2000), we prove that the
constructed SNNs can approximate arbitrary pth (1 ≤ p < ∞)
Lebesgue integrable functions defined on the sphere. Thirdly, we
study the weighted approximation capability of the well spacial
localized SNNs. Specifically, we establish several Jackson-type
inequalities for the constructed SNNs with respect to the so-called
doubling weight (Dai, 2006a).

The rest of this paper is organized as follows. In the next
section, we provide some preliminaries including doublingweight,
minimal s-Riesz energy points, and spherical cap average operator.
In Section 3, we construct the SNNs and deduce weighted Jackson-
type inequalities. In the last section, we present the proofs.

2. Preliminaries

2.1. Doubling weight

A weight function W on Sd is called a doubling weight (Dai,
2006a, 2006b) if there exists a constant L > 0 (called the doubling
constant) such that, for any x ∈ Sd and t > 0,

W (D(x, 2t)) :=
1
Ω d


D(x,2t)

W (y)dω(y) ≤ L
1
Ω d


D(x,t)

W (y)dω(y)

= LW (D(x, t)), (2.1)
where D(z, θ) denotes the spherical cap with center z ∈ Sd and
radius θ > 0:

D(z, θ) := {y ∈ Sd : arccos y · z ≤ θ},

and dω denotes the surface area element on Sd. Furthermore, we
denote byΩd and D(θ) the volumes of Sd and D(z, θ), respectively.
A simple computation yields that

Ωd :=


Sd

dω =
2π

d+1
2

Γ ( d+1
2 )

,

and

D(θ) := Ωd−1

 θ

0
sind−1 tdt ∼ θd.

Many of the weights such as the generalized Jacobi weights satisfy
the doubling condition (2.1). We refer the readers to Erdélyi (1999,
2003) and Mastroianni and Totik (1999, 2000, 2001) for more
information on the doubling weights.

To measure the approximation capability, we need introduce
the definition of weighted moduli of smoothness. Denote by
Lp(Sd) (1 ≤ p ≤ ∞) the space of pth Lebesgue integrable functions
on Sd endowed with the norms

∥f ∥ := ∥f (·)∥L∞(Sd) := ess sup
x∈Sd

|f (x)|, p = ∞,

and

∥f ∥p := ∥f (·)∥Lp(Sd) :=


Sd

|f (x)|pdω(x)
1/p

< ∞, 1 ≤ p < ∞.

Let SO(d+ 1) be the group of rotations on Rd+1. For ρ ∈ SO(d+ 1)
and integer r > 0, we define

Tρ f (x) = f (ρx),∆r
ρ = (I − Tρ)r f ,

where I denotes the identity operator. For an integer r > 0 and a
weight function w, the weighted rth-order moduli of smoothness
on Sd (Dai, 2006b) is defined by

ωr(f , t)p,w := sup
ρ∈Ot

∥w(∆r
ρ f )∥p, t > 0, 1 ≤ p ≤ ∞,

where Ot := {ρ ∈ SO(d + 1) : maxx∈Sd arccos(x) · ρx ≤ t}. If
r = 1, thenwewriteω(f , t)p,w instead ofω1(f , t)p,w . Furthermore,
ifw = 1, then we use ω(f , t)p for the sake of brevity.

If we setW0 = W1(x) and

Wm(x) = md

D(x,1/m)

W (y)dω(y), m = 1, 2, . . . , x ∈ Sd, (2.2)

then the following two lemmas can be found in Dai (2006b, Lemma
2.1) and Dai (2006b, Lemma 2.2), respectively.

Lemma 2.1. There exists a number l > 0 depending only on the
doubling constant of W such that, for arbitrary x, y ∈ Sd,

Wm(x) ≤ C(1 + m arccos(x · y))lWm(y), m = 0, 1, . . . ,

where C > 0 depends only on the doubling weight constant of W.

Lemma 2.2. For 1 ≤ p ≤ ∞, a > 1 and t > 0, we have

ω(f , at)p,Wm ≤ C(p,W )(1 + mat)laω(f , t)p,Wm ,

m = 0, 1, 2, . . . ,

with l > 0 the same as that in Lemma 2.1.
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2.2. Minimal Riesz energy points on the sphere

The Riesz s-energy (s ≥ 0) associated with Ξn, Es(Ξn), is
defined by (see Hardin & Saff, 2004 for example)

Es(Ξn) :=



i≠j

|xi − xj|−s, if s > 0
i≠j

− log |xi − xj|, if s = 0.

Here | · | denotes the Euclidean norm in Rd+1. We use Es(Sd, n) to
denote the n-point minimal s-energy over Sd, which is defined as

Es(Sd, n) := inf
Ξn∈Sd

Es(Ξn), (2.3)

where the infimum is taken over all n-points subsets of Sd. IfΞn ⊂

Sd satisfies

Es(Ξn) = Es(Sd, n),

thenΞn is called a minimal s-energy configuration, and the points
in Ξn are called minimal s-energy points. The determination of a
minimal s-energy configuration and its corresponding minimal s-
energy on Sd is very important since this problem will emerge in
many fields of scientific researches such as physics, chemistry and
computer science. For further background, we refer the readers
to Dahlberg (1978), Hardin and Saff (2004, 2005), Kuijlaars and
Saff (1998), Kuijlaars, Saff, and Sun (2007) and references therein.
According to a series of work in Dahlberg (1978), Kuijlaars and Saff
(1998), Kuijlaars et al. (2007) and Lin et al. (2012), it demonstrates
that all minimal s-energy configurations with s ≥ d− 1 satisfy the
following two lemmas.

Lemma 2.3. Let Ξn := {ξi}
n
i=1 be theminimal s-energy configuration

with s ≥ d − 1, then there exists a constant cd depending only on d
such that

Sd ⊂

n
i=1

D

ξi, cdn−1/d .

Lemma 2.4. Let Ξn := {ξi}
n
i=1 be theminimal s-energy configuration

with s ≥ d − 1, then we haveξ ∈ Ξn : ξ ∈ D(ξi, cdn−1/d)
 ≤ Cd, (2.4)

where |A| denotes the cardinal norm of the set A, and Cd is a constant
depending only on d.

2.3. Spherical cap average operator

For a function f ∈ L1(Sd) and h ∈ R, the spherical cap average
operator is defined by

Bh(f , x) := fh(x) :=
1

D(h)


D(x,h)

f (y)dω(y). (2.5)

The properties of Bh(f ) were developed well in Ditzian and
Runovskii (2000). Particularly, a strong inverse inequality of Bh(f )
was established in Ditzian and Runovskii (2000). In this subsection,
we deduce some properties of Bh(f ) concerning doubling weight.

Lemma 2.5. Let 1 ≤ p < ∞ and fh be defined as in (2.5). Then, for
arbitrary f ∈ Lp(Sd), it holds

∥f − fh∥p,Wm ≤ ω(f , h)p,Wm .

Lemma 2.6. Let 1 ≤ p < ∞ and fh be defined as in (2.5). Suppose
further Ξn := {x1, . . . , xn} is the minimal s-energy configuration
with s ≥ d − 1. Then, for arbitrary f ∈ Lp(Sd), it holds
n

i=1


D(xi,h)

|fh(xi)− fh(x)|pWm(x)dω(x)

≤ C(1 + 2mh)l

ω(f , h)p,Wm

p
,

where l is defined in Lemma 2.1 and C is a constant depending only
on p and d.

Lemma 2.7. Let 1 ≤ p < ∞ and fh be defined as in ((2.5)). Suppose
further Ξn := {x1, . . . , xn} is the minimal s-energy configuration
with s ≥ d − 1. Then, for arbitrary f ∈ Lp(Sd), it holds

D(h)
n

i=2

|fh(xi)− fh(xi−1)|
pWm(xi) ≤ C(1 + mh)l


ω(f , h)p,Wm

p
,

where l is defined in Lemma 2.1 and C is a constant depending only
on p and d.

Lemma 2.8. Let 1 ≤ p < ∞ and fh be defined as in ((2.5)). Suppose
further Ξn := {x1, . . . , xn} is the minimal s-energy configuration
with s ≥ d − 1. Then, for arbitrary f ∈ Lp(Sd), it holds

D(h)
n

j=3


j−1
i=2

|fh(xi)− fh(xi−1)|

p

Wm(xj) ≤ Cnl+p ω(f , h)p,Wm
p
,

and

D(h)
n−1
j=2


N

i=j+1

|fh(xi)− fh(xi−1)|

p

Wm(xj) ≤ Cnl+p ω(f , h)p,Wm
p
,

where l is defined in Lemma 2.1 and C is a constant depending only
on p and d.

3. Weighted Jackson-type inequality for SNNs

In this section,we aim to construct a type ofwell-localized SNNs
and study their approximation capabilities.

3.1. Construction of the SNNs

The construction of the SNNs in this paper is based on the
minimal Riesz energy points, spherical cap average operator and
the general distance proposed in Lin et al. (2012). Let Ξn :=

{xi}ni=1 be the n-point minimal s-energy configuration. The mesh
norm (Mhaskar et al., 1999) ofΞn is defined by

hΞ := max
x∈Sd

min
j

d(x, xj),

where d(x, y) is the geodesic (great circle) distance between the
points x and y on Sd. We rearrange theminimal Riesz energy points
such that d(xk, xk+1) ≤ hΞ , k = 1, 2, . . . , n − 1. Since Sd ⊂n

i=1 D(xi, hΞ ), for arbitrary x ∈ Sd, there exists at least a point
y ∈ Ξn such that x ∈ D(y, hΞ ). If we set

k := min{j : x ∈ D(xj, hΞ )}, (3.1)

then for arbitrary x ∈ Sd, there exists a unique k satisfying (3.1)
such that x ∈ D(xk, hΞ ). For x ∈ D(xk0 , hΞ ) and y ∈ D(xj0 , hΞ ), we
define the general distance by

d(x, y) :=



d(x, y), k0 = j0,
k0
i=j0

d(xi, xi+1)+ d(xk0 , x)+ d(xj0 , y), j0 < k0,

j0
i=k0

d(xi, xi+1)+ d(xk0 , x)+ d(xj0 , y), k0 < j0.

(3.2)
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(a) Structure of SBFs. (b) Structure of classical SNNs. (c) Structure of classical SNNs.

Fig. 1. Comparisons with topological structures of SBFs, classical SNNs and SNNs (3.3).
Setting h = hΞ , the SNNs are constructed as

NA
n,σ (x) := fh(x1)+

n−1
i=1

(fh(xi+1)− fh(xi)) σ ∗

×

d(x1, x)− d(x1, xi)


, (3.3)

where σ ∗(t) := σ (At) and A is a constant depending only on σ
and n.

The proposed network NA
n,σ can be interpreted as a model of

feed-forward neural networks with four layers:
• The first one is the input layer with finitely many inputs.
• The second one is the pre-handling layer which transforms an
input x into the general distance between x and x1.
• The third one is the handling layer with n neurons.
• The last one is the output layer.

The topological structures of SBFs, the SNNs proposed in Lin
et al. (2011) and the SNNs (3.3) are illustrated in Fig. 1.

It can be seen from Fig. 1(a) that SBFs are special SNNs
without thresholds whose neurons are set to be the spherical data.
From Fig. 1(b), we can find that the classical SNNs (Lin et al.,
2011) are three-layer neural networks whose inner weights and
thresholds need adjusting based on the data. Differently, it follows
from Fig. 1(c) that the new SNNs (3.3) possess a pre-handling
layer. It should be noted that with such an easy-tackled pre-
handling process (Lin et al., 2012), we can endow a certain spacial
localization property to the SNNs (see (3.6)).

In order to guarantee both good approximation capability and
spacial localization property of the SNNs, the activation functions
utilized in this paper are assumed to be bounded, sigmoidal and
local pth integrable:

(a1) Bounded: supt∈R |σ(t)| ≤ ∥σ∥ < ∞.
(a2) Sigmoidal: limt→∞ σ(t) = 1, limt→−∞ σ(t) = 0.
(a3) Local pth integrable: σ is pth integrable on every compact

subset of R.
The above three assumptions on the activation function are

very mild in the realm of neural networks. Actually, the widely
used Heaviside function φ and logistic function ψ satisfy our
assumptions (a1)–(a3), where

φ(t) :=


1, t ≥ 0,
0, t < 0,

and

ψ(t) =
1

1 + e−t
.

The definition of the sigmoidal function σ implies that there exists
an A ∈ Z+ such that

|σ(t)| ≤ n−(1+l/p) if t ≤ −Ah (3.4)

and

|σ(t)− 1| ≤ n−(1+l/p) if t > Ah, (3.5)

where l is a constant defined as in Lemma 2.1.
Now, we are in a position to illustrate the spacial localization
property of the SNNs (3.3). We can rewrite NA

n,σ as follows. Define

c1(x) := 1 − σ ∗(d(x1, x)),
ci(x) := σ ∗


d(x1, x)− d(x1, xi−1)


− σ ∗


d(x1, x)− d(x1, xi)


,

2 ≤ i ≤ n − 1,
cn(x) := σ ∗


d(x1, x)− d(x1, xn−1)


.

Then

NA
n,σ :=

n
i=1

fh(xi)ci(x). (3.6)

If σ is the Heaviside function, then for arbitrary A > 0, there is only
one ci(x) ≠ 0. This means that NA

n,σ (x) = fh(xi) for x ∈ D(xi, h),
and 0 otherwise, which further shows that Nn,σ is the piece-wise
constant function with respect to a certain spherical partition. If σ
is taken as the other sigmoidal function (say, σ ∗(t) =

1
1+e−At ), then

we can set A to be sufficiently large such that ci(x) degenerates fast
when x ∉ D(xi, h). As an extreme case, we can set A = ∞, and
in this case, σ ∗ is actually the Heaviside function. In summary, the
well spacial localization of NA

n,σ can be realized by selecting either
a suitable A or an appropriate activation function σ .

3.2. Jackson-type error estimate of SNNs approximation

In this part, we give Theorem 3.1, which describes the approx-
imation capability of the SNNs, NA

n,σ , constructed in Section 3.1.

Theorem 3.1. Let 1 ≤ p < ∞, m, n ∈ N satisfying n ∼ md, Wm
and NA

n,σ be defined as in (2.2) and (3.3), and Ξn = {xi}ni=1 be the
minimal s-energy points with s ≥ d − 1. If σ satisfies(a1)–(a3)and
A satisfies (3.4) and (3.5), then for arbitrary f ∈ Lp(Sd), it holds

∥f − NA
n,σ∥p,Wm ≤ Cω


f , n−1/d

p,Wm
,

where C is a constant depending only on s, l, d and p.

Regarding the SPs approximation, Dai (2006b) also established
the Jackson-type inequalities with doubling weights. Furthermore,
it can be found in Dai (2006b, Theorem 1.1) that their inequalities
hold for arbitrary rth-order moduli of smoothness. At the first
glance, it seems negative since Theorem 3.1 holds only for r =

1. However, it should be emphasized that the Jackson-inequality
in Theorem 3.1 cannot be improved to r > 1, even in the
unweighted case. Indeed, using the same method as that in Chen
(1993, Theorem 3), we can deduce that

C1ω

f , n−1

p ≤ ∥f − NA
n,σ∥p,1 ≤ C2ω


f , n−1

p

for d = 1. In short, since Theorem 3.1 holds for SNNs with
arbitrary activation function satisfying assumptions (a1)–(a3), the
error estimate in Theorem 3.1 cannot be essentially improved. It
means that more restrictions to σ should be required to deduce
the Jackson-type inequality with rth-order moduli of smoothness
with r > 1. Moreover, it can be noted that the condition n ∼ md
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Fig. 2. The underlying function f (x1, x2) := x1 sin(x2).
is not stringent since the dimension of SPs of degrees at most m is
O(md).

At the end of the section, we give a simple simulation to illus-
trate the feasibility of the proposed SNNs (3.3). For the underlying
function f (x1, x2) := x1 sin(x2) (see Fig. 2) defined on S1, we sam-
pled n = 200 equally spaced points which is an extreme case of
the minimal Riesz s energy points with s → ∞ (Saff & Kuijlaars,
1997). Furthermore, to compute the integral fh(xi), we sampled an-
other 100 points inD(xi, h) and used 1

100

m
i=1 f (xi) to approximate

fh(xi). Under this circumstance, we can construct the SNNs with
Heaviside activation function according to (3.3) to approximate the
underlying function (see Fig. 3). As shown in Figs. 2 and 3, it can be
observed that the constructed SNNs approximate the underlying
function very well. Moreover, Fig. 4 shows the error between the
underlying function and the constructed SNNs.

4. Proofs

4.1. Proof of Lemma 2.5

From the definition of fh, it follows that

∥fh − f ∥p
p,Wm

=


Sd

|fh(x)− f (x)|pWm(x)dω(x)

=


Sd

 1
D(h)


D(x,h)

f (y)dω(y)− f (x)
p Wm(x)dω(x)

=


Sd

 1
D(h)


D(x,h)

(f (y)− f (x)) dω(y)
p Wm(x)dω(x).

Let ρx,y ∈ SO(d + 1) such that y = ρx,yx. Let e0 = (0, . . . , 0, 1) be
the north pole of Sd. By the Hölder inequality, for 1

p +
1
q = 1, we

have 1
D(h)


D(x,h)

(f (y)− f (x)) dω(y)
p

=

 1
D(h)


D(x,h)

f (ρe0,xy)dω(ρe0,xy)− f (x)
p

=

 1
D(h)


D(e0,h)


f (ρe0,xy)− f (x)


dω(y)

p
≤


1

D(h)

p 
D(e0,h)

f (ρe0,xy)− f (x)
p dω(y)D(h) pq

≤
1

D(h)


D(e0,h)

f (ρe0,xy)− f (x)
p dω(y).
Therefore,

∥fh − f ∥p
p,Wm

≤
1

D(h)


D(e0,h)


Sd

f (ρe0,xy)− f (x)
p

×Wm(x)dω(x)dω(y).

Because y ∈ D(e0, h) and ρx,e0x = e0, we have ρe0,xy ∈ D(x, h) and
further

∥fh − f ∥p
p,Wm

≤

ω(f , h)p,Wm

p
,

which completes the proof of Lemma 2.5. �

4.2. Proof of Lemma 2.6

By the definition of fh, we obtain

n
i=1


D(xi,h)

|fh(xi)− fh(x)|pWm(x)dω(x)

=

n
i=1


D(xi,h)

 1
D(h)


D(xi,h)

f (y)dω(y)−


D(x,h)

f (z)dω(z)
p

×Wm(x)dω(x).

Then,
D(x,h)

f (z)dω(z) =


D(x,h)

f (ρxi,xy)dω(ρxi,xy)

=


D(xi,h)

f

ρxi,xy


dω(y).

Hence, by the Hölder inequality, we have

n
i=1


D(xi,h)

 1
D(h)


D(xi,h)

f (y)dω(y)−


D(x,h)

f (z)dω(z)
p

×Wm(x)dω(x)

=

n
i=1


D(xi,h)

 1
D(h)


D(xi,h)


f (y)− f


ρxi,xy


dω(y)

p
×Wm(x)dω(x)

≤
1

D(h)

n
i=1


D(xi,h)


D(xi,h)

f (y)− f

ρxi,xy

p
×Wm(x)dω(y)dω(x).
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Fig. 3. The constructed SNNs based on 200 neurons.
Fig. 4. Error function.
Then, it follows from Lemma 2.1 that the above quantity can be
bounded by

C
1

D(h)

n
i=1


D(xi,h)


D(xi,h)

f (y)− f

ρx,xiy

p
× (1 + m arccos(x · y))lWm(y)dω(y)dω(x).

Furthermore, since x, y ∈ D(xi, h), we have

(1 + m arccos(x · y))l ≤ (1 + 2mh)l.

Thus,

n
i=1


D(xi,h)

 1
D(h)


D(xi,h)

f (y)dω(y)−


D(x,h)

f (z)dω(z)
p

×Wm(x)dω(x)

≤ C(1 + 2mh)l
n

i=1


D(xi,h)

f (y)− f

ρxi,xy

p Wm(y)dω(y)

≤ C(1 + 2mh)l

Sd

f (y)− f

ρxi,xy

p Wm(y)dω(y)

≤ C(1 + 2mh)l

ω(f , h)p,Wm

p
,

where the last two inequalities can be easily deduced by
Lemma 2.4, i.e.,
Sd−1

|g(x)|dω(x) ≤

n
i=1


D(xi,h)

|g(x)|dω(x) ≤ 3

Sd−1

|g(x)|dω(x)

and ρx,xi ∈ Oh. This finishes the proof of Lemma 2.6. �

4.3. Proof of Lemma 2.7

From the definition of fh, it follows that

D(h)
n

i=2

|fh(xi)− fh(xi−1)|
p

= D(h)
n

i=2

 1
D(h)


D(xi,h)

f (y)dω(y)−


D(xi−1,h)

f (z)dω(z)


p

.

Since xi, xi−1 ∈ D(xi, 2h), we have ρxi−1,xi ∈ O2h. Then
D(xi−1,h)

f (z)dω(z) =


D(xi,h)

f

ρxi,xi−1y


dω(y).



S. Lin et al. / Neural Networks 63 (2015) 57–65 63
Therefore, by the Hölder inequality, Lemmas 2.1 and 2.2, we have

D(h)
n

i=2

 1
D(h)


D(xi,h)

f (y)dω(y)−


D(xi−1,h)

f (z)dω(z)


p

Wm(xi)

= D(h)
n

i=2

 1
D(h)


D(xi,h)


f (y)− f


ρxi,xi−1y


dω(y)

p Wm(xi)

≤ C(1 + mh)lD(h)
1

D(h)

n
i=2


D(xi,h)

f (y)− f

ρxi,xi−1y

p
×Wm(y)dω(y)

≤ C(1 + mh)l
n

i=2


D(xi,h)

f (y)− f

ρxi,xi−1y

p Wm(y)dω(y)

≤ C(1 + mh)l

Sd

f (y)− f

ρxi,xi−1y

p Wm(y)dω(y)

≤ C(1 + mh)l

ω(f , 2h)p,Wm

p
≤ C(1 + mh)l


ω(f , h)p,Wm

p
.

The proof of Lemma 2.7 is completed. �

4.4. Proof of Lemma 2.8

Weonly prove the first inequality. The proof of the second one is
similar, we omit the details. By the definition of fh(x), we can easily
calculate that
j−1
i=2

|fh(xi)− fh(xi−1)|W
1
p
m (xj)

=

j−1
i=2

 1
D(h)


D(xi,h)

f (y)dω(y)−


D(xi−1,h)

f (z)dω(z)


×W

1
p
m (xj)

≤ C(1 + jmh)
l
p

j−1
i=2

1
D(h)


D(xi,h)

f (y)− f

ρxi,xi−1y


×W

1
p
m (y)dω(y)

≤ C(1 + jmh)
l
p

1
D(h)


D(x2,h)∪...∪D(xj−1,h)

f (y)− f

ρxi−1,xiy


×W

1
p
m (y)dω(y).

Thus, by the Hölder inequality, Lemmas 2.2 and 2.4, we have

D(h)
n

j=3


j−1
i=2

|fh(xi)− fh(xi−1)|

p

Wm(xj)

≤ D(h)
n

j=3

C(1 + jmh)l


1
D(h)


D(x2,h)∪...∪D(xj−1,h)

×
f (y)− f


ρxi,xi−1y

W 1
p
m (y)dω(y)

p

≤ C(1 + nmh)l
n

j=3

1
D(h)p−1


D(x2,h)∪...∪D(xj−1,h)

×
f (y)− f


ρxi,xi−1y

p Wm(y)dω(y) ((j − 2)D(h))
p
q

≤ C(1 + nmh)l
n

j=3

(j − 2)p−1

D(x2,h)∪...∪D(xj−1,h)

×
f (y)− f


ρxi,xi−1y

p Wm(y)dω(y)

≤ C(1 + nmh)lnp−1
n

j=3


D(x2,h)∪...∪D(xj−1,h)
×
f (y)− f


ρxi,xi−1y

p Wm(y)dω(y)

≤ C(1 + nmh)lnp−1
n

j=1


Sd

f (y)− f

ρxi,xi−1y

p Wm(y)dω(y)

≤ C(1 + nmh)lnp

Sd

f (y)− f

ρxi,xi−1y

p
×Wm(y)dω(y) ≤ C(1 + nmh)lnp ω(f , 2h)p,Wm

p
≤ C(1 + nmh)lnp ω(f , h)p,Wm

p
.

This completes the proof of Lemma 2.8. �

4.5. Proof of Theorem 3.1

From the definition of σ ∗, we obtain

|σ ∗(t)− 1| ≤ n−(1+l/p) if t ≥ h and

|σ ∗(t)| ≤ n−(1+l/p) if t ≤ −h. (4.1)

For any 1 ≤ j ≤ N , and any x ∈ D(xj, h), it follows from
Lemma 2.4 that there exists a constant u ≤ Cd such that

xj−u, xj−u+1, . . . , xj, . . . , xj+u ∈ D(x, h).

Then it holds

d(x1, x)− d(x1, xk) ≥ h,
for k = 1, 2, . . . , j − u − 1, j = 2, 3, . . . ,N

and also

d(x1, x)− d(x1, xk) ≤ −h,
for k = j + u + 1, j + u + 2, . . . ,N, j = 1, 2, . . . ,N − 1.

Furthermore, from (4.1), it impliesj−u−1
k=1

(fh(xk+1)− fh(xk))

σ ∗

d(x1, x)− d(x1, xk)


− 1


≤

1
n1+l/p

j−u−1
k=1

|fh(xk+1)− fh(xk)| ,

and n−1
k=j+u+1

(fh(xk+1)− fh(xk)) σ ∗

d(x1, x)− d(x1, xk)


≤

1
n1+l/p

n−1
k=j+u+1

|fh(xk+1)− fh(xk)| .

Therefore, we have

NA
n,σ (x)− fh(x)

= fh(x1)− fh(x)+

n−1
k=1

(fh(xk+1)− fh(xk)) σ ∗

×

d(x1, x)− d(x1, xk)


= fh(x1)− fh(x)+

j−u−1
k=1

(fh(xk+1)− fh(xk))

×

σ ∗

d(x1, x)− d(x1, xk)


− 1


+ fh(xj−u)− fh(x1)+

j+u
k=j−u

(fh(xk+1)− fh(xk)) σ ∗

×

d(x1, x)− d(x1, xk)


+

n−1
k=j+u+1

(fh(xk+1)− fh(xk)) σ ∗

d(x1, x)− d(x1, xk)


.
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Thus, it follows from Lemma 2.3 that

∥Nn,σ − fh∥
p
p,Wm

=


Sd

|Nn,σ (x)− fh(x)|pWm(x)dω(x)

≤

n
j=1


D(xj,h)

|Nn,σ (x)− fh(x)|pWm(x)dω(x).

If we set
i1

k=i0
|ak| = 0 for i0 < i1, then we have

∥Nn,σ − fh∥
p
p,Wm

≤

n
j=1


D(xj,h)

fh(xj−u)− fh(x)+

j−u−1
k=1

(fh(xk+1)− fh(xk))

×

σ ∗

d(x1, x)− d(x1, xk)


− 1


+

j+u
k=j−u

(fh(xk+1)− fh(xk)) σ ∗

d(x1, x)− d(x1, xk)


+

n−1
k=j+u+1

(fh(xk+1)− fh(yk)) σ ∗

d(x1, x)− d(x1, xk)


p

×Wm(x)dω(x).

Furthermore, since

|a + b + c + d|p ≤ 4p(|a|p + |b|p + |c|p + |d|p),
a, b, c, d ∈ R, 1 ≤ p < ∞,

it holds

∥Nn,σ − fh∥
p
p,Wm

≤ 4p
n

j=1


D(xj,h)

 fh(xj−u)− fh(x)
p

+

1n
j−u−1
k=1

|fh(xk+1)− fh(xk)|


p

+∥σ∥
p

 j+u
k=j−u

(fh(xk+1)− fh(xk))


p

+

1n
n−1

k=j+u+1

|fh(xk+1)− fh(xk)|


p

Wm(x)dω(x)

≤ 4p
n

j=1


D(xj,h)

fh(xj−u)− fh(x)
p Wm(x)dx

+(4∥σ∥)p
n

j=1


D(xj,h)

j+u
k=j−u

|fh(xk+1)− fh(xk)|p Wm(x)dω(x)

+(4/n1+l/p)p
n

j=1


D(xj,h)

 j−u
k=1

|fh(xk+1)− fh(xk)|


p

Wm(x)dω(x)

+(4/n1+l/p)p
n

j=1


D(xj,h)

 n−1
k=j+u+1

|fh(xk+1)− fh(xk)|


p

×Wm(x)dω(x)
= I1 + I2 + I3 + I4.

Now,we use Lemmas 2.6–2.8 to bound I1, I2, I3 and I4, respectively.
Since x ∈ D(xj, h), it follows from Lemmas 2.2 and 2.6 that

I1 ≤ Cω(f , h)pp,Wm
≤ Cω


f , n−1/dp

p,Wm
. (4.2)
To bound I2, we use Lemma 2.1 to obtain

I2 ≤
1

D(h)
(4∥σ∥)p

n
j=1

j+u
k=j−u


D(xj,h)

|fh(xk+1)− fh(xk)|p

×D(h)Wm(x)dω(x)

≤ C(1 + mh)lD(h)
n

i=2

|fh(xi)− fh(xi−1)|
pWm(xi).

Thus, it follows from Lemma 2.7 and h ∼ 1/m ∼ n1/d that

I2 ≤ C(1 + mh)2lω(f , h)pp,Wm
≤ Cω


f , n−1/dp

p,Wm
. (4.3)

To bound I3, note that

I3 ≤ Cn−(p+l)
n

j=1


D(xj,h)

 j−u
i=1

|fh(xk+1)− fh(xk)|


p

Wm(x)dω(x)

≤ Cn−(p+l)D(h)
n

j=1

 j−u
i=1

|fh(xk+1)− fh(xk)|


p

Wm(xj)dω(x).

Then it follows from Lemma 2.8 that

I3 ≤ Cω(f , h)pp,Wm
Cω


f , n−1/dp

p,Wm
. (4.4)

Using a similar method as above, we can obtain

I4 ≤ C(1 + 2mh)lω(f , h)pp,Wm
Cω


f , n−1/dp

p,Wm
. (4.5)

Thus, the triangle inequality

∥f − NA
n,σ∥p,Wm ≤ ∥f − fh∥p,Wm + ∥fh − NA

n,σ∥p,Wm

together with Lemma 2.5, (4.2)–(4.5) yield Theorem 3.1 directly.
�
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