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The vibration and acoustic radiation for an orthotropic composite conical shell in a hygro-
scopic environment are explored through the wave propagation approach and Galerkin
method. Theoretical results of the natural vibration and far field sound pressure are
presented with incremental moisture content. The effects of incremental stiffness and
different semi-vertex angle on the acoustic radiation characteristics are studied too. It
is found that the natural frequencies decrease with incremental moisture content. The
wavenumbers associated with the lowest frequency mode reaches the modal indices cor-
responding to the lowest buckling mode near the critical buckling moisture content. With
the increasing moisture content, a shifting of natural frequencies toward lower frequency
band could be observed in lower frequency band of the modal density in constant fre-
quency band. The overall sound pressure level (SPL) decreases generally with the mois-
ture content, but shows a marginal increase near the critical buckling moisture content.
The modal density and overall SPL decrease with the incremental stiffness generally,
which increases with the decrease of the semi-vertex angle.

Keywords: Vibration; acoustic radiation; orthotropic conical shell; hygroscopic environ-
ment.

1. Introduction

The thin orthotropic composite conical shells have many applications in the
aerospace industry such as aircraft, missile and launcher. It is very important to
investigate the vibration and acoustic radiation from conical shells in order to design
new aircrafts. The composite conical shells are typically exposed to moist envi-
ronment in the service, especially in long-term storage period. The matrix in an
orthotropic composite conical shell is more susceptible to the hygroscopic condi-
tion than the fiber, and the hygroscopic strains and stresses are not equal in the
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meridianal and circumferential axes due to the different moisture expansion coef-
ficients. Hygroscopic stresses due to the moisture absorbed during the long-term
storage period may induce buckling and dynamic instability in structures, and the
pre-stress effect of hygroscopic load will affect the dynamic behavior of the conical
shell and then cause the changes of acoustic radiation characteristics.

Some researchers studied buckling and free vibration behavior of composite
cylindrical shells/shell panels due to hygroscopic load. Shen [2001] investigated
the effect of hygroscopic conditions on the buckling and post-buckling of shear
deformable laminated cylindrical shells subjected to combined loading of axial com-
pression and external pressure. The results showed that the hygroscopic environ-
ment had a significant effect on the interactive buckling load as well as post-buckling
response of the shell. Parhi et al. [2001] investigated the free vibration and transient
response analysis of multiple delaminated doubly curved composite shells subjected
to a hygroscopic environment by a quadratic isoparametric finite element formula-
tion based on the first-order shear deformation theory. The results showed that the
degradation in the natural frequencies and the increase in the amplitude of dynamic
displacements and stresses are influenced by the degree of moisture concentration.

A few researchers carried out the studies on the thermal buckling, free vibration
or acoustic radiation of conical shell. Naj et al. [2008] studied thermal and mechan-
ical instability of truncated conical shell made of functionally graded material. The
equilibrium and stability equations for simply supported functionally graded con-
ical shells were obtained. Torabi et al. [2013] analyzed functionally graded conical
shell integrated with piezoelectric layers that was subjected to combined action
of thermal and electrical loads. The prebuckling forces were obtained considering
the membrane solutions of linear equilibrium equations. Tong [1993] explored the
free vibration of orthotropic conical shell. The displacements of conical shell are
described by the power series. Lam and Li [1999a, 1999b] investigated the free
vibration of a rotating truncated circular isotropic and orthotropic conical shell
by Galerkin method. Caresta and Kessissoglou [2008] used power series to solve
the dynamic response of fluid loading conical shell. Fluid loadings are taken into
account by dividing the conical shell into narrow strips, which are considered to
be cylindrical shell. The displacements of conical shell must be described by many
segment cones in their study. Luo and Schmidt [2009] developed a model of three-
dimensional propagation and scattering around a seamount for an offset acoustic
source. The conical seamount is approximated by a number of independent ring-
shaped sectors. Cao et al. [2011] investigated acoustic radiation from cross-plied
laminated conical shells and explored a theoretical model of acoustic radiation from
conical shells. The far field sound pressure is found in the wavenumber domain by
the superposition of acoustic radiation from the small cylinder segments divided by
the conical shell.

Wave propagation approach has been used to study the vibration and sound radi-
ation characteristic of cylindrical shells by several researchers. Zhang et al. [2001]
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and Zhang [2002] analyzed the coupled structural-acoustic of cylindrical shells using
the wave propagation method and with the method the calculation of coupled fre-
quency of submerged cylindrical shells was relatively easy, quick but with good accu-
racy. The wave propagation approach was used by Gan et al. [2009] to analyze the
free vibration of ring-stiffened cylindrical shell under initial hydrostatic pressure. It
proved that the wave propagation approach is accurate for calculation of frequency
of ring-stiffened cylindrical shell for shear diaphragm–shear diaphragm boundary
conditions. Cao et al. [2012] studied the sound radiation from shear deformable
stiffened laminated cylindrical shells in terms of sound pressure and the helical wave
spectra. The far field sound pressure was derived by using the Fourier wavenumber
transform and stationary phase method.

Some researchers have focused the wave propagation in heterogeneous materials.
They found that the wave exhibits strong interaction within microstructures when
wavelength is approaching the microstructural size, and the interaction will signifi-
cantly alter the transient dynamic solution of wave propagation in the structure. In
some case, the wave may stop propagating which is named as “acoustic bandgaps”
or “phononic bandgaps”. Kafesaki et al. [1995] presented band structure results for
elastic waves in periodic composite materials consisting of scatterers embedded in a
homogeneous polymer matrix. The wide full bandgaps are found in fCC, bCC and
SC structures for a wide range of filling ratios. Suzuki and Yu [1998] developed a
computational method based on the plane wave expansion to study elastic waves
in periodic elastic media. The existence of elastic wave bandgaps was demonstrated
theoretically in the face centered cubic lattice structures based on polyethylene back-
ground with spherical isotropic tungsten scatterers. Based on Mindlin’s microelastic
continuum theory, Gonella et al. [2011] introduced a wave propagation simulation
methodology as a tool to dynamically characterize microstructured solids in a way
that naturally accounts for their inherent heterogeneities. Hui and Oskay [2014]
developed a new high order computational homogenization model that capture the
dispersion and micro-inertia effects in composites and other heterogeneous media
subjected to dynamic loading conditions.

Vibration and acoustic radiation of plates and shells in thermal or hygroscopic
environment are rather, in comparison, limited in the literature. Lyrintzis and
Bofilios [1990] presented an analytical study to predict dynamic response and noise
transmission of discretely stiffened multi-layered composite panels and examined
the effects of the temperature and high humidity. The results indicate that thermal
and moisture effects are very important in predicting deflections and transmitted
noise. Jeyaraj et al. [2011] adopted commercial finite element software to study the
vibration and acoustic response characteristics of an isotropic cylindrical shell with
clamped boundary conditions under a thermal environment. They found that there
is a significant change in the vibration mode shapes and ring frequency toward
the lowest natural frequency with an increase in temperature. Geng and Li [2012]
studied the vibration and acoustic radiation characteristics of a thermally stressed
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plate theoretically. They found that the natural frequencies of the plate reduce
with temperature rise and the response curves float to lower frequency range. Zhao
et al. [2013] investigated the vibration and acoustic response characteristics of an
orthotropic laminated composite plate in a hygroscopic environment theoretically.
The initial hygroscopic stress and mass addition caused by material moisture absorp-
tion are considered in the governing equations of orthotropic plate. They found the
dynamic response and sound radiation float to lower frequencies with elevated mois-
ture content and the coincidence frequency decreases with the enhanced stiffness.

The studies on vibration and sound radiation characteristics for the orthotropic
conical shell under the hygroscopic environment are very few. In this work, the
vibration and acoustic responses of an orthotropic truncated circular composite
conical shell under hygroscopic environment are explored through the wave propa-
gation approach and Galerkin method. The effects of hygroscopic stress and mass
addition caused by moisture absorption are considered in the governing equations.
To examine the validity of the present solution, comparisons are made against the
frequency parameters with the previous work for an isotropic conical shell. The
natural frequency characteristic and far field sound pressure of orthotropic conical
shell with incremental moisture content are analyzed. The influences of enhanced
stiffness by decreasing the ratio of circumferential modulus to the meridianal of the
conical shell on the acoustic responses characteristics are studied, and the effects of
different semi-vertex angle of conical shell on the acoustic responses are discussed
too. Since the method adopted in this paper is based on harmonic forcing response
and does not include local wave interaction within microstructures, therefore it is
not able to deal with short wave propagation problems.

2. Formulation

The geometry and co-ordinate system of a truncated orthotropic circular conical
shell is shown in Fig. 1, where α is the semi-vertex angle, h is the thickness, L1 and

Fig. 1. Orthotropic conical shell and coordinate system.
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L are the length of the small end and large end in the meridianal direction, respec-
tively, r1 and r2 are the radii at the two ends. The curvilinear coordinate system
is defined as (x, θ, z), where x and θ coincide with meridianal and circumferential
directions, respectively, and z is perpendicular to the x−θ plane and its direction is
inwards normal of the conical shell, and u, v, w are the displacements of the middle
surface of conical shell. E1 and E2 are the meridianal and circumferential elasticity
modulus in the principal material directions, respectively. The conical shell is com-
posed of N layer laminas, and all laminas are orthotropic and the material principal
directions are coincident with the coordinate system, so the composite conical shell
bonding together with the lamina having the same principal coordinate system can
be assumed an orthotropic composite conical shell. The conical shell is excited by
harmonic point force F (x, θ).

2.1. In-plane force induced by hygroscopic stress

The normal and shear strains at a point with distance z from the middle surface
of the conical shell according to the Love–Kirchhoff assumptions are [Brush and
Almroth, 1975]:

εx = εxm + zkx,

εθ = εθm + zkθ, (1)

γxθ = γxθm + zkxθ,

where εxm and εθm are the mid-plane normal strains, γxθm is the mid-plane shear
strain, kx and kθ are the mid-plane curvature changes and kxθ is mid-plane twist
change. The linear strain–displacement relations, the strains, curvature, and twist
changes of the mid-plane are:

εxm =
∂u

∂x
,

εθm =
1

x sin α

∂v

∂θ
+

u

x
+

w

x tan α
,

γxθm =
1

x sin α

(
x sin α

∂v

∂x
+

∂u

∂θ
− v sin α

)
,

kx = −∂2w

∂x2
,

kθ =
1

x2 sin2 α

(
−∂2w

∂θ2
+ cosα

∂v

∂θ
− x sin2 α

∂w

∂x

)
,

kxθ =
2

x2 sin α

(
∂w

∂θ
− x

∂2w

∂x∂θ
− v cosα + x cosα

∂v

∂x

)
.

(2)

Based on the linear constitutive law in plane stress conditions, for the thin
orthotropic conical stresses are functions of strains and moisture content as [Kaw,
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2006; Whitney and Ashton, 1971]:

σx =
E1

1 − µ12µ21
(εxm + µ21εθm + zkx + µ21zkθ) − E1(β1 + µ21β2)∆C

1 − µ12µ21
,

σθ =
E2

1 − µ12µ21
(εθm + µ12εxm + zkθ + µ12zkx) − E2(β2 + µ12β1)∆C

1 − µ12µ21
, (3)

σxθ = G12(γxθm + zkxθ),

where β1 and β2 are the meridianal and circumferential coefficients of hygroscopic
expansion in the principal material directions, respectively. µ12 and µ21 are the
Poisson’s ratios. ∆C(%) = Cf − Ci is denoted as the moisture content change,
and Ci(%) and Cf (%) are the initial and final uniform moisture content of the
orthotropic conical shell.

Considering that based on the thin shell theory, the force and moment resul-
tants are:

Nx =
∫ h/2

−h/2

σxdz, Nθ =
∫ h/2

−h/2

σθdz, Nxθ =
∫ h/2

−h/2

σxθdz,

Mx =
∫ h/2

−h/2

σxzdz, Mθ =
∫ h/2

−h/2

σθzdz, Mxθ =
∫ h/2

−h/2

σxθzdz.

(4)

Substituting Eqs. (3) into Eqs. (4) yields:

Nx =
∫ h/2

−h/2

[
E1

1 − µ12µ21
(εxm + µ21εθm + zkx + µ21zkθ) − E1(β1 + µ21β2)∆C

1 − µ12µ21

]
dz

= K11εxm + K12εθm − E1h(β1 + ν21β2)∆C

1 − µ12µ21
= K11εxm + K12εθm − NC

x ,

Nθ =
∫ h/2

−h/2

[
E2

1 − µ12µ21
(εθm +µ12εxm + zkθ + µ12zkx)− E2(β2 +µ12β1)∆C

1 − µ12µ21

]
dz

= K21εxm + K22εθm − E2h(β2 + µ12β1)∆C

1 − µ12µ21
= K21εxm + K22εθm − NC

θ ,

Nxθ =
∫ h/2

−h/2

G12(γxθm + zkxθ)dz = K66γxθm,

Mx =
∫ h/2

−h/2

[
E1

1 − µ12µ21
(εxm + µ21εθm + zkx + µ21zkθ)

− E1(β1 + µ21β2)∆C

1 − µ12µ21

]
zdz

= D11kx + D12kθ,
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Mθ =
∫ h/2

−h/2

[
E2

1 − µ12µ21
(εθm + µ12εxm + zkθ + µ12zkx)

− E2(β2 + µ12β1)∆C

1 − µ12µ21

]
zdz

= D21kx + D22kθ,

Mxθ =
∫ h/2

−h/2

G12(γxθm + zkxθ)zdz = D66kxθ,

(5)

where Kij and Dij(i, j = 1, 2, 6) are the film stiffness and bending stiffness as given
below:

K11 =
E1h

(1 − µ12µ21)
; K22 =

E2h

(1 − µ12µ21)
;

K12 = K21 =
µ12E2h

(1 − µ12µ21)
; K66 = G12h;

D11 =
E1h

3

12(1 − µ12µ21)
; D22 =

E2h
3

12(1 − µ12µ21)
;

D12 = D21 =
µ12E2h

3

12(1 − µ12µ21)
; D66 =

G12h
3

12
.

For a conical shell, the equilibrium equations are derived as [Naj et al., 2008]:

sin α
∂(xNx)

∂x
+

∂Nxθ

∂θ
− sin αNθ = 0,

∂Nθ

∂θ
+ sin α

∂(xNxθ)
∂x

+ sinαNxθ − cosα(Nxθζx + Nθζθ)

+ cosα

(
∂Mxθ

∂x
+

2
x

Mxθ +
1

x sin α

∂Mθ

∂θ

)
= 0, (6)

sin α
∂2(xMx)

∂x2
+

1
x sin α

∂2Mθ

∂θ2
− sinα

∂Mθ

∂x
+

2
x

∂

∂x

(
x

∂Mxθ

∂θ

)

− cosαNθ −
[
sin α

∂(xNxζx + xNxθζθ)
∂x

+
∂(Nxθζx + Nθζθ)

∂θ

]
= 0,

where

ζx = −∂w

∂x
,

ζθ = − 1
x sin α

∂w

∂θ
+

v

x tan α
,

(7)

where ζx and ζθ are the rotations of the normal to the middle surface about the
x- and θ-axes, respectively.
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For simplicity, the membrane solution of the equilibrium equations is considered
[Meyers and Hyer, 1991]. For this aim, all the moment and rotations terms must
be set equal to zero in the equilibrium equations. According to the symmetry of
geometry and loading conditions, deflection in prebuckling configuration is assumed
to be axisymmetric. By this assumption, the second relation of the equilibrium
equations (6) vanishes. Considering the previously mentioned assumptions, the first
and third relations of the equilibrium equations are simplified as [Torabi et al.,
2013]:

∂(xNx0)
∂x

= 0,

Nθ0 = 0,

(8)

where the subscript 0 denotes the prebuckling state. The first of Eqs. (8) may be
integrated which results in Nx0 = c1/x, where c1 is the constant of integration. Sub-
stituting Eqs. (5) into Eqs. (8) and eliminating the terms containing derivatives of
w0 based on a membrane analysis, Eqs. (8) is obtained in terms of the displacement
components as follows:

K11
∂u0

∂x
+ K12

(u0

x
+

w0

x tan α

)
− NC

x =
c1

x
,

K21
∂u0

∂x
+ K22

(u0

x
+

w0

x tan α

)
− NC

θ = 0.

(9)

Solving Eqs. (9) and applying the in-plane boundary conditions (u0 = 0 at
x = L1, L), the coefficient c1 is obtained as

c1 =
(µ12N

C
θ − NC

x )(L − L1)
ln(L) − ln(L1)

. (10)

Finally, considering Eqs. (8) and (10) and assuming axisymmetric condition, the
prebuckling force resultants induced by the absorption of moisture are obtained as:

Nx0 =
(µ12N

C
θ − NC

x )(L − L1)
x[ln(L) − ln(L1)]

= −E1β1h∆C(L − L1)
x[ln(L) − ln(L1)]

,

Nθ0 = 0, (11)

Nθ0 = 0.

The stability equations are obtained by consideration of the second variation of
the functional of total potential energy as [Brush and Almroth, 1975; Torabi et al.,
2013]:

sinα(xNx1),x + Nxθ1,θ − sin αNθ1 = 0,

Nθ1,θ + sinα(xNxθ1),x + sinαNxθ1 − cosα(Nxθ0ζx1 + Nθ0ζθ1)

+ cosα

(
Mxθ1,x +

2
x

Mxθ1 +
Mθ1,θ

x sin α

)
= 0,
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sinα(xMx1),xx +
Mθ1,θθ

x sinα
− sin αMθ1,x +

2
x

(xMxθ1,θ),x

− cosαNθ1 − [sin α(xNx0ζx1 + xNxθ0ζθ1),x + (Nxθ0ζx1 + Nθ0ζθ1),θ] = 0.

(12)

The force resultants with subscript 0 present the prebuckling force resultants
obtained from Eqs. (11).

For the state of stability, the force and moment resultants are:

Nx1 = K11εxm + K12εθm,

Nθ1 = K21εxm + K22εθm,

Nxθ1 = K66γxθm, (13)

Mx1 = D11kx + D12kθ,

Mθ1 = D21kx + D22kθ,

Mxθ1 = D66kxθ.

Substituting Eqs. (2), (11) and (13) into Eqs. (12), the stability equations in terms
of the displacement components can be derived.

2.2. Natural vibration of the orthotropic conical shell in a

hygroscopic environment

According to the Reissner–Naghdi thin shell theory [Leissa, 1993], considering the
additional mass by absorbing moisture [Lyrintzis and Bofilios, 1990; Zhao et al.,
2013], we can establish a new motion equilibrium equation of the orthotropic conical
shell including the pre-stresses effect as follows:


L11 L12 L13

L21 L22 L23

L31 L32 L33






u

v

w


 =



Fx

Fθ

Fz


, (14)

where Fx, Fθ and Fz are the external forces loading the conical shell in x, θ and
z directions, respectively. Lij(i, j = 1, 2, 3) are a coupled set of the differential
operators and given as:

L11 = −K11
∂2

∂x2
− K11

x

∂

∂x
+

K22

x2
− K66

x2 sin2 α

∂2

∂θ2
+ (1 + ∆C)ρh

∂2

∂t2
,

L12 = − (K12 + K66)
x sin α

∂2

∂x∂θ
+

(K22 + K66)
x2 sin α

∂

∂θ
,

L13 = − K12

x tan α

∂

∂x
+

K22

x2 tan α
,
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L21 = − (K22 + K66)
x2 sin α

∂

∂θ
− (K12 + K66)

x sin α

∂2

∂x∂θ
,

L22 = −
(

K22

x2 sin2 α
+

D22

x4 sin2 α tan2 α

)
∂2

∂θ2
+

(
D66

x3 tan α
− K66

x

)
∂

∂x

+
(

K66

x2
+

Nθ0

x2 tan2 α

)
−

(
K66 +

D66

x2 tan2 α

)
∂2

∂x2
+ (1 + ∆C)ρh

∂2

∂t2
,

L23 = − (K22 − Nθ0)
x2 sin α tan α

∂

∂θ
− Nxθ0

x tan α

∂

∂x
+

D22

x3 sin α tan α

∂2

∂x∂θ

+
(D12 + 2D66)
x2 sin α tan α

∂3

∂x2∂θ
+

D22

x4 sin3 α tan α

∂3

∂θ3
,

L31 =
K22

x2 tan α
+

K12

x tan α

∂

∂x
,

L32 =
(

K22

x2 sinα tanα
− 2D12 + 2D22 + 4D66

x4 sinα tanα

)
∂

∂θ
+

2D12 + D22 + 4D66

x3 sin α tan α

∂2

∂x∂θ

− D12 + 4D66

x2 sin α tan α

∂3

∂x2∂θ
− D22

x4 sin3 α tanα

∂3

∂θ3
,

L33 =
K22

x2 tan2 α
+

(
D22

x3
− Nx0

x
− 1

x sin α

∂Nθ0

∂θ
− ∂Nx0

∂x

)
∂

∂x

+
2D11

x

∂3

∂x3
+ D11

∂4

∂x4
− Nxθ0

x sin α

∂2

∂x∂θ
+

2D12 + 4D66

x2 sin2 α

∂4

∂x2∂θ2

−
(

1
x sin α

∂Nxθ0

∂x
+

1
x2 sin2 α

∂Nθ0

∂θ

)
∂

∂θ
−

(
D22

x2
+ Nx0

)
∂2

∂x2

− 2D12 + 4D66

x3 sin2 α

∂3

∂x∂θ2
+

2D12 + 2D22 + 4D66

x4 sin2 α

∂2

∂θ2

+
D22

x4 sin4 α

∂4

∂θ4
+ (1 + ∆C)ρh

∂2

∂t2
,

(15)

where ρ is the density of the material, ρh is the shell mass per unit area and (1 + ∆C)
accounts for the absorbed moisture. The force resultants Nx0, Nθ0 and Nxθ0 present
the prebuckling force resultants induced by the hygroscopic environment.

Consider a conical shell with the immoveable simply supported boundary edges.
The boundary conditions are assumed as:

u = 0, v = 0, w = 0, Mx = 0, at x = L1, L. (16)

The approximate solution for Eq. (14), satisfying the boundary conditions given
by Eqs. (16), the displacements of the orthotropic conical shell in terms of wave
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propagation can be written as [Laulagnet and Guyader, 1989; Naj et al., 2008]:

u(x, θ) =
1∑

ε=0

∞∑
m=1

∞∑
n=0

Umnε sin2

[
km ln

(
x

L1

)]
sin

(
nθ +

επ

2

)
,

v(x, θ) =
1∑

ε=0

∞∑
m=1

∞∑
n=0

Vmnε sin
[
km ln

(
x

L1

)]
cos

(
nθ +

επ

2

)
, (17)

w(x, θ) =
1∑

ε=0

∞∑
m=1

∞∑
n=0

Wmnεx
1−µ12

2 sin
[
km ln

(
x

L1

)]
sin

(
nθ +

επ

2

)
,

where km = [mπ/ln(L/L1)] are the wavenumbers in the meridianal direction and
its values are determined by the boundary condition. ε = 0 (respectively, 1) denotes
antisymmetric (respectively, symmetric) modes. n is circumferential order, m is the
meridianal order. To discuss conveniently, the orthotropic conical shell is just excited
by the radial component of harmonic point driving force Fz, and for harmonic
vibration, a time-dependent factor e−jωt will be suppressed throughout.

As described above, since the governing Eq. (14) is a set of partial differential
equations with variable coefficients, it cannot be solved analytically. Instead, the
present paper uses the Galerkin method to obtain an approximate solution. For
governing Eq. (14), the weighted-integral statement of the Galerkin method can be
expressed as follows:∫ L

L1

(L11u + L12v + L13w − Fx) sin2

[
km ln

(
x

L1

)]
δUmnεdx = 0,

∫ L

L1

(L21u + L22v + L23w − Fθ) sin
[
km ln

(
x

L1

)]
δVmnεdx = 0, (18)

∫ L

L1

(L31u + L32v + L33w − Fz)x
1−µ12

2 sin
[
km ln

(
x

L1

)]
δWmnεdx = 0.

The external forces Fx and Fθ are 0. Normal point exerts the conical shell with the
amplitude of Fzj . Substituting Eqs. (17) into (18), one can obtain:





C11 C12 C13

C21 C22 C23

C31 C32 C33 + b∆C


 + ω2



R11 0 0

0 R22 0

0 0 R33









Umnε

Vmnε

Wmnε


 =




0

0

F̄z


, (19)

where Cij(i, j = 1, 2, 3), Rii and b are also similar coefficients expressed by the mate-
rial elastic constants, geometric parameters and hygroscopic expansion coefficient,
respectively and given in the appendix, ω is circular frequency, and F̄z is given by:

F̄z = Fzjx
1−µ12

2
j sin

[
km ln

(
xj

L1

)]
sin

(
nθj +

επ

2

)/
εnxj sin α, (20)

where εn is the Neumann factor. (xj , θj) is the exciting point.

1550053-11
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To derive the buckling moisture content for the conical shell, the determinant
of the first coefficient matrix of Eq. (19) must be set equal to zero as:∣∣∣∣∣∣∣∣

C11 C12 C13

C21 C22 C23

C31 C32 C33 + b∆C

∣∣∣∣∣∣∣∣
= 0. (21)

Equation (21) may be written as:

∆C =

C13C22C31 + C11C32C23 + C12C21C33 − C12C23C31

−C32C21C23 − C11C22C33

b(C11C22 − C12C21)
. (22)

As the variables m and n take a proper value respectively, the minimum value
obtained from Eq. (22) is the critical buckling moisture content. The determinant
of Eq. (19) can be solved by using linear algebra method for conical shell, and then
the natural frequency is obtained [Soedel, 2004].

2.3. The far field sound pressure in wave domain

Moon and Spencer [1961] pointed out that the Helmholtz equation could be handled
by separation of variables in 40 orthogonal curvilinear coordinates. The Helmholtz
equation cannot be handled in the orthogonal curvilinear coordinates of the conical
shell by use of separation of variables. Therefore, the conical shell will be divided into
several cylinder parts. In the acoustic medium outside the shell, the sound pressure
pa satisfies the Helmholtz equation in the cylindrical coordinates [Cao et al., 2011]:

∇2p + k2
0p = 0, (23)

where the wavenumber k0 is ω/ca, ca is the speed of sound in the air. Laplace
operator ∇2 is given by

∇2 =
1
z2

∂2

∂θ2
+

1
z

∂

∂z

(
z

∂

∂z

)
+

∂2

∂x2
, (24)

where x, θ and z denote the coordinate of meridianal, circumferential and radial
directions in the circular cylindrical coordinate, respectively. The boundary condi-
tion at the jth part (approximate to cylindrical part) interface is

∂pa

∂z

∣∣∣∣
z=rj

= ω2ρ0w(x, θ), (25)

where ρ0 is the density of the air and rj is the radius of the jth cylinder. x is greater
than Lj and less than Lj+1. In which, Lj and Lj+1 are the localization coordinates
of two ends for the jth cylinder in the x direction. These parameters are shown in
Fig. 2.

Acoustic radiation from the conical shells is expressed by superposition of acous-
tic radiation from cylinder parts. Each cylinder is assumed to have infinite circular

1550053-12
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Fig. 2. Segments of conical shell.

cylindrical baffles at the two ends. The far field sound pressure will be derived in
wavenumber domain. The Fourier transform is defined by

f̃(k) =
∫ +∞

−∞
f(x)e−ikxdx. (26)

The Fourier inverse transform is defined by

f(x) =
1
2π

∫ +∞

−∞
f̃(k)eikxdk. (27)

Taking the Fourier transform of Eq. (23) with respect to x, one obtains:[
1
z2

∂2

∂θ2
+

1
z

∂

∂z

(
z

∂

∂z

)
+ (k2

0 − k2)
]

p̃ja = 0, (28)

where p is replaced with p̃ja to denote the sound pressure induced by jth cylinder.
p̃ja is the Fourier transform of pja. The far field sound pressure satisfies Sommerfeld
radiation condition and the solution of Eq. (28) can be expressed by

p̃ja(k, θ, z) =
1∑

ε=0

∞∑
n=0

AnεH
(1)
n (

√
k2
0 − k2z) sin

(
nθ +

επ

2

)
, (29)

where H
(1)
n (z) is the Hankel function of the first kind for order n. Taking the Fourier

transform of Eq. (25) with respect to x, one obtain:

1∑
ε=0

∞∑
n=0

√
k2
0 − k2AnεH

(1)′
n (

√
k2
0 − k2rj) sin

(
nθ +

επ

2

)
= ω2ρ0w̃

j(k, θ), (30)

where w̃j(k, θ) is the Fourier transform of wj(x, θ). w(x, θ) is replaced with wj(x, θ)
to denote the surface radial displacement of the jth cylinder. Considering the third
relation of Eq. (17), one obtains:

wj(x, θ) =
1∑

ε=0

∞∑
n

wj
nε(x) sin

(
nθ +

επ

2

)
, (31)
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where wj
nε(x) is defined by:

wj
nε(x) =

∞∑
m

Wmnεx
1−µ12

2 sin
[
km ln

(
x

L1

)]
, (Lj ≤ x ≤ Lj+1). (32)

Therefore, w̃j(k, θ) can be expressed by:

w̃j(k, θ) =
1∑

ε=0

∞∑
n

w̃j
nε(k) sin

(
nθ +

επ

2

)
. (33)

Combining Eq. (30) with (33), one obtains:

Anε =
ω2ρ0w̃

j
nε(k)√

k2
0 − k2H

(1)′
n (

√
k2
0 − k2rj)

. (34)

Substituting Eq. (34) into (29), and taking the Fourier inverse transform of Eq. (29),
one obtains:

pja(x, θ, z) =
1
2π

∫ +∞

−∞

1∑
ε=0

∞∑
n=0

ω2ρ0w̃
j
nε(k)H(1)

n (
√

k2
0 − k2z)√

k2
0 − k2H

(1)′
n (

√
k2
0 − k2rj)

× sin
(
nθ +

επ

2

)
eikxdk. (35)

By using large parameter approximation for H
(1)
n (

√
k2
0 − k2z) and stationary phase

method [Junger and Feit, 1986], the far field sound pressure pja can be obtained in
the spherical coordinates (stationary phase point k = k0 cos θ):

pja(R, θ, φ) =
ω2ρ0e

ik0R

πk0R sin θ

[
1∑

ε=0

∞∑
n=0

w̃j
nε(k0 cos θ)

H
(1)′
n (k0rj sin θ)

sin
(
nφ +

επ

2

)
(−i)n+1

]
, (36)

where R is the distance from the origin to the far field point Q. φ is the azimuthal
angle and θ is the polar angle. These parameters are illustrated in Fig. 2. Thus, the
far field acoustic radiation pa(R, θ, ϕ) from the conical shell is expressed by

pa(R, θ, φ) =
ω2ρ0e

ik0R

πk0R sin θ


 s∑

j=1

1∑
ε=0

∞∑
n=0

w̃j
nε(k0 cos θ)

H
(1)′
n (k0rj sin θ)

sin
(
nφ +

επ

2

)
(−i)n+1


,

(37)

where s is the number of the segments for the conical shell. The far field sound
pressure level (SPL) is calculated by

SPL = 20 Log10
( |pa|

p0

)
, (38)

where p0 is the reference sound pressure 2.0 × 10−5 Pa.
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Fig. 3. Comparison of frequency parameters with Tong [1993], m = 1.

3. Validation

An immoveable simply supported isotropic conical shell with α = 30◦, r2h = 100,
µ = 0.3, (L − L1) sin α/r2 = 0.25 is considered for the validation of present work.
The comparison of the present values for the frequency parameters defined as ωc =
ωr2

√
ρh/K11 with the data whose boundary condition is SS4 given by Tong [1993]

is presented in Fig. 3. The meridianal wavenumber m = 1. As is expected, the
comparison shows preferable well agreement. So it could be said that the vibration
and acoustic radiation model of orthotropic conical shell presented in the paper is
reliable and reasonable.

4. Results and Discussions

In this section, the vibration and acoustic response characteristics for the
orthotropic conical shell excited by a harmonic concentrated force will be discussed
by assuming that the conical shell is subjected to a uniform moisture content rise.
First, the vibration and acoustic radiation characteristics for the orthotropic conical
shell at incremental moisture content are researched. Second, to research the effects
of different stiffness on the vibration and acoustic radiation characteristics for the
orthotropic conical shell, the different ratios for circumferential Young’s modulus to
the meridianal will be assigned artificially. Finally, the effects of different semi-vertex
angle on the vibration and acoustic responses of the conical shell are discussed.

An orthotropic composite conical shell is excited at (xj = (L + L1)/2, θj = 0)
by harmonic excitation with amplitude of 1 N in normal direction is now considered
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for a detailed investigation. Radii of the small end and large end are r1 = 0.75m
and r2 = 1.0m, respectively. L1 is 1.5m and L is 2.0m. Thickness h of the cone is
0.004m. Semi-vertex angle α of the cone is 30◦. The mechanical properties for the
carbon-epoxy composites are assumed to be as follows:

E1 = 6.9 GPa; E2 = 172.5 GPa; G12 = E1/2 GPa;

ρ = 1600 kg/m3; µ21 = 0.25; β1 = 0.44; β2 = 0.0.

The density of the air and the velocity of the sound are assumed to be ρ0 =
1.21 kg/m3 and c0 = 340 m/s.

4.1. Free vibration study with incremental moisture contents

All the hygroscopic load cases are designed below the critical buckling moisture
content. According to Eq. (22), the critical buckling moisture content for this conical
shell is Ccr = 1.26%. The buckling mode has five meridianal and 11 circumferential
waves. Therefore, six load cases are chosen with uniform moisture content rises ∆C

of 0.63%(0.5Ccr), 0.95%(0.75Ccr), 1.13%(0.9Ccr), 1.20%(0.95Ccr), 1.23%(0.975Ccr)
and 1.25%(0.99Ccr), respectively, and 0.0% is defined as the reference moisture
content to represent the stress free state case.

The results obtained from the pre-stressed modal analysis are given in Table 1
which shows the lowest six natural frequencies for various values of moisture content
rise and the modal indices are enclosed in parentheses. It is seen clearly that the
natural frequency generally decreases with an increase in uniform moisture content.
One can see from Table 1 that the meridianal and circumferential wavenumbers
associated with the lowest frequency mode keep unchanged in lower moisture con-
tents and reaches the modal indices corresponding to the lowest buckling mode near
the critical buckling mode due to uniform moisture content rise. This is due to the
reason that the stiffness of structure reduces with an increase in moisture content
due to the compressive hygroscopic stresses.

As the natural frequencies associated with the orthotropic conical shell analyzed
in the present work are close to each other, the natural frequencies in the excitation
frequency range 0–1200Hz are represented in terms of modal density (modes/Hz)

Table 1. Natural frequencies for immovable simply supported orthotropic conical shell with hygro-
scopic loads.

S. No. Hygroscopic loads

0Ccr 0.5Ccr 0.75Ccr 0.9Ccr 0.95Ccr 0.975Ccr 0.99Ccr

1 223.9(1,7) 194.9(1,7) 178.6(1,7) 168.8(1,7) 163.3(4,11) 113.0(5,11) 58.7(5,11)
2 231.7(1,8) 203.7(1,8) 188.1(1,8) 178.7(1,8) 163.7(5,11) 133.1(4,11) 104.6(5,12)
3 232.9(1,6) 205.3(1,6) 189.9(1,6) 180.7(1,6) 164.8(1,7) 138.1(4,10) 108.4(4,11)
4 254.1(1,9) 228.6(1,9) 214.7(1,9) 206.4(1,9) 167.4(4,10) 142.4(5,12) 114.4(4,10)
5 261.0(1,5) 236.8(1,5) 223.6(1,5) 214.0(2,9) 175.0(1,8) 162.8(5,10) 131.1(5,10)
6 288.4(1,10) 266.0(1,10) 254.0(1,10) 215.8(1,5) 177.0(1,6) 163.1(1,7) 161.9(1,7)
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Fig. 4. Modal density variation with moisture content in constant frequency band.

in 300Hz constant frequency bands. Modal density variation in 300Hz frequency
band is shown in Fig. 4. Shifting of natural frequencies toward lower frequency band
can be clearly seen in 0–300Hz band. It is the reason that the natural frequencies
decrease with the moisture content which results in the number of modal increases
in the lower frequency band.

4.2. Acoustic response study with incremental moisture contents

The sound field point for directivity patterns are defined in one cir-
cles with variation of azimuthal angle φ. The circle is defined by R =√

((L1 + L) cosα)2/4 + (50 + (L1 + L) sin α/2)2 = 50.92m and the polar angel
θ = tan−1((100 + (L1 + L) sin α)/((L1 + L) cosα)) = 88.3◦. The normal point force
is located at ((L1 + L)/2, 0) with the amplitude of 1 N. The sampling point Q of
sound field is located at (50.92, 88.3◦, 0◦) in the spherical coordinates.

Figure 5 shows the effect of segments s for the conical shell and the wavenumbers
m, n on the convergence of SPL. It is can be seen that the conical shell is divided
into six parts and m = 25, n = 25 can yield good results for SPL in the frequency
range. For large vertex cone, in order to obtain the convergent sound pressure, the
value of s should be a little larger.

The SPL of the orthotropic conical shell with 0.0%(0Ccr), 0.63%(0.5Ccr) and
1.23%(0.975Ccr) moisture contents are plotted in Fig. 6. It can be seen that the
effect of uniform incremental moisture contents on the SPL is obvious. The SPL
floats to the low frequency direction due to the reduction of natural frequencies,
which is more significant in lower frequency.
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Fig. 5. SPL convergence of orthotropic conical shell.

Fig. 6. SPL for various moisture contents.

For further investigation of overall SPL is calculated for different moisture con-
tents in the entire frequency band as shown in Fig. 7. From Fig. 7 one can see
the overall SPL generally decreases with the moisture content. When the moisture
content ∆C/Ccr = 0.975, which is closer to the critical buckling moisture content,
there is a marginal increment in the overall SPL.
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Fig. 7. Overall SPL for various moisture contents.

4.3. Effects of different stiffness on the acoustic response of the

orthotropic conical shell

In this section, to research the effects of different stiffness on the acoustic responses
of the orthotropic conical shell, we keep the circumferential Young’s modulus E2

unchanged in 172.5GPa while assign meridianal Young’s modulus E1 artificially
increase from 6.9 to 34.5 and 172.5GPa, so that the stiffness of the orthotropic
conical shell increase gradually as the ratio of E2 to E1 reduces from 25 to 5 and
1. When the ratio reduces to one, the orthotropic conical shell is equivalent to an
isotropic conical shell approximately.

The effects of the different stiffness on the modal density of the orthotropic
conical shell are shown in Fig. 8. It indicates that the modal density decreases with
the increasing stiffness of the conical shell in the whole frequency band.

SPL for various stiffnesses is shown in Fig. 9. It can be seen clearly in Fig. 9 that
the SPL decreases with the decrease of the ratio of E2 to E1 in the lower frequency
range. For the increases of the stiffness of the conical shell with the decrease of
the ratio of modulus, the fundamental frequency of the conical shells increases with
the ratio of 25, 5 and 1, and the first peaks of the curves move to high frequency
direction due to the increase of fundamental natural frequency.

To obtain a clear picture, the overall SPL for the entire frequency band is com-
puted for different stiffnesses and the results are shown in Fig. 10. It can be seen that
the overall SPL decreases in fluctuation with the reduction of the ratio of E2/E1

generally.
A further study for the orthotropic properties of the conical shell on the acoustic

radiation characteristics is presented in Fig. 11, which includes two plots: one is
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Fig. 8. Modal density variation with stiffness in constant frequency band.

Fig. 9. SPL for various stiffnesses.

orthotropic conical shell, and the other one is isotropic conical shell which has the
same first modal frequency (fundamental frequency) as the orthotropic conical shell.
Then the SPLs can be compared at different frequencies. The ratio of circumferential
Young’s modulus to the meridianal of the orthotropic conical shell equals 5. It is
can be seen in Fig. 11 that both of the two plots have the resonant amplitude of
SPL at fundamental frequency 385.2Hz. The two plots are almost the same SPL
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Fig. 10. Overall SPL for various stiffnesses.

Fig. 11. Comparison of SPL for the orthotropic conical shell with the isotropic both has the same
fundamental frequency.

amplitude in the frequency band less than the fundamental frequency, but show
great different after the fundamental frequency.

4.4. Effects of different semi-vertex angle on the acoustic

responses of the orthotropic conical shell

As the sketch shown in Fig. 12, to research the effects of different semi-vertex angle
on the acoustic responses of the orthotropic conical shell, we keep the height of
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Fig. 12. The sketch of different semi-vertex angle of the conical shell.

the conical shell LC = 0.5m, the thickness h = 0.004m and the radius of large
end r2 = 1.0m of the conical shell unchanged while assign the semi-vertex angle
artificially decrease from 60◦ to 10◦ and 1◦. The material properties are same as
those given in the beginning of Sec. 4. When the semi-vertex angle reduces to
1◦, the orthotropic conical shell is equivalent to an orthotropic cylindrical shell
approximately.

The modal density of the orthotropic conical shell variation with the semi-vertex
angle is shown in Fig. 13. It indicates that the modal density increases with the
decreasing semi-vertex angle of the conical shell in constant frequency band.

The SPL and overall SPL for the orthotropic conical shell with various semi-
vertex angles are shown in Figs. 14 and 15. It can be seen clearly that the SPL and

Fig. 13. Modal density variation with semi-vertex angle in constant frequency band.
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Fig. 14. SPL for various semi-vertex angles.

Fig. 15. Overall SPL for various semi-vertex angles.

overall SPL generally increases with the decrease of the semi-vertex angle in the
whole frequency range. The numbers of the resonant amplitude increase with the
decrease of the semi-vertex angle due to the increment of the modal density.

5. Conclusions

Analytical study considering the hygroscopic effect on the vibration and acous-
tic radiation of an orthotropic composite conical shell excited by a harmonic
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concentrated force is carried out in present paper. Theoretical solution considering
the effects of hygroscopic stress and mass addition caused by moisture absorption
is obtained. First, to verify the theoretical model, natural frequencies parameters
are validated through the results available in the literature for the isotropic con-
ical shell. The comparisons indicate that the theoretical model of the orthotropic
conical shell in present work is reliable and reasonable. Second, with the critical
buckling moisture content as a parameter, the natural frequencies and far field
sound pressure with incremental moisture content are computed respectively with
the immovable simply supported boundary condition. Furthermore, the decreasing
ratios of circumferential Young’s modulus to the meridianal are set artificially to
study the effect of different stiffnesses on the acoustic radiation characteristics of
the orthotropic conical shell. Finally, the effects of different semi-vertex angle on
the acoustic responses of the orthotropic conical shell are studied.

From the free vibration studies, it is found that the natural frequencies decrease
with the increase of the moisture content. The meridianal and circumferential
wavenumbers associated with the lowest frequency mode reaches the modal indices
corresponding to the lowest buckling mode near the critical buckling moisture con-
tent due to uniform moisture content rise. The shifting of natural frequencies toward
lower frequency band can be clearly seen in lower frequency band. The SPL floats to
the low frequency direction with the increase of moisture content due to the reduc-
tion of natural frequency. There is a marginal increase in overall SPL near the critical
buckling moisture content. For the increases of the stiffness of the conical shell with
the decrease of the ratio of the circumferential modulus to the meridianal, the SPL
decreases with the decrease of the ratio in the low frequency range, and the first
peaks of the curves move to the higher frequency direction due to the increase of fun-
damental natural frequency. In the comparative study for the SPL of the orthotropic
conical shell with the isotropic both has the same fundamental frequency, the two
SPL plots are almost the same amplitude in the frequency band less than the fun-
damental frequency, but show great different after the fundamental frequency. SPL
increases with the decrease of the semi-vertex angle in the whole frequency range.
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Appendix

C11 =
∫ L

L1

{
−2k2

mK11
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cos

[
2km ln

(
x

L1
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sin2
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km ln
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x
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K22
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+
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∫ L

L1

(1 + ∆C)ρh sin4

[
km ln

(
x

L1

)]
dx, (A.10)

R22 = −
∫ L

L1

(1 + ∆C)ρh sin2

[
km ln

(
x

L1

)]
dx, (A.11)

R33 = −
∫ L

L1

(1 + ∆C)ρhx1−µ12 sin2

[
km ln

(
x

L1

)]
dx, (A.12)

b = −E1β1h(L − L1)
ln(L) − ln(L1)

∫ L

L1

{
µ12km

x2+µ12
cos

[
km ln

(
x

L1

)]
sin

[
km ln

(
x

L1

)]

+
1

x2+µ12

(
1 − µ2

12

4
+ k2

m

)
sin2

[
km ln

(
x

L1

)]}
dx. (A.13)

1550053-27

In
t. 

J.
 A

pp
l. 

M
ec

ha
ni

cs
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

O
N

G
 K

O
N

G
 P

O
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
6/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

August 18, 2015 15:29 WSPC-255-IJAM S1758-8251 1550053

X. Zhao & Y. Li

References

Brush, D. O. and Almroth, B. O. [1975] Buckling of Bars, Plates and Shells (McGraw-Hill,
New York), pp. 190–217.

Cao, X., Hua, H. and Chen, Y. [2011] “Acoustic radiation from laminated conical shells,”
Journal of Ship Mechanics 15(12), 1439–1450.

Cao, X., Hua, H. and Ma, C. [2012] “Acoustic radiation from shear deformable stiffened
laminated cylindrical shells,”Journal of Sound and Vibration 331, 651–670.

Caresta, M. and Kessissoglou, N. J. [2008] “Vibration of fluid loaded conical shells,” Jour-
nal of the Acoustical Society of America 124(4), 2068–2077.

Gan, L., Li, X. and Zhang, Z. [2009] “Free vibration analysis of ring-stiffened cylindrical
shells using wave propagation approach,” Journal of Sound and Vibration 326(3),
633–646.

Geng, Q. and Li, Y. [2012] “Analysis of dynamic and acoustic radiation characters for a
flat plate under thermal environments,” International Journal of Applied Mechanics
4, 1250028.

Gonella, S., Greene, M. S. and Kam Liu, W. [2011] “Characterization of heterogeneous
solids via wave methods in computational microelasticity,” Journal of the Mechanics
and Physics of Solids 59, 959–974.

Hui, T. and Oskay, C. [2014] “A high order homogenization model for transient dynamics
of heterogeneous media including micro-inertia effects,” Computer Methods in Applied
Mechanics and Engineering 273, 181–203.

Jeyaraj, P., Padmanabhan, C. and Ganesan, N. [2011] “Vibro-acoustic response of a cir-
cular isotropic cylindrical shell under a thermal environment,” International Journal
of Applied Mechanics 3(3), 525–541.

Junger, M. C. and Feit, D. [1986] Sound, Structures, and Their Interactions, 2nd edn.
(MIT Press, Cambridge), pp. 151–231.

Kafesaki, M., Sigalas, M. M. and Economou, E. N. [1995] “Elastic wave band gaps
in 3-d periodic polymer matrix composites,” Solid State Communications 96(5),
285–289.

Kaw, A. K. [2006] Mechanics of Composite Materials, 2nd edn. (Taylor and Francis, Boca
Raton), pp. 160–167.

Lam, K. Y. and Li, H. [1999a] “On free vibration of a rotating truncated circular
orthotropic conical shell,” Composites: Part B 30, 135–144.

Lam, K. Y. and Hua, L. [1999b] “Influence of boundary conditions on the frequency charac-
teristics of a rotating truncated circular conical shell,” Journal of Sound and Vibration
223(2), 171–195.

Laulagnet, B. and Guyader, J. L. [1989] “Modal analysis of a shell’s acoustic radiation in
light and heavy fluids,” Journal of Sound and Vibration 131(3), 397–415.

Leissa, A. W. [1993] Vibration of Shells (Ohio, U.S: Acoustical Society of America),
pp. 331–397

Luo, W. and Schmidt, H. [2009] “Three-dimensional propagation and scattering around a
conical seamount,” Journal of the Acoustical Society of America 125(1), 52–65.

Lyrintzis, C. S. and Bofilios, D. A. [1990] “Hygrothermal effects on structure-borne noise
transmission of stiffened laminated composite plates,” Journal of Aircraft 27(8), 722–
730.

Meyers, C. A. and Hyer, M. W. [1991] “Thermal buckling and postbuckling of symmetri-
cally laminated composite plates,” Journal of Thermal Stresses 14, 519–540.

Moon, P. and Spencer, D. E. [1961] Field Theory Handbook, 2nd edn. (Spriger-Verlag,
Berlin), pp. 136–216.

1550053-28

In
t. 

J.
 A

pp
l. 

M
ec

ha
ni

cs
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

O
N

G
 K

O
N

G
 P

O
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
6/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

August 18, 2015 15:29 WSPC-255-IJAM S1758-8251 1550053

Vibration and Acoustic Responses of Orthotropic Conical Shell

Naj, R., Sabzikar Boroujerdy, M. and Eslami, M. R. [2008] “Thermal and mechanical
instability of functionally graded truncated conical shells,” Thin-Walled Structures
46, 65–78.

Parhi, P. K., Bhattacharyya, S. K. and Sinha, P. K. [2001] “Hygrothermal effects on the
dynamic behavior of multiple delaminated composite plates and shells,” Journal of
Sound and Vibration 248(2), 195–214.

Shen, H. [2001] “The effects of hygrothermal conditions on the postbuckling of shear
deformable laminated cylindrical shells,” International Journal of Solid and Structures
38, 6357–6380.

Soedel, W. [2004] Vibrations of Shells and Plates, 3rd edn. (Marcel Dekker, New York),
pp. 75–144.

Suzuki, T. and Yu, P. K. L. [1998] “Complex elastic wave band structures in three-
dimensional periodic elastic media,” Journal of the Mechanics and Physics of Solids
46(1), 115–138.

Tong, L. Y. [1993] “Free vibration of orthotropic conical shells,” International Journal of
Engineering Science 31(5), 719–733.

Torabi, J., Kiani, Y. and Eslami, M. R. [2013] “Linear thermal buckling analysis of trun-
cated hybrid FGM conical shells,” Composites: Part B 50, 265–272.

Whitney, J. M. and Ashton, J. E. [1971] “Effect of environment on the elastic response of
layered composite plates,” American Institute of Aeronautics and Astronautics Journal
9(9), 1708–1713.

Zhang, X. M. [2002] “Frequency sanalysis of submerged cylindrical shells with the wave
propagation approach,” International Journal of Mechanical Sciences 44(7), 1259–
1273.

Zhang, X. M., Liu, G. R. and Lam, K. Y. [2001] “Coupled vibration analysis of fluid-filled
cylindrical shells using the wave propagation approach,” Applied Acoustics 62(3), 229–
243.

Zhao, X., Geng, Q. and Li, Y. [2013] “Vibration and acoustic response of an orthotropic
composite laminated plate in a hygroscopic environment,” Journal of the Acoustical
Society of America 133(3), 1433–1442.

1550053-29

In
t. 

J.
 A

pp
l. 

M
ec

ha
ni

cs
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

O
N

G
 K

O
N

G
 P

O
L

Y
T

E
C

H
N

IC
 U

N
IV

E
R

SI
T

Y
 o

n 
08

/2
6/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.


