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Abstract More coupling mechanisms between the
six degrees of freedom (DOFs) are introduced by
considering the contribution of the general transverse
forces to stress intensity factor of mode I crack in pre-
dicting the crack additional flexibility matrix of the
cracked rotor. And the obtained flexibility elements
show a good agreement with the experiment result for
a wide range of the crack depth ratio. Six DOFs cou-
pled dynamic equations for cracked rotor are formu-
lated by introducing three rotational DOFs. A response-
dependent non-linear breathing crack model is applied
to simulate the breathing behavior during operation
in this paper. Numerical investigations are carried out
to simulate the various parametric conditions on the
dynamic characteristics of cracked rotor, including the
crack depth, shaft slenderness ratio, and rotating speed
ratio. A perturbation frequency component and its com-
binations with harmonic components are observed in
the dynamic response obtained by six DOFs coupled
models (SDCM). Some differences in evolution of
whirling orbit obtained by SDCM and three DOFs cou-
pled models are found, when the cracked rotor passes
through the sub-critical speeds.
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1 Introduction

An increase in the power-to-weight ratio demand on
rotor systems causes a severe stress field in the shaft.
The fatigue crack of shaft is one of classic mal-
functions in the rotor system, which can lead to a
catastrophic failure if undetected at an early time. The
dynamic behavior of a cracked rotor has drawn many
researchers’ attention since 1970s. The research works
in this field have been well documented by Dimarogo-
nas and Paipetis [1].

In most published research works, the crack in a
rotor is considered as a reduction in stiffness. And
the modification in stiffness due to the crack is often
obtained based on strain energy release rate theory
combined with linear fracture mechanics [2–6]. A sys-
tematic review of these techniques is presented by
Papadopoulos [7]. Recently, some other techniques
have been presented in modeling the cracked rotor in
literature [8–13]. The dissimilar area moments of iner-
tia in the crack section are used to obtain the variation of
stiffness during rotation in [8–11]. Kulesza and Sawicki
[12,13] introduce a new model of the cracked rotating
shaft based on the rigid finite element method. In their
model, the crack is presented as several dozen spring-
damping elements of variable stiffness connecting two
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sections of the shaft. This technique can be applied to
simulate the propagation and breathing mechanism of
the crack, effortlessly and intuitively.

During the rotation of the cracked rotor, the sta-
tic deflection due to some complicated loads on the
structure (such as self-weight, operational load, fric-
tion, and non-uniform thermal load) combined with the
self-vibration effect may cause the crack to open and
close gradually depending on the real-time response
of the rotor. Some researchers [4,14] assumed that
the crack remains open during the revolution. There
also exist many research works applying a bilinear
dynamic model to study the response of the cracked
rotor. Qin et al. [15] used a two degrees of freedom
(DOFs) piecewise linear system to model the cracked
rotor, and observed a grazing bifurcation that exists
in the response. Ballo [16] modeled the crack as a
rotational spring element with bilinear stiffness prop-
erties depending on whether the curvature was positive
or negative. Wauer [17] explored the dynamics of a
cracked, distributed parameter rotor component. The
geometric discontinuity due to the crack is replaced by
a load discontinuity, and the open/close condition is
formulated to simulate the breathing crack. Lee et al.
[18] decided whether the crack is opened or closed by
the sign of the displacement component in the weaker
axis. Chondros et al. [19] assumed that the transition
period from fully open to fully closed occurs at times
when the structure returns to its undeformed shape.
In addition, in some other research works, the crack
is allowed to partially open or closed. For instance,
Mayes and Davies [20] presented a harmonic varia-
tion function of angle position of the rotor to describe
the reduction of stiffness in the weaker axis when the
crack is partially open or closed. Chen and Dai [21]
utilized an equivalent linear-spring model to describe
the cracks, and represented the breathing of the crack
with a series truncated time-varying cosine series. Al-
Shudeifat and Butcher [9] proposed two new breath-
ing functions to represent the actual breathing effect
on the cracked element stiffness matrix. Jun et al. [3]
proposed a two DOFs response-dependent breathing
crack model. This model iteratively estimates the sta-
tus of the crack closure using forces acting on the
crack section. Darpe et al. [2,22] extended the breath-
ing crack modeling of Jun et al. [3] to include the axial
coordinate. In their work, the amount of crack open
part is decided through calculating the stress inten-
sity factor (SIF) at a series of given nodes along the

crack edge. Darpe et al.’s later experimental work [23]
proved the accuracy of this breathing crack model. So
this non-linear crack breathing model is applied in the
present work. However, in their work, only translational
DOFs (two lateral translations and an axial transla-
tion) were considered, and the rotational DOFs (two
bending angles and torsion angle of the crack section)
were omitted. Dimarogonas and his colleagues [4,24]
derived the 6 × 6 crack additional flexibility matrix
of a cracked rotor based on the strain energy release
rate method. A lot of researchers [25–31] investigated
the parametric instability of a cracked rotor based on
Dimarogonas’ perfect work, while there are few stud-
ies on simulation of Jeffcott cracked rotor’s six coupled
DOFs dynamic response using a response-dependent
non-linear breathing crack model reported in literature.
Few investigators have tackled the problem about the
effects of the coupling mechanics between rotational
DOFs and translational DOFs on the dynamic behav-
ior of cracked rotor. It is the purpose of this paper to
supplement this gap in the literature.

In this paper, an attempt is made to calculate a more
accurate crack local flexibility matrix with more cou-
pled elements by considering the contribution of the
transverse general forces to the SIF of mode I crack.
This attempt is proved to be valid through the com-
parison between the numerical results [24] and Bush’s
experiment results [32]. The opening and closing of
crack are governed by the sign of SIF at the crack edge,
so the stiffness matrix is response dependent. Coupled
equations of motion involving six DOFs are solved by
numerical integration using Runge–Kutta method. The
influences of slenderness (sld) ratio, crack depth, and
rotating speed ratio on the dynamic behavior of crack
are revealed. A series of perturbation frequency com-
ponents are observed in the dynamic response.

2 Mathematic modeling of the cracked rotor

2.1 Model of Jeffcott cracked rotor

Consider a rigid disk of mass m mounted at mid-span
of a massless elastic shaft in radially rigid bearings as
shown in Fig. 1; it is assumed that a surface transverse
crack locates at the mid-span of the shaft, and Fig. 2
shows the coordinate system used in the present paper.
The coordinates x, y and ξ, η are the stationary and
rotating ones, respectively. The coordinate u represents
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Fig. 1 Sketch of a Jeffcott cracked rotor
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Fig. 2 The stationary and rotating coordinate systems

axial axis. e is the eccentricity of the center of the disk
mass m from the geometric center of the disk. β is the
orientation angle of the eccentricity from the ξ axis in
the direction of shaft rotation, and Ω is the rotational
speed.

2.2 Local flexibility of a cracked shaft

Consider that the cracked shaft is loaded with six gen-
eral forces (shear forces Q1, Q2, axis force Q3, bend-
ing moments Q4, Q5, and torsion moment Q6) related
to six DOFs (transverse translations ξ, η, axial transla-
tion u, bending rotation θξ , θη, and torsional rotation
θu) at the mid-span, respectively, as shown in Fig. 3.

Q1

Q2 Q3
ξ 

η u

Q4

Q6

Q5

θξ
θη

θu

Fig. 3 Cracked shaft loaded with six general forces

w0

α 0α

α
' D

a

dw w

Fig. 4 Cracked section geometry

It is assumed that the shaft section consists of ele-
mentary strips with varying height, and there is no
traction between strips. These strips are perpendicu-
lar to the crack tip and parallel to the axis of symmetry
of the cylindrical shaft. Under six general forces, the
stress along the tip of crack may have different values.
Hence, the SIF is expressed as a function of coordi-
nate w as shown in Fig. 4. The position of crack closure
line (CCL) [33], an imaginary line that separates the
closed part from the open part of the crack (i.e., the line
w = w0 in Fig. 4), varies continuously during the rota-
tion. So the cracked additional flexibilities vary with
the rotation. Initially, the crack is fully closed due to
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Fig. 5 Schematic drawing
of elementary strip

L

α'

dw

α

τ IIIσ I τ II

self-weight, and 100 nodes are set along the crack tip
in the present study. The position of CCL travels along
the crack edge during the rotation. When the crack is
opening from b to −b, statuses 1–100 are employed to
describe the crack at unique moment. When the crack
is closing from −b to b, statuses 101–200 are used. For
example, the half open and half closed condition (left
half part open) is defined as status 50, and the status
150 indicates the half closed and half open condition
(right half part open).

Apart from the symmetry of shaft w, a strip is taken
out to study carefully. Assume that this strip is of length
L, width dw, and height α′, paralleling to the symmetry
of the shaft, and there is an edge crack of depth α on
it (as shown in Fig. 5). The stress fields (σ I, τ II, τ III)

effect the three modes of crack, respectively.
Under the general transverse forces Q1 and Q2, the

strip tends to bend. Not only shear stress but also the
normal stress appear on the crack section of the given
strip. So the contribution of these two general forces on
mode I crack is taken into account extra in the present
study. With Q1 acting on the shaft, the normal stress
is linear distribution along the section of strip, while
for Q2, the normal stress is uniform. And the SIFs of
mode I crack due to Q1 and Q2 could be written as the
following equations according to the handbook [34]:

K I
1 = σ I

1
√

παF1(α/α′),

σ I
1(w) = Q1L

4

α′

2

/(
π R4

4

)
, (1)

K I
2 = σ I

2
√

παF2(α/α′),

σ I
2(w) = Q2L

4
w

/(
π R4

4

)
. (2)

Other SIFs due to the general forces are calculated by
the method presented in previous works [4,24]. For
the purpose of completeness and consistent of symbol,

SIFs of three modes of crack are coordinated in Appen-
dix 1.

According to Castigliano’s theorem, the strip crack
additional displacement can be written as [34]

ustrip
i = ∂

∂ Qi

[∫
J (α)dA

]
, (3)

in which J stands for strain energy release rate:

J = 1

E ′

⎡
⎣
(

6∑
i=1

K I
i

)2

+
(

6∑
i=1

K II
i

)2⎤
⎦

+ (1 + ν)

E

(
6∑

i=1

K III
i

)2

, (4)

where E ′ = E/(1−ν) for plane strain, E is the modulus
of elasticity, and ν is the Poisson ratio.

The local flexibility of strip due to the crack is, by
definition,

gstrip
i j = ∂ustrip

i

∂ Q j
= ∂2

∂ Qi∂ Q j

⎡
⎣

α∫
0

J (α)dα

⎤
⎦ . (5)

By integrating (5) along the crack width 2b, we get the
crack additional flexibility of rotor

gcrack
i j = ∂ucrack

i

∂ Q j
= ∂2

∂ Qi∂ Q j

⎡
⎣

b∫
−b

α∫
0

J (α)dA

⎤
⎦ . (6)

Combining the expression of SIFs with the Eqs. (4)
and (6), it yields elements of the 6 × 6 crack additional
flexibility matrix (shown in Appendix 1). Note that the
area integrations are only conducted at the open part of
crack.

In the present study, the contribution of the trans-
verse forces to the SIFs of mode I crack, i.e., Eqs.
(1) and (2), is taken into account, resulting in more
non-zero elements in the flexibility matrix (such as
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gcrack
12 , gcrack

13 , gcrack
14 , gcrack

15 , gcrack
23 , gcrack

24 , and their
symmetrical ones). For fully open cracked rotor, the
flexibility matrix elements are only depended on the
crack depth ratio ā = a/D. The dimensionless crack
additional flexibility elements are defined as follows:

ḡcrack
kl = π E Rgcrack

kl

1 − υ2 (k = 1, 2, 3; l = 1, 2, 3),

ḡcrack
kl = ḡcrack

lk = π E R2gcrack
kl

1 − υ2 (7)

(k = 1, 2, 3; l = 4, 5, 6),

ḡcrack
kl = π E R3gcrack

kl

1 − υ2 (k = 4, 5, 6; l = 4, 5, 6).

The variation of the first diagonal flexibility matrix
element, ḡcrack

11 , with depth ratio is plotted in Fig. 6
for comparison between the present work and previ-
ous studies. It is obvious that the curve obtained in
the present study is a little higher than that obtained
by Papaeconomou and Dimarogonas [24], and is bet-
ter accurate with Bush’s experimental result [32] for a
wide range of the crack depth ratio. This is due to the
assumption that the transverse force Q1 contributes to
not only the mode II crack but also the mode I crack.
The flexibility element ḡcrack

11 consists of two parts cor-
responding to mode I crack and mode II crack, respec-
tively. Further, if the general forces Qi and Q j can con-
tribute the same mode of crack, then ḡcrack

i j is non-zero.
For instance, Q1, Q2, Q3, Q4, and Q5 make sense in

forming mode I crack, so the corresponding DOFs, i.e.,
ξ, η, u, θξ and θη, are coupled with each other.

Then, the variation of non-zero elements in dimen-
sionless crack additional flexibility matrix with the
moving of CCL position is illustrated in Fig. 7 for a
specific depth ratio (ā = 0.4). It is easy to find that
when the crack is opened completely, namely the sta-
tus 100, all of the diagonal elements reach to their
peak value but several non-diagonal elements (such as
ḡcrack

12 , ḡcrack
23 , ḡcrack

16 , ḡcrack
25 , ḡcrack

14 , ḡcrack
45 , and ḡcrack

34 )

vanish. These non-diagonal elements reach to their
peak value at the time when the crack is half opened.
This is mainly due to that the crack section is symmetric
about the axis ξ when fully opened, and the asymme-
try level gets their largest value when the crack half
opened. These variation characteristics are consistent
with the crack finite element in [33]. These compar-
isons prove that it is necessary to consider the contri-
bution of general transverse forces to mode I crack.

Above all, the additional flexibilities introduced by
the crack have been calculated. While the flexibilities
of uncracked shaft can be easily obtained based on the
strength of materials:

g0
11 = g0

22 = L3

48E Id
,

g0
33 = L

AE ,

g0
44 = g0

55 = L
12E Id

,

g0
66 = Lκ

2G Ip
,

(8)

where A = π R2 is the area of the shaft section, Id =
π R4/4 is the area moment of inertia, Ip = π R4/2 is
the polar moment of inertia, and G = E/2(1 + ν) is
the shear modulus. So the total flexibility coefficients
matrix is obtained as follows:

G = Gcrack + G0. (9)

By inversing the flexibility coefficients matrix, the
stiffness matrix can be written as

K = G−1. (10)

2.3 Six DOFs coupled equations of motion

Consider the Jeffcott rotor loaded with unbalance mass
and its weight shown in Fig. 1. The stiffness matrix is
obtained in rotating coordinate in previous section. The
following transformation matrix is used to transform
the equations of motion from the stationary coordinate
to the rotating one.
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Fig. 7 Then, the variation of dimensionless crack additional flexibility matrix non-zero element with the moving of CCL (ā = 0.4)
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x
y
z
θx

θy

θz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(Ωt) sin(Ωt) 0 0 0 0
− sin(Ωt) cos(Ωt) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(Ωt) sin(Ωt) 0
0 0 0 − sin(Ωt) cos(Ωt) 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ

η

u
θξ

θη

θu

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (11)

Then, the six DOFs coupled equations of motion can
be expressed in the rotating coordinates as

m
(
ξ̈ − 2Ωη̇ − Ω2ξ

)
+ c(ξ̇ − Ωη) + k11ξ + k12η

+ k13u + k14θξ + k15θη + k16θu

= mεΩ2 cos β − mg cos Ωt,

m
(
η̈ + 2Ωξ̇ − Ω2η

)
+ c(η̇ + Ωξ) + k21ξ + k22η

+ k23u + k24θξ + k25θη + k26θu

= mεΩ2 sin β + mg sin Ωt,

mü + cuu̇ + k31ξ + k32η + k33u + k34θξ + k35θη

+ k36θu = 0,

Jd

(
θ̈ξ − 2Ωθ̇η − Ω2θξ

)
+ cd

(
θ̇ξ − Ωθη

)+ k41ξ

+ k42η + k43u + k44θξ + k45θη + k46θu = 0,

Jd

(
θ̈η + 2Ωθ̇ξ − Ω2θη

)
+ cd

(
θ̇η + Ωθξ

)+ k51ξ

+ k52η + k53u + k54θξ + k55θη + k56θu = 0,

Jpθ̈u + cpθ̇u + k61ξ + k62η + k63u + k64θξ + k65θη

+ k66θu = 0, (12)

in which m is the mass of the disk; Jd and Jp are the
area moment of inertia and the polar moment of inertia
of the disk, respectively; and c, cu, cd, and cp are the
damping coefficients of lateral, axial, bending, and tor-
sional vibrations, respectively. The stiffness elements
ki j are response dependent, resulting in the non-linear
differential equations. In order to simplify the equa-
tions, following non-dimensional parameters are intro-
duced.

τ = Ωt, ζ = c

2mω11
, ζu = cu

2mω33
,

ζd = cd

2Jdω44
, ζp = cp

2Jpω66
,

Pi j = ωi j/Ω(i = 1, . . . , 6, j = 1, . . . , 6),

P0
i = ω0

i /Ω(i = 1, . . . , 6),

(13)

where

ω0
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
k0

i /m (i = 1, . . . , 3),√
k0

i /Jd (i = 4, 5),√
k0

i /Jp (i = 6),

ωi j =
⎧⎨
⎩
√

ki j/m (i = 1, . . . , 3),√
ki j/Jd (i = 4, 5), j = 1, . . . , 6,√
ki j/Jp (i = 6)

(14)

k0
i is the ith diagonal element in the stiffness matrix of

uncracked shaft, and ki j is the element in the response-
dependent stiffness matrix of crack shaft. In the present
study, the rotating speed ratio of the rotor is defined
as the ratio of the rotating speed to the first bending
critical frequency, i.e., 1/P0

1 . The simplified equations
of motion are obtained through a series of mathematical
manipulations:

d2ξ

dτ 2 + 2ζ P0
1

dξ

dτ
− 2

dη

dτ
+
(

P2
11 − 1

)
ξ

−
(

2ζ P0
1 − P2

12

)
η + P2

13u + P2
14θξ + P2

15θη

+ P2
16θu = e cos β − g/Ω2 cos τ,

d2η

dτ 2 + 2ζ P0
2

dη

dτ
+ 2

dξ

dτ
+
(

2ζ P0
1 + P2

21

)
ξ

−
(

P2
22 − 1

)
η + P2

23u + P2
24θξ + P2

25θη + P2
26θu

= e sin β + g/Ω2 sin τ,

d2u

dτ 2 + 2ζu P0
3

du

dτ
+ P2

31ξ + P2
32η + P2

33u + P2
34θξ

+ P2
35θη + P2

36θu = 0, (15)

d2θξ

dτ 2 + 2ζd P0
4

dθξ

dτ
− 2

dθη

dτ
+ P2

41ξ + P2
42η + P2

43u

+
(

P2
44 − 1

)
θξ −

(
2ζd P0

4 − P2
45

)
θη + P2

46θu = 0,

d2θη

dτ 2 + 2ζd P0
5

dθη

dτ
+ 2

dθξ

dτ
+ P2

51ξ + P2
52η

+ P2
53u +

(
2ζd P0

5 + P2
54

)
θξ −

(
P2

55 − 1
)

θη

+ P2
56θu = 0,
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d2θu

dτ 2 + 2ζp P0
6

dθu

dτ
+ P2

61ξ + P2
62η + P2

63u + P2
64θξ

+ P2
65θη + P2

66θu = 0.

3 Breathing behavior of crack

The crack breathing behavior may occur due to the
combined effect of static load and vibration amplitude,
while the cracked shaft rotates. There exists a series of
partial opening and closing statuses between the com-
pletely open and completely closed states of the crack.
The solution process for solving the motion equations
(15), which also govern the status of the crack, is pre-
sented in this section.

Assume that the initial displacement is the static
deflection of the rotor under self-weight, and the crack
is completely closed at the beginning. So the initial
stiffness is equal to that of an uncracked shaft. Then,
the general force vector can be evaluated in the rotating
coordinate:

Q = K
[
ξ, η, u, θξ , θη, θu

]T
init . (16)

100 nodes are set along the tip of the crack. Each of
these nodes is the potentially possible position of the
CCL. The SIFs at these 100 nodes are evaluated from
the Eqs. (1), (2), and Appendix 1. Then, the total SIF
of mode I crack is obtained easily.

K I =
6∑

n=1

K I
n . (17)

Positive total SIF indicates that the crack opens at
this node, while the negative indicates that the crack
closes at this node. The position where the total SIF
changes its sign is just the CCL position. All strips
where the SIF is positive make up the open part of
the crack, i.e., the integral domain of the additional
flexibility. By inversing the flexibility matrix, the stiff-
ness matrix is obtained. Then, the equations of motion
Eq. (15) are numerical integrated using variable-step
Runge–Kutta method for a given short time span (one
degree of rotation in the present study) during which the
stiffness is assumed to be constant. In order to get more
accurate response, the relative error tolerance is set to a
very low level, i.e., 1.0e−10 in the present study. Only
the displacements and velocities at the end of each time
span are stored and used as initial conditions for next
time span. Using the transformation matrix, the status

can be transformed into the stationary coordinate, and
then the new general force vector is calculated. These
forces are used to evaluate SIFs at the given nodes, and
eventually, the next set of stiffness values is obtained,
which are used in the equations of motion for the new
time span. In another word, response is used to evaluate
stiffness which governs the next set of response in turn.
Repeat this series of calculations until time axis reach
at the terminal point.

4 Numerical results

In this section, several numerical investigations are car-
ried out to study the dynamic characteristics of cracked
rotor. All the parameters used are given in Table 1.

First, unbalance response of an uncracked rotor with
rotating speed ratio of 1/P0

1 = 0.3 is investigated. The
first critical frequency of the given rotor can be calcu-
lated to be 390.55 Hz, so the rotation speed of the rotor
is 117.16 Hz. Figure 8 illustrates that only the rotation
speed component, namely 1X, is contained in the ver-
tical and horizontal vibration. Figure 8a1, b1 shows the
time domain response, and Fig. 8a2, b2 shows the corre-
sponding frequency spectra in vertical and horizontal,
respectively. The response of other DOFs is zero, due
to symmetry in physics for an uncracked rotor, so no
coupling mechanism between lateral DOFs (x, y) and
other DOFs is introduced.

For comparison, the unbalance response of a cracked
rotor running at the same speed is studied. The crack
depth ratio of the rotor is ā = 0.3. In this case, all
six DOFs are coupled, and the stiffness coefficients in

Table 1 Details of the rotor parameters

Description Values

Radius of the shaft 7.5e−3 m

Radius of the disk 2.0e−2 m

Length of the shaft 0.16 m

Mass of the disk 1.0 kg

Eccentricity of the mass unbalance 2.0e−3 m

Phase unbalance 0 rad

Young’s modulus of elasticity 2.0677e11 N/m2

Poisson ratio 0.3

Coefficient of damping (ζ, ζu, ζd, ζp) 0.05

Acceleration of gravity 9.8 m/s2
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Fig. 8 Unbalance response of an uncracked rotor with rotating speed ratio of 1/P0
1 = 0.3. a1 Time domain response in x. b1 Time

domain response in y. a2 Frequency domain response in x. b2 Frequency domain response in y

Eq. (15) are varying all the time during the rotation.
The response of all six DOFs in time domain and fre-
quency domain is shown in Fig. 9. The first three har-
monic components are observed in the frequency spec-
tra of all six DOFs, and 1X is very strong and domi-
nating. This is well known in previous studies. In addi-
tion, some other new frequency components could also
be observed on both sides of every harmonic compo-
nent. In the present study, perturbation frequency ωb

is defined to describe these frequency components. To
avoid confusion in identification, ωb is limited which
must be less than half of the rotation speed. In this case,
ωb is obtained to be 39.1 Hz from the frequency spectra.

And it is easy to found that these newly found frequency
components are just the combination between the per-
turbation frequency and harmonic frequencies. These
frequency components are not reported in the literature
before.

The same case is also simulated by three DOFs cou-
pled models (TDCM), namely neglecting the coupling
mechanism by three rotational DOFs. The dynamic
response in frequency domain is displayed in Fig. 10.
The frequency spectra are only contained several har-
monic components. By comparing the frequency spec-
tra obtained by six DOFs coupled models (SDCM;
Fig. 9a2, b2) and TDCM (Fig. 10a, b), it could be con-
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Fig. 9 Unbalance response of an cracked rotor (depth ratio of
ā = 0.3) with rotating speed ratio of 1/P0

1 = 0.3 applied with
SDCM. a1 Time domain response in x. b1 Time domain response
in y. c1 Time domain response in u. d1 Time domain response in
θx . e1 Time domain response in θy . f1 Time domain response in

θu . a2 Frequency domain response in x. b2 Frequency domain
response in y. c2 Frequency domain response in u. d2 Frequency
domain response in θx . e2 Frequency domain response in θy . f2
Frequency domain response in θu

123

Author's personal copy



Six degrees of freedom coupled dynamic response of rotor 1853

0 180 360 540 720 900 1080 1260 1440
−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−6

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−6

2Ω

ω
b

2Ω+ω
b

Ω

Ω−ω
b

Ω+ω
b

2Ω−ω
b

0 180 360 540 720 900 1080 1260 1440
−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−6

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−6

Ω

2Ω−ω
b

2Ω

Ω+ω
b

Ω−ω
b

ω
b 2Ω+ω

b

0 180 360 540 720 900 1080 1260 1440
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−7

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3
x 10

−7

Ω−ω
b

ω
b

Ω+ω
b

2Ω−ω
b

2Ω+ω
b

2Ω

Ω

D1 D2

E1 E2

F1 F2

Fig. 9 continued

123

Author's personal copy



1854 B. Zhang, Y. Li

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5
x 10

−7

Ω

3Ω

2Ω

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

7

8 x 10
−8

Ω

2Ω

3Ω

4Ω

A

B

Fig. 10 Unbalance response of an cracked rotor (depth ratio
ofā = 0.3) with rotating speed ratio of 1/P0

1 = 0.3 applied with
TDCM. a Frequency domain response in x. b Frequency domain
response in y

cluded that the perturbation frequency components are
introduced by coupling mechanism between rotational
DOFs and translational DOFs.

To find the relationship between perturbation
frequency ωb and system parameters, the dynamic
response is calculated on the various parametric con-
ditions. Figure 11 discovers the variation of perturba-
tion frequency with rotating speed ratio for the cracked
rotor with different sld ratios. In the present study,
the dimensionless sld is defined as the ratio between
the length and diameter of the rotor for convenience,
namely rsld = L/D. It is easy to find that the pertur-
bation frequency increases rapidly with rotating speed
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Fig. 11 The variation of the perturbation frequency with rotating
speed ratio for different slenderness
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Fig. 12 The variation of the perturbation frequency with
Young’s Modulus
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Fig. 13 The variation of the perturbation frequency with the
mass of the disk
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Fig. 14 Evolution of the orbit during the passage through 1/3
and 1/2 of the first critical rotating speed by SDCM (a1, b1)
and TDCM (a2, b2). a1 Evolution of the orbit during the pas-
sage through 1/2 of the first critical rotating speed obtained by
TDCM. b1 Evolution of the orbit during the passage through

1/3 of the first critical rotating speed obtained by TDCM. a2
Evolution of the orbit during the passage through 1/2 of the first
critical rotating speed obtained by SDCM. b2 Evolution of the
orbit during the passage through 1/3 of the first critical rotating
speed obtained by SDCM

in low-speed range and then decreases slowly in high-
speed range. When the rotating speed is high enough,
these perturbation frequency components join to the
harmonic components nearby. For the slender cracked

rotors, the process of this evolution seems to flow to
high-speed direction. Controlling variables method is
applied to study the influence of other parameters on
this perturbation frequency. We choose a general case
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Fig. 14 continued

(given in Table 1) as the contrast, and vary the Young’s
modulus and the mass of the disk in a wide range,
respectively. Figures 12 and 13 discover that the pertur-
bation frequency is independent of Young’s modulus of
the rotor and the mass of the disk.

The numerical investigations conducted above could
be summarized as follows. When coupling mecha-
nism between lateral displacement DOFs and rotational

DOFs is introduced, the stiffness and rotatory inertia
related to rotational DOFs influence the vibration in
lateral DOFs. These effects could be considered as an
alternating load applied to the transverse vibration. As
a result, the energy distribution of crack rotor system
becomes complex. With the cracked rotor speeding up,
coupling effect becomes significant and sufficient to
excite a series of new frequency components (defined
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Fig. 14 continued

as perturbation frequency components). And these per-
turbation frequency components are separated from the
unbalance response, which is represented by the har-
monic components in frequency spectra. For stubby
rotor, the rotatory inertia and shear effects are promi-
nent. So the perturbation frequency components could
be observed in a lower rotating speed. However, with
the further increase in rotating speed, the centrifugal

force grows rapidly. If the speed becomes high enough,
then the alternating load introduced by coupling effect
is insignificant by contrast. So the perturbation com-
ponents tend to move to the harmonic components and
finally joint back to the harmonic components again.

Monitoring orbit response of rotor is also a way of
detecting the existence of crack in the rotor system as
explained by Sinou and Lees [35]. By applying SDCM,
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Fig. 14 continued

the orbit shapes of the given cracked rotor during pas-
sage through the sub-critical rotating speeds are illus-
trated in Fig. 14a1, b1. The orbit shape changes from
one loop to a double loop when the rotating speed of the
cracked rotor is passing through half of critical speed.
An inner loop appears and becomes larger gradually;
then, it turns to smaller until disappears from the outer
loop. The small distortion in the orbit changes its ori-

entation by π
2 during this process. When the rotating

speed passes through the 1/3 of the critical speed, the
orbit with two inner loops experiences a similar history.
These features in the orbit response are considered as
a strong evidence of the breathing crack [2,5,36]. To
discover effects of three rotational DOFs on the orbit
response, the whirling orbits are plotted again with the
three rotational DOFs omitted as shown in Fig. 14a2,
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b2. In this case, the orbit changes following a similar
rule, from the whole view. However, it can be find that
with the increment in rotating speed, the whirling orbit
changes slower than that of SDCM. So the speed step
length must be increased to observe the whole changing
process.

5 Conclusion

The previous method to calculate the crack additional
flexibility for rotor is modified to include more cou-
pling mechanisms. The six DOFs coupled equations of
motion of a cracked Jeffcott rotor are formulated. The
effect of breathing behavior of the cracked rotor is stud-
ied with various parameters. The dynamic response of
the cracked rotor is simulated with non-linear breath-
ing crack SDCM accounting the partial crack opening.
Based on the numerical investigations, the following
conclusions could be extracted.

By considering the contribution of general trans-
verse forces to the mode I crack, some coupling mech-
anisms are introduced. The crack additional flexibility
elements obtained are consistent with the experiment
result for a wide range of depth ratio. And their varia-
tion with the position of CCL coincides with literature.

When coupling mechanism between translational
DOFs and rotational DOFs is introduced, a perturbation
frequency component and its combination with har-
monic frequencies could be observed in the response.
The influence of the system parameters on the perturba-
tion frequency is discovered. The physical explanations
for these newly found frequency components are dis-
cussed in detail. The whirling orbit obtained by TDCM
is a bit different from that obtained by SDCM. The evo-
lution of the former is slower, when rotating speed is
passing through the sub-critical speeds. The present
study is expected to be helpful to on-line monitoring
and health detecting of rotating machine.

Acknowledgments This work is grateful to the National Basic
Research Program of China (Grant No. 2013CB035704).

Appendix 1: SIFs due to the six general forces

SIFs for mode I crack duo to general forces Q3, Q4, Q5,
and Q6 :
K I

3 = σ I
3
√

παF2(α/α′), σ I
2 = Q3

/(
π R2

)
, (18)

K I
4 = σ I

4
√

παF2(α/α′), σ I
4(w) = Q4w

/(π R4

4

)
,

(19)

K I
5 = σ I

5
√

παF1(α/α′), σ I
5(w) = Q5

α′

2

/(π R4

4

)
,

(20)

K I
6 = 0. (21)

SIFs for mode II crack duo to six general forces:

K II
1 = τ II

1
√

παFII(α/α′), τ II
1 = κ Q1

/(
π R2

)
,

(22)

K II
2 = K II

3 = K II
4 = K II

5 = 0, (23)

K II
6 = τ II

6
√

παFIII(α/α′), τ II
6 (w) = Q6w

/(π R4

2

)
.

(24)

SIFs for mode III crack duo to six general forces:

K III
1 = K III

3 = K III
4 = K III

5 = 0, (25)

K III
2 = τ III

2
√

παFIII(α/α′), τ III
2 = κ Q2/

(
π R2

)
,

(26)

K III
6 = τ III

6
√

παFIII(α/α′),

τ III
6 (w) = Q6

α′

2

/(π R4

2

)
, (27)

where K M
n is the contribution of general force Qn (n =

1, 2, . . . , 6) to the SIFs for M = I, II, III modes crack,
and κ = 6(1 + ν)/(7 + 6ν) is shear shape coefficient
of the circular beam section, ans ν is the Poisson ratio.
F1, F2, FII, FIII are dimensionless correction factors:

F1(α/α′) =
√

2α′
πα

tan
(πα

2α′
)

×0.923 + 0.199[1 − sin(πα/2α′)]4

cos(πα/2α′)
,

F2(α/α′) =
√

2α′
πα

tan
(πα

2α′
)

(28)

×0.752 + 2.02(α/α′) + 0.37[1 − sin(πα/2α′)]3

cos(πα/2α′)
,

FII(α/α′) =
[
1.122 − 0.561(α/α′) + 0.085(α/α′)2

+ 0.18(α/α′)3
]
/
√

1 − α/α′,

FIII(α/α′) =
√

2α′
πα

tan
(πα

2α′
)
.
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Appendix 2: elements of crack additional
flexibility matrix

The non-zero elements of the crack additional flexibil-
ity 6 × 6 matrix are as shown below:

gcrack
11 = 2(1 − υ2)

π E R8

×
∫

α
[

F2
1 L2

(
R2 − w2

)
+ FII R4κ2

]
dA, (29)

gcrack
12 = gcrack

21 = 2(1 − υ2)

π E R8

×
∫

F1 F2L2wα
√

R2 − w2dA,

(30)

gcrack
13 = gcrack

31 = 2(1 − υ2)

π E R6

×
∫

F1 F2Lα
√

R2 − w2dA, (31)

gcrack
14 = gcrack

41 = 8(1 − υ2)

π E R8

×
∫

F1 F2Lwα
√

R2 − w2dA, (32)

gcrack
15 = gcrack

51 = 8(1 − υ2)

π E R8

×
∫

F2
1 Lα

(
R2 − w2

)
dA, (33)

gcrack
16 = gcrack

61 = 4(1 − υ2)

π E R6

∫
F2

IIκwαdA, (34)

gcrack
22 = 2(1 + υ)

π E R8

×
∫

α
[

F2
III R4κ2 + F2

2 L2w2(1 − υ)
]

dA, (35)

gcrack
23 = gcrack

32 = 2(1 − υ2)

π E R6

∫
F2

2 LwαdA, (36)

gcrack
24 = gcrack

42 = 8(1 − υ2)

π E R8

∫
F2

2 Lw2αdA, (37)

gcrack
25 = gcrack

52 = 8(1 − υ2)

π E R8

×
∫

F1 F2Lwα
√

R2 − w2dA, (38)

gcrack
26 = gcrack

62 = 4(1 + υ)

π E R6

×
∫

F2
IIIκα

√
R2 − w2dA, (39)

gcrack
33 = 2(1 − υ2)

π E R4

∫
F2

2 αdA, (40)

gcrack
34 = gcrack

43 = 8(1 − υ2)

π E R6

∫
F2

2 wαdA, (41)

gcrack
35 = gcrack

53 = 8(1 − υ2)

π E R6

×
∫

F1 F2α
√

R2 − w2dA, (42)

gcrack
44 = 32(1 − υ2)

π E R8

∫
F2

2 w2αdA, (43)

gcrack
45 = gcrack

54 = 32(1 − υ2)

π E R8

×
∫

F1 F2wα
√

R2 − w2dA, (44)

gcrack
55 = 32(1 − υ2)

π E R8

∫
F2

1 α
(

R2 − w2
)

dA, (45)

gcrack
66 = 8(1 + υ)

π E R8

×
∫

α
[

F2
III R2 + F2

IIw
2 − F2

IIIw
2(1 − υ)

]
dA.

(46)
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