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Abstract This paper carries out topology optimization to
minimize structural dynamic compliance at resonance fre-
quencies in thermal environments. The resonance response
is the main dynamic component, minimization of which
could possibly change structural dynamic characteristics
significantly. A bi-material square plate subjected to uni-
form temperature rise and driven by harmonic load is
investigated in pre-buckling state. The compressive stress
induced by thermal environment is considered as pre-stress
in dynamic analysis, which could reduce stiffness of the
structure and alter the optimal topology. Sensitivity anal-
ysis is carried out through adjoint method efficiently. As
natural frequencies are constantly changing during the opti-
mization, the associated sensitivity should be calculated in
which multiple-frequency case is briefly discussed. Mode
switching may occur during the optimization, and mode
tracking technique is adopted. Numerical results show
that the topology is mainly determined by the excited
modes, and could be altered by the location of the
applied load if different modes are excited. The natu-
ral frequencies become larger in optimal design and the
dynamic compliance decreases in nearby frequency band.
The critical buckling temperature increases as optimization
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proceeds, indicating the structure is always in pre-buckling
state.

Keywords Topology optimization · Dynamic
compliance · Resonance response · Thermal environment

1 Introduction

The thermal-acoustic environment is quite critical during
the flight envelop of hypersonic vehicles, posing major chal-
lenges in structural design. One is to provide light-weight
structures with ideal dynamic characteristic in thermal con-
ditions. The thermal environment could induce compres-
sive stresses that may alter structural dynamic character-
istic and even cause buckling. Resonance response under
acoustic excitation is main dynamic component, optimiza-
tion aimed at which could probably find such optimal
designs.

Since the landmark work of Bendsøe and Kikuchi (1988),
topology optimization has been extended to various kinds
of fields. The precursory work in dynamic area was car-
ried out by Diaz and Kikuchi (1992), in which the shape
and topology optimization of structure to maximize a nat-
ural frequency was studied using homogenization method.
The homogenization method was then extended to a fre-
quency response optimization problem for both optimal
layout and reinforcement of an elastic structure (Ma et al.
1993) and more general eigenvalue and vibrating problems
(Ma et al. 1995). Yang et al. (1999) presented evolution-
ary method for structural topology optimization subjected
to frequency constraints, in which the sensitivity of multi-
ple frequencies was simplified by taking an average. Min
et al. (1999) applied the homogenization method to tran-
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sient problems of vibrating structures, to find the best
that minimizes the dynamic compliance within a specified
time interval. Jog (2002) studied the topology configura-
tion of structures subjected to periodic loadings from the
global and local dynamic constraints, i.e. overall dynamic
compliance and response at a specific point respectively.
Du and Olhoff (2007) employed SIMP (Solid Isotropic
Material with Penalization) interpolation model to max-
imize the natural frequency of higher order, or the gap
between two consecutive natural frequencies of given
orders; both simple and multiple natural frequencies were
considered.

It is known that thermal stress may change the stiffness
of structures, and alter the dynamic characteristic (Cook
et al. 1989). Pedersen (2001, 2002) optimized the static
compliance or eigenvalues of pre-stressed isotropic and
laminated plates in MEMS design,the stresses were given
at different constant levels which are in fact changing dur-
ing the optimization. Chen et al. (2003) investigated the
design optimization for structural thermal buckling, con-
sidering heat conduction at the same time. Both direct
and adjoint methods were discussed, and the former was
employed due to complexity of the adjoint method. Yang
and Li (2013) carried out topology optimization to mini-
mize the structural dynamic compliance in thermal environ-
ments using adjoint sensitivity analysis, fully considering
the changing thermal stress and its relationship with design
variables.

Optimization involving resonance (or natural) frequen-
cies mainly focuses on minimization or maximization
of given order eigenvalues, such as Yang et al. (1999),
Du and Olhoff (2007). Literature survey shows that few
works have been conducted in frequency response prob-
lems. Belegundu et al. (1994) described a general way
to minimize sound radiation of a baffled plate, in which
the radiated sound power within a band was approx-
imated by the sum of the power at each resonance
frequency.

This study could be regarded as an extended work of
Yang and Li (2013), aimed at the structural dynamic com-
pliance at resonance frequencies in thermal environments.
It is assumed that resonance frequency equals natural fre-
quency and the differences between them are neglected.
A bi-material square plate subjected to uniform tempera-
ture rise and driven by harmonic load is investigated. The
thermal stress is considered as pre-stress in dynamic anal-
ysis, and sensitivity analysis is carried out efficiently with
adjoint method. The main difference from previous work in
Yang and Li (2013) is that the resonance frequencies are
constantly changing during the optimization; thus the asso-
ciated sensitivity needs to be calculated. It should be noticed
that mode switching may occur, and mode tracking tech-
nique is adopted to ensure a smooth convergence. Special

case involving multiple natural frequencies is also briefly
addressed.

2 Dynamic structure in thermal environments

One of the common ways to analyze dynamic problems in
thermal environments is to treat the thermal stress as pre-
stress, leading to a linear stress-stiffening dynamic formula
(Cook et al. 1989)
(

K + KG − ω2M
)
� = 0 (1)

(
K + KG − ω2M

)
U = F (2)

where K, M are stiffness and mass matrices respectively;
� is mass-normalized mode vector; U is dynamic displace-
ment response vector; F is amplitude vector of the external
load; ω = 2π f is natural circle frequency. KG refers to geo-
metric stiffness for bending induced by the in-plane thermal
stresses

KG =
∑

i

∫

Ai

GT 〈σ 〉GdA (3)

where σ is membrane stress vector; <> means to write vec-
tor into Voigt matrix; G is a nonlinear strain-displacement
matrix; Ai is area of element i.

Please note that damping should be considered to get res-
onance response. However, it is neglected in the formulas
just for simplicity.

For a plate subjected to temperature rise from the ambi-
ent, the in-plane stress can be described with the plane-stress
constitutive equation if the temperature change across the
thickness is uniform,

σ = Dm(ε − α�T) = EDε − βD�T (4)

where E, α, β = Eα are elastic modulus, thermal expansion
coefficient and thermal stress coefficient respectively; Dm

is membrane elasticity matrix; �T is the temperature rise
vector. The strain ε can be obtained through the solution of
a static thermal displacement equation

KUt = Ft (5)

where Ut is thermal displacement vector; Ft refers to equiv-
alent thermal force induced by the uniform temperature
rise.

The thermal stress coefficient β introduced here is to
avoid incompatibility that may occur between the stiffness
and the thermal load in material interpolation model (Gao
and Zhang 2010; Yang and Li 2013).



Structural topology optimization on resonance compliance in thermal environments 83

3 Optimization problem

The topology optimization problem for minimizing the
dynamic compliance of the bi-material plate in the thermal
environment can be stated as

min C =
{

FTU
}2

s.t.
(

K + KG − ω2M
)

U = F
(

K + KG − ω2M
)
� = 0

KUt = Ft∑
i

Viζi ≤ V

ζi ∈ (0, 1) (6)

where ζi is the design variable, denoting the artificial vol-
ume fraction of material 1 (the stiffer of the two materials)
in the element i; Vi is volume of the element i; V is the
maximum volume of material 1.

The difference from the optimization equation in Yang
and Li (2013) is that ω refers to the resonance circle fre-
quency and that the mode analysis equation is included here.
At each iteration, the 3rd constraint equation is first solved
to calculate the displacement Ut. The geometric stiffness
matrix KG can then be obtained through (3) and (4). And
the first two constraint equations can be solved.

4 Sensitivity analysis

The sensitivity of the objective function C can be written as
(Bendsøe and Sigmund 2003)

dC

dζi

= �T
(

dK
dζi

+ dKG

dζi

− ω2 dM
dζi

− M
dω2

dζi

)
U (7)

where � is solution to the adjoint problem

(
K + KG − ω2M

)
� = −2

{
FTU

}
F (8)

The sensitivity of natural circle frequency ω is inclusive in
(7) as this is a dynamic optimization on resonance response,

dω2

dζi

= �T
(

dK
dζi

+ dKG

dζi

− ω2 dM
dζi

)
� (9)

If ζi changes, only K and M at the element i will vary as the
design variable denotes the artificial fraction of the stiffer
material at each element, while KG at all elements will vary
since the whole thermal displacement field of the structure

has been altered. Therefore, (7) and (9) can be written at
element level,

dC

dζi

= �T
i

(
dKi

dζi

− ω2 dMi

dζi

− dω2

dζi

Mi

)
Ui

+
∑
j

�T
j

dKGj

dζi

Uj (10)

dω2

dζi

= �T
i

(
dKi

dζi

− ω2 dMi

dζi

)
�i

+
∑
j

�T
j

dKGj

dζi

�j (11)

The derivatives of K, M in (10) and (11) can be obtained
based on RAMP (Rational Approximation of Material Prop-
erties) interpolation model (Stolpe and Svanberg 2001).

The derivative of KG can be derived from (3) and (4)
(Yang and Li 2013), and for the element j one has

dKGj

dζi

= dEj

dζi

∫

Aj

GT 〈
BUtj

〉
GdA

+Ej

∫

Aj

GT
〈
B

dUtj
dζi

〉
GdA

− dβj

dζi

∫

Aj

GT 〈D�T〉GdA (12)

where B is a strain-displacement matrix.
It has been shown in Yang and Li (2013) that the

direct method to obtain the derivative of KG through (12)
could consume lots of computational resources for large-
scale problems, basically due to the massive calculation of
dUtj /dζi . The thermal displacement Ut could be zero at
certain iteration during the optimization, when (12) can be
stated as

dKGj

dζi

= − dβj

dζi

∫

Aj

GT 〈D�T〉GdA (13)

Note that ∂βj /∂ζi = 0 whenj �= i.
To keep the computational cost at an economical level

adjoint method is employed for sensitivity analysis as
described in Section 4.2.

It should be noticed that (9) and (11) are on sensitivity
of simple frequency. The case of multiple frequency should
be dealt individually (Seyranian et al. 1994; Rodrigues et al.
1995; Yang et al. 1999; Du and Olhoff 2007), which is
briefly discussed for the problems investigated in present
paper.

4.1 Mode tracking

Sensitivity analysis could be erroneous if optimization
is carried out regardless of mode switching that may
occur between close eigenvalues. MAC (Modal Assurance
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Criteria; Ewins 1984) is adopted in this work to ensure the
optimization carried out smoothly

MAC =
{
�T

ref ·�cur
}2

{
�T

ref ·�ref
} {

�T
cur ·�cur

} (14)

where �ref is reference mode shape of interest and �cur

is mode shape of currently modified structure. MAC varies
between 0 and 1, and �cur with the highest value is identi-
fied as the targeted one.

4.2 Sensitivity of natural circle frequency

The sensitivity of (simple) natural circle frequency dω2/dζi

is first discussed by introducing the differentiation of (5) to
(9) through an adjoint vector 	0, that is,

dω2

dζi
= �T

(
dK
dζi

+ dKG
dζi

− ω2 dM
dζi

)
�

+�T
0

(
K

dUt
dζi

+ dK
dζi

Ut − dFt
dζi

) (15)

It can be found that KG is function of Ut, E, β, ζ ; thus (12)
can be restated as,

dKG

dζi

=
(

∂KG

∂Ut

)T
∂Ut
∂ζi

+ ∂KG

∂E
∂E
∂ζi

+ ∂KG

∂β

∂β

∂ζi

(16)

where E, β are vectors of E and β respectively.
Equation (15) can be rearranged as

dω2

dζi

= �T
(

dK
dζi

+ ∂KG

∂E
∂E
∂ζi

+ ∂KG

∂β

∂β

∂ζi

− ω2 dM
dζi

)
�

+	T
0

(
dK
dζi

Ut − dFt
dζi

)

+�T
(

∂KG

∂Ut

)T
∂Ut
∂ζi

�+ 	T
0 K

dUt
dζi

(17)

To avoid the calculation of the computationally expensive
derivatives ∂Ut/∂ζi , an adjoint problem (Yang and Li 2013)
is defined as,

K	0 = −�T
(

∂KG

∂Ut

)
� (18)

characterizing the adjoint variable 	0. Satisfaction of this
adjoint equation implies that the last two terms in (17) equal
to zero,

�T
(

∂KG

∂Ut

)T
∂Ut
∂ζi

�+ 	T
0 K

dUt
dζi

= 0 (19)

Substituting the result from (18) in (17), the derivative of
natural circle frequency in its final form can be obtained,

dω2

dζi

=�T
i

(
dKi

dζi

+ ∂KGi

∂Ei

∂Ei

∂ζi

+ ∂KGi

∂βi

∂βi

∂ζi

−ω2 dMi

dζi

)
�i

+	T
0i

(
dKi

dζi

Uti − dFti
dζi

)
(20)

Note that ∂Ej /∂ζi , ∂βj /∂ζi , dKj /dζi , dMj /dζi , dFtj /dζi

equal 0 whenj �= i.
As all the items in (20) are related to one element,

the sensitivity of natural circle frequency can be easily
calculated.

4.3 Sensitivity of dynamic compliance

Equation (7) can be written as follows by introducing an
adjoint factor �1,

dC

dζi

= �T
(

dK
dζi

+ dKG

dζi

− ω2 dM
dζi

− dω2

dζi

M
)

U

+�T
1

(
K

dUt
dζi

+ dK
dζi

Ut − dFt
dζi

)
(21)

As in Section 4.2, the following equation can be obtained

K	1 = −UT ∂KG

∂Ut
� (22)

through which �1 can be obtained. Equation (21) can be
then written as

dC

dζi

= �T
i

(
dKi

dζi

+ ∂KGi

∂Ei

∂Ei

∂ζi

+ ∂KGi

∂βi

∂βi

∂ζi

− ω2 dMi

dζi

− dω2

dζi

Mi

)
Ui (23)

+	T
1i

(
dKi

dζi

Uti − dFti
dζi

)
(24)

With the adjoint method, only two equations, i.e. (20) and
(22) need to be solved in the sensitivity analysis at each
iteration, and the computational cost can be effectively
controlled.

5 Numerical examples

A four-edge clamped bi-material plate with dimension 1 m
× 1 m × 0.01 m is studied. The plate is subjected to a uni-
form temperature rise �T = T1 − T0 with T0 = 0 ◦C. The
material properties are as follows:

E(0)=70GPa, ρ(0)=2650kg
/

m3, α(0)=1.5×10−5 ◦C−1

E(1)=210GPa, ρ(1)=6500kg
/

m3, α(1)=1.1×10−5 ◦C−1

A mesh of 40 × 40 with isoparametric 4-node element is
used here, and there are 1600 design variables.

The volume fraction of material 1 is up to 50 %. And the
initial value of all the design variables is ζi = 0.5.

A unit concentrated force is applied normally at a quar-
ter point of the plate, so that all modes of interest can be
excited.

GCMMA (Globally Convergent version of Method
of Moving Asymptotes) algorithm (Svanberg 1995) is
employed, and the penalty factor 3 is used in the RAMP
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(a) 1st mode (b) 2nd mode

(c)3rd mode     (d)13th mode

Fig. 1 Mode shapes for subcase �T = 0 ◦C

interpolation model. Rayleigh damp C = 0.01(K + KG) is
considered.

5.1 Buckling and eigenvalue analysis

Critical buckling temperature Tcr = 100.8 ◦C with initial
temperature T0=0 ◦C is first evaluated through eigenvalue
buckling analysis (Cook et al. 1989), to serve as upper limit
of the thermal environment as the optimization is carried out
in pre-buckling state. Four thermal cases, i.e. �T = 0, 50,
75, 90 ◦C are chosen in this work.

Natural frequency extraction is then carried out in these
thermal environments. It is known that the natural frequency
of the structure may not be the resonance frequency if the
corresponding mode is orthogonal to the loading mode.
According to the location of the concentrated load, three res-
onance modes of interest are chosen, i.e. 1st, 2nd and 13th
of the initial structure, which can also be verified through
frequency response analysis in the following subsections.

The 1st mode is fundamental, response at which is often
the most important component in dynamic analysis; the 2nd
is a repeated mode; the 13th is a relatively high-order mode,

Table 1 Natural frequencies in different thermal environments (Hz)

�T/ ◦C 1st 2nd 3rd 12th 13th

0 184.1 374.5 374.5 1227 1233

50 132.2 319.5 319.5 1170 1177

75 95.28 287.7 287.7 1140 1147

90 61.34 266.6 266.6 1122 1129

(a) ΔT= 0oC (b) ΔT= 50oC

(c) ΔT= 75oC (d) ΔT= 90oC

Fig. 2 Topology at 1st initial resonance frequency (white - material 0,
black- material 1)

whose frequency is quite close to that of the 12th. The
mode shapes are shown in Fig. 1. As the thermal environ-
ment hardly changes the mode shape of this square plate,
only the mode shape with �T = 0 ◦C is presented. The
mode frequencies are shown in Table 1. It can be found that
the natural frequencies decrease as the temperature rises,
indicating a softening effect of the thermal environment.

5.2 1st initial resonance frequency

Figure 2 shows the optimal topology at the 1st initial reso-
nance frequency. The load is applied at the up-left quarter
point (1/4, 3/4) of the plate shown in the figure, despite

Fig. 3 Iteration history of the dynamic compliance at the 1st initial
resonance frequency



86 X. Yang, Y. Li

Fig. 4 Iteration history of the 1st initial resonance frequency

Fig. 5 Dynamic compliance of the initial structure and optimal struc-
ture in 0-500 Hz

Fig. 6 Iteration history of the critical buckling temperature in the
optimization at 1st initial resonance frequency

of which the distribution of the stiffer material is basically
symmetrical. As the resonance response is mainly affected
by the fundamental mode, it could be concluded that the
mode mainly determines the optimal topology. Some stiffer
material gathers at the center, and some distributes along
the edges. As the temperature rises, some stiffer material
(i.e. material 1) moves outwards. Note that there is no filter-
ing technique employed in this work, so zigzag distribution
can be found in the topology. However there are few “gray”
elements.

Figure 3 shows that iteration history of the dynamic
compliance. It can be found that the dynamic compliance

(a) ΔT =0oC (b) ΔT = 50oC

(c) ΔT = 75oC (d) ΔT = 90oC

Fig. 7 Topology at 1st initial resonance frequency with the center-
applied load
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(a) ΔT = 0oC (b) ΔT = 50oC

(c) ΔT = 75oC (d) ΔT = 90oC

Fig. 8 Topology at 2nd initial resonance frequency (white - material
0, black- material 1)

becomes larger as the temperature rises. Since the com-
pliance is calculated at resonance frequency, the damping
mainly affects the value. In this work Rayleigh damping
is used; the structure with smaller stiffness exhibits larger
resonance response and dynamic compliance. Due to the
softening effect of the thermal environment, the dynamic
compliance of the subcase with higher temperature is larger.

Figure 4 shows the iteration history of 1st initial
resonance frequencies in different environments, which
increase with the iteration accumulating. As mentioned
above, it could be said that the stiffer material distributes
mainly according to the mode, leading to this increase.

Fig. 9 Iteration history of the dynamic compliance at the 2nd initial
resonance frequency

The resonance frequencies are 191.0, 160.3, 139.5 and
120.2 Hz respectively in the optimal design, suggesting that
the structure becomes stiffer and the dynamic compliance
gets smaller.

Figure 5 shows the dynamic compliance of the initial
and optimal structure in frequency band for thermal sub-
cases �T = 0 and 90 ◦C respectively. Due to the increase of
the natural frequency, the peaks shift right and the dynamic
compliance becomes lower in the band around the 1st ini-
tial resonance frequency, and around the others as well. It
is generally meaningless to carry out comparison between
values of the peaks, frequencies of which may not be the
resonance frequencies, but a bit higher.

Figure 6 shows iteration history of the critical buckling
temperature. Since Tcr increases as the optimization pro-
ceeds, the plate is always in the pre-buckling state and a
linear dynamic problem can be guaranteed.

If the concentrated load is applied at the center point (1/2,
1/2) of the plate, the optimal design becomes what is shown
in Fig. 7. Comparison between Figs. 2 and 7 indicates that
the location of the load does not have significant influence
on the optimal design at the 1st initial resonance frequency.
It could be confirmed that the mode mainly affects the
topology as long as it is excited.

5.3 2nd initial resonance frequency

Note that the 2nd and 3rd resonance frequencies of the
initial structure are multiple, sensitivity analysis of which
should be carried out with special technique due to the
problem of non-differentiability. In this work, the sen-
sitivity with respect to each single design variable is
found by formulation and solution of a subeigenvalue
problem (Seyranian et al. 1994) with additional consid-

Fig. 10 Iteration history of the 2nd initial resonance frequency
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eration of the thermal effect, i.e. the derivative of KG.
It is noticed that the concentrated load is applied at the
quarter point of the plate, indicating that the topology
could not be absolutely symmetric from the 2nd iteration
and the multiple frequencies will no longer be identi-
cal. At the 1st iteration there is no thermal strain as the
structural material distribution is initially uniform, which
means the derivative of KG could be obtained directly with
(13).

Figure 8 shows the optimal topology at the 2nd initial
resonance frequency. Test of orthogonality shows that the
2nd other than the 3rd initial mode (�TF = 0.223, 0.024
respectively, for subcase �T = 0 ◦C) exerts main influence
on the resonance; thus it could be concluded from Fig. 8
that the excited 2nd mode mainly determines the topology.
The increase of the temperature slightly changes the optimal
design. Some stiffer material (material 1) moves towards

(a) ΔT = 0, 50oC 

(b) ΔT = 75, 90oC 

Fig. 11 Iteration history of the 2nd and 3rd initial resonance
frequencies

Fig. 12 Dynamic compliance of the initial structure and optimal
structure in 0-500 Hz for subcase �T = 90 ◦C

the corner and joints the margin parts together, while some
appears at the center.

Figures 9 and 10 show the iteration history of the
dynamic compliance and the 2nd resonance frequency
respectively. The dynamic compliance of the subcase with
smaller temperature change is lower, and the resonance
frequency increases as the iteration accumulates; both are
similar to those in precious subsection.

Figure 11 shows iteration history of the 2nd and 3rd
initial resonance frequencies. It can be found that mode
switching occurs, and the initial 2nd resonance frequency
turns to the 3rd in the optimal design.

The two resonance frequencies may become “sufficiently
close” during optimization, when problems due to non-
differentiability could also occur. It could be assumed in
this work that there are no “sufficiently close” eigenvalues

Fig. 13 Iteration history of the critical buckling temperature in the
optimization at 2nd initial resonance frequency
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(a) ΔT = 0oC (b) ΔT = 50oC

(c) ΔT = 75oC (d) ΔT = 90oC

Fig. 14 Topology at 2nd initial resonance frequency with the point
(1/2, 3/4)-applied load (white - material 0, black- material 1)

during the optimization, if the criterion on “close” is tight
enough. There is no direct proof that this assumption would
result in the fluctuations in Fig. 9 (for example, see the 3rd
iteration of subcase �T = 0 ◦C). In fact, it is quite normal to
have fluctuations at the beginning of iteration.

Figure 12 shows the dynamic compliance of the initial
and optimal structure in frequency band for thermal case
�T = 90 ◦C, demonstrating similar change of dynamic com-
pliance to that in precious subsection. Comparison between
Figs. 5(b) and 12 indicates that although the topology
obtained in previous subsection could also decrease the
dynamic compliance around the 2nd resonance frequency,

Fig. 15 Dynamic compliance of the initial structure and optimal
structure in 0-500 Hz for subcase �T = 90 ◦C

(a) ΔT = 0oC (b) ΔT = 50oC

(c) ΔT = 75oC (d) ΔT = 90oC

Fig. 16 Topology at 13th initial resonance frequency (white - material
0, black- material 1)

the topology shown in Fig. 8 yields better results.
It could be found from Fig. 12 that in the two frequen-

cies separating from the initial multiple frequency, only the
mode of the initial 2nd (or final 3rd) is excited in the optimal
design, partly due to that it weighs more in the resonance
response.

Figure 13 shows iteration history of the critical buckling
temperature.

If the load moves from point (1/4, 3/4) to point (1/2, 3/4),
the optimal topology becomes what is shown in Fig. 14.
As the 2nd and the 3rd modes of the initial structure exert
almost equal influence on resonance response (estimated

Fig. 17 Iteration history of the dynamic compliance at the 13th initial
resonance frequency
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Fig. 18 Iteration history of the 13th initial resonance frequency

through test of orthogonality �TF = 0.208, 0.168 respec-
tively, for subcase �T = 0 ◦C), it could be inferred that
the location of the load may affect the topology through

(a) ΔT = 0, 50oC 

(b) ΔT = 75,90oC 

Fig. 19 Iteration history of 12th the 13th initial resonance frequencies

Fig. 20 Iteration history of the critical buckling temperature in the
optimization at 13th initial resonance frequency

its influence on excitation of different modes. Figure 15
indicates that only the initial 2nd mode (final 3rd mode)
is excited in the optimal design, like what Fig. 12 demon-
strates. Although different modes may be excited at initial
state of the structure, only the mode of interest is excited in
the optimal design.

5.4 13th initial resonance frequency

Figure 16 shows the optimal topology at the 13th initial res-
onance frequency. It is quite interesting to notice that the
“pattern” of topology in Fig. 16 seems to be a “combina-
tion” of that in Fig. 8, considering that the 13th initial mode
shape also looks like a “combination” of the 2nd initial
mode shape (see Fig. 1).

Figures 17 and 18 show the iteration history of the
dynamic compliance and the 13th resonance frequency
respectively; both exhibit similar change and relationship to
those in the precious two subsections.

Figure 19 shows that mode switching occurs during the
optimization. The 13th initial mode still keeps the same
order in the optimal design, although it switches to the 12th
at some iteration. Note that the situation with “sufficiently
close” eigenvalues is not considered.

Figure 20 shows iteration history of the critical buckling
temperature.

6 Conclusions

Topology optimization aimed at the dynamic compliance
at resonance frequencies in thermal environments is car-
ried out in this paper. The resonance response is obtained
through a linear stress-stiffening dynamic finite element
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formula. Adjoint method is utilized in the sensitivity anal-
ysis to improve the computational efficiency. As the reso-
nance frequency is constantly changing during the optimiza-
tion, its sensitivity is also considered.

It can be found that the dynamic compliance increases
as the temperature rises, mainly due to the softening effect
of the thermal stress. The optimization results in gradu-
ally growing resonance frequency leading to decreasing
dynamic compliance in nearby frequency band. The opti-
mal topology is mainly determined by the modes that are
excited by applied load. For the cases investigated here,
different modes may be excited initially, while only the
mode of interest is excited in the optimal design. Mode
switching might occur during the optimization, which is
handled through mode tracking technique. The critical
buckling temperature increases as the optimization pro-
ceeds, indicating the structure is always in pre-buckling
state.

One of the numerical cases involves multiple natural fre-
quencies in thermal environments, sensitivity of which is
calculated in a simplified way considering change of sin-
gle design variable. However, these design variables in fact
change simultaneously. Besides, natural frequencies may
become rather close during the optimization, which also
needs additional consideration. Further research should be
conducted on these issues. As the optimization carried out in
this paper is aimed at the dynamic compliance, investigation
on these issues is kind of beyond the scope, and admittedly
difficult.
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