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A reduced-order model (ROM) based on block Arnoldi algorithm to quickly predict flut-
ter boundary of aeroelastic system is investigated. First, a mass–damper–spring dynamic
system is tested, which shows that the low dimension system produced by the block
Arnoldi method can keep a good dynamic property with the original system in low and
high frequencies. Then a two-degree of freedom transonic nonlinear aerofoil aeroelastic
system is used to validate the suitability of the block Arnoldi method in flutter prediction
analysis. In the aerofoil case, the ROM based on a linearized model is obtained through
a high-fidelity nonlinear computational fluid dynamics (CFD) calculation. The order of
the reduced model is only 8 while it still has nearly the same accuracy as the full 9600-
order model. Compared with the proper orthogonal decomposition (POD) method, the
results show that, without snapshots the block Arnoldi/ROM has a unique superiority by
maintaining the system stability aspect. The flutter boundary of the aeroelastic system
predicted by the block Arnoldi/ROM agrees well with the CFD and reference results.
The Arnoldi/ROM provides an efficient and convenient tool to quick analyze the system
stability of nonlinear transonic aeroelastic systems.

Keywords: Aeroelasticity; reduced-order model; block Arnoldi algorithm; proper orthog-
onal decomposition.

1. Introduction

In many science and engineering fields, like fluid or structural mechanics [Kerschen
et al., 2005], electric circuit design, especially in fluid-structure coupling systems
[Griffith et al., 2009; Tan et al., 2009; Lantz et al., 2011] and other coupling sys-
tems [Li et al., 2012; Xu et al., 2014], the simulation time of large systems is still
too high. What’s more, some large-scale dynamical systems need to be optimized or
controlled. These systems are computationally expensive due to their large orders
[Yue and Meerbergen, 2013]. Large-scale dynamical systems often arise from the
discretization of partial differential equations (PDEs). To reduce the simulation
cost and storage requirement, reduced-order models (ROMs) are needed to develop
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a simplified mathematical model that can captures the dominant dynamic of the
original system. In structural dynamics field, eigenvalue analysis [Bui and Nguyen,
2011] and then mode superposition method are widely used in industry, in which
a limited number of free vibration modes of the structure is used to represent the
displacement pattern. However, there are some important points to note on the
expansion procedures used in practice. For example, the computation of eigen-
vectors for large systems is very expensive and time consuming. Besselink et al.
[2013] reviewed and compared popular model reduction techniques in the struc-
tural dynamics fields, including mode displacement methods, Krylov subspace based
model order reduction and balanced truncation. He also discussed the differences
and similarities between these methods. As one of the most popular ROMs, proper
orthogonal decomposition (POD) [Liang et al., 2002] method was used to analyze
the nonlinear vibrations of cylindrical shells with high efficiency [Amabili et al.,
2003]. Steindl and Troger [2001] compared the POD and nonlinear inertial manifold
methods of their efficiency to reduce large amplitude oscillations of fluid convey-
ing tube system. ROMs were successfully applied in structural–acoustic simulation
[Kergourlay et al., 2001] and optimization [Puri and Morrey, 2011] in recent years.
Rumpler et al. [2014] extented the Padé-based reconstruction to the model reduc-
tion of poroelastic domains in poro-acoustic problems with good computational
efficiency.

ROMs were also successfully applied in some coupling systems. Batra et al.
[2008] presented a unified approach to derive ROMs for microelectromechanical
clamped rectangular and circular plates system incorporating the Casimir force.
Recently, ROMs are also implemented in multi-scale modeling [Xu et al., 2014].
In fluid-structure coupling field, especially for aeroelastic problems, the coupling
between the nonlinear aerodynamic loading and structural properties can lead to
instability that may cause important damage or failure to structures. The predic-
tion of aeroelastic instability in the transonic regime plays a very important role
in the definition of the flight envelope for many high-performance aircrafts. With
the development of computational capability, the aeroelastic computation based on
CFD/CSD coupling methods can accurately predicted the nonlinear behaviors of
full aircrafts in the subsonic, transonic and supersonic regimes. However, a typ-
ical CFD model, which can have 104 to 107 or more higher degrees of freedom
(DOFs). Due to the large DOFs and extensive computational cost, it is unrealistic
for engineering routine analysis and flexible wing optimization. So a high-fidelity
nonlinear low order aerodynamic state space model is expected for rapid aeroelastic
response analysis and flutter suppression control law design. In order to tackle this
computational cost issue, ROMs methods have been proposed in the aeroelasticity
community since last decade [Lucia et al., 2004]. ROMs are very convenient to be
used in conceptual design, control [Chen et al., 2010, 2011; 2014], and data-driven
systems.
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Different approaches for reduced-order modeling and their applicability to var-
ious problems in computational physics were discussed by Lucia et al. [2004]
including methods based on Volterra series representations, the POD, and harmonic
balance. Most aeroelastic phenomena such as flutter and gust response can be dealt
with these ROMs based on the dynamically linearized equation [Amsallem, 2010;
Da Ronch et al., 2012]. Among these approaches, the POD method is perhaps the
most popular, which was widely used in many aeroelastic and structural dynamics
problems [Amabili et al., 2003; Chen et al., 2010], such as the CFD-based aeroe-
lastic analysis of a transport aircraft model and complete fighter configurations
[Amsallem, 2010]. But the POD basis vectors must be obtained from the calculated
snapshots of the system. Sometimes the snapshots cannot cover all the system infor-
mation, and the ROMs produced by the POD basis may be different if the selected
snapshots are different. POD-based models are sensitive to the choice of snapshots
produced by sample frequencies or impulse time simulation. That implies that the
accuracy of the POD/ROM maybe depend on the calculated snapshots [Willcox
et al., 2002]. It is not a good news for engineers.

Different from the data-driven POD method, the block Arnoldi algorithm can
be used to generate orthonormal basis vectors in block Krylov subspace which is
independent of snapshots data. Willcox et al. [2002] used the frequency domain
Arnoldi-based method to construct ROMs for turbomachinery. The authors found
that Arnoldi-based models are much cheaper to calculate than those constructed
using POD basis vectors. Florea et al. [2000] used an alternative Arnoldi–Ritz
vectors method to construct aeroelastic ROMs for unsteady transonic potential
flow and predicted flutter boundaries of different aerofoils at several different Mach
numbers. Arnoldi method can generate guaranteed stable and passive ROMs while
Arnoldi vectors match only half the number of moments as the Pade approximation
[Silveira et al., 1999]. The above-mentioned Arnoldi methods are based on Krylov
subspace and widely used in single-input single-output (SISO) system. It is not
convenient for multi-input multi-output (MIMO) system.

For a MIMO aeroelastic system, a block approach based on block Krylov sub-
space is required. The block Arnoldi method generates orthonormal basis vectors
from rth order block Krylov subspace. Only the matrices of the system’s state-space
equations are required to construct a ROM, so that it preserves system definiteness
and stability. In this paper, we propose a ROM method based on the block Arnoldi
method for nonlinear aeroelastic systems, which is compare with the POD method.
The rest of this paper is organized as follows. The dynamic linearization of non-
linear aeroelastic equations and ROMs including block Arnoldi and POD method
are described in Sec. 2. Some simulation cases include Mass–Damper–Spring sys-
tem and NACA0012 aeroelastic system in transonic flow are described thoroughly
in Sec. 3.
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2. Reduced-Order Modeling for Dynamic Linearized
Aeroelastic System

2.1. The dynamic linearization of nonlinear aeroelastic equations

The linearization method described here is based on a high-fidelity, CFD-based,
nonlinear coupled aeroelastic model using an ALE non-dimensional conservative
form of the Euler equations, which is written as follows [Amsallem, 2010]:

(A(u)w),τ + F(w,u,v) = 0Nf
(1)

Mv̇ + f int(u,v) = f ext(u,w) (2)

w is the conservative flow variable, F is the flux, A is the volume of the fluid cell,
u is the structural general displacement and v is the structural general velocity,
v = u̇, M is the mass matrix, f int is the structural inner force, and f ext is the
aerodynamic load acting on structures. ( ),τ denotes the derivative with respect to
non-dimensional time τ , and Nf is the DOFs of the fluid model.

The nonlinear fluid equation can be linearized at a point denoted a convergent
steady calculation, in this condition

F(w0,u0,v0) = 0, w0 = 0, u0 = v0 = 0

Supposing that δw, δu, δv are small perturbations around the steady state variables
(w0,u0,v0), the perturbation of the state vectors can be written as

w = w0 + δw, ẇ = ẇ0 + δẇ, u = u0 + δu, v = v0 + δv

A linearized method is developed by Lesoinne et al. [2001], who expand the flow
Eq. (1) at (w0,u0,v0) by first order Taylor serials. We can obtain the dynamic
linearized equation as following:

A0(δw),τ + Hδw + (E + C)δv + Gδu = 0 (3)

where

A0 = A(u0), H =
∂F
∂w

(w0,u0,v0), C =
∂F
∂v

(w0,u0,v0)

E =
∂A
∂v

(u0)w0, G =
∂F
∂u

(w0,u0,v0).

Similarly, the structural subsystem can be linearized around an equilibrium state.
Equation (2) can be written as

Mδv̇ + D0δv + Ksδu = P0δw (4)

where

Ks = K0 − ∂f ext

∂u
(w0,u0), K0 =

∂f int

∂u
(u0,v0),

D0 =
∂f int

∂v
(u0,v0), P0 =

∂f ext

∂w
(w0,u0)

K0 and D0 are the structural internal stiffness and damping matrices. Ks is an
adjusted structural stiffness matrix resulting from the coupled formulation.
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To simplify the notation of the linearized equation, w, u, v are used to repre-
sent the perturbation variables δw, δu, δv respectively. The linearized aeroelastic
equations can be written as two coupled matrices

A0w,τ + Hw + (E + C)v + Gu = 0Nf
(5)

Mv̇ + D0v + Ksu = P0w. (6)

Equations (5) and (6) are the linearized equations of aeroelastic system. If the
grid number of the CFD model is n, the order of Eq. (5) will be Nf = 4n for
two-dimensional problems and Nf = 5n for three-dimensional problems. For fluid
models, the dimensions of the fluid matrices are too large to numerical simulation,
so that ROM techniques are introduced to reduce the linearized fluid equation.

2.2. Proper orthogonal decomposition method

POD method provides a basis space that can accurately represent a given data
set. The basis can be deemed a low-order model of the original full-order model.
For one series of data {xk}, xk ∈ Rn in the n-dimensional space, m samples of a
n-dimensional vectors x are collected and then the matrix is formed as

X = [x1,x2, . . . ,xm] =
[
x11 x1m

xn1 xnm

]
. (7)

The data {xk} are generated by the drive signals input for the state space equation
described in Eq. (5). Then the POD method seeks to find an optimal orthonormal
basis, Ψr = (Ψ1, Ψ2, . . . , Ψr) (where r � n) to represent the given data {xk}. Thus,
the vector of x can be expressed as the following expansion:

xn×1 = Ψrxr×1
r , (8)

where xr×1
r are the proper orthogonal coordinate vector and r is the number of

DOF of the POD solution.
The POD method was widely applied in structural dynamics [Amsallem et al.,

2009] and fluid structural interaction problems [Amsallem, 2010]. The POD theory
was complete described by Liang et al., [2002] and we summarize in this paper as
following algorithm.

Algorithm 1 (POD method)

1 Give drive signals to original system and get m samples of a n-dimensional
vectors, the matrix formed as X = {x1, . . . ,xm};

2 Compute correlation matrix R = XHX ∈ Rm×m (H symbol indicates the
standard Hermitian operation on a matrix);

3 SVD (singular value decomposition) of R,R = VΛVT ;
4 Compute Ψ = XVΛ ∈ Rn×snap;
5 Truncating Ψ to the r-order vector Ψr = (Ψ1, Ψ2, . . . , Ψr) ∈ Rn×r
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After getting the low order optimal orthonormal basis Ψr, and projecting the
full-order Eq. (5) into Ψr, we can obtain the reduced system model

(wr),τ + ΨT
r A−1

0 HΨrwr + ΨT
r A−1

0 (E + C)v + ΨT
r A−1

0 Gu = 0r (9)

Mv̇ + D0v + Ksu = P0Ψrwr. (10)

The order of the reduced fluid system in Eq. (9) is r, which is much smaller
than that of the original system in Eq. (5). POD method is very efficient for large
order system, but its accuracy is dependent on the snapshots samples choice. If
impulse samples cannot cover all the energy of the original system, some important
system dynamics may be missed, which indicates that different operators may lead
to different ROM systems.

2.3. Block Arnoldi method

The block Arnoldi method is the natural extension of the class Arnoldi process,
and it is suitable for the MIMO systems. The block Arnoldi method was applied in
many large-scale dynamical systems [Yue and Meerbergen, 2013]. Consider a MIMO
system in state-space form 

E
dx(t)

dt
= Ax(t) + Bu(t)

y(t) = Cx(t).
(11)

Premutiplying the system by A−1


G

dx(t)
dt

= x(t) + Qu(t)

y(t) = Cx(t)
(12)

where G = A−1E ∈ Rn×n,Q = A−1B ∈ Rn×p,C ∈ Rm×n,u(t) ∈ RP is a
p × 1 multi-input variable matrix, and y(t) ∈ Rm is a m × 1 multi-output variable
matrix, this system becomes a SISO system when p = m = 1. There are two
methods for different systems. One is the Arnoldi method for SISO systems and
the other is block Arnoldi method for MIMO systems. In the early time, the classic
Arnoldi method was developed to reduce the SISO system, and then the block
Arnoldi method based on the rth Krylov subspace [Willcox et al., 2002] is applied
in a MIMO system.

The MIMO system Eq. (12) corresponding to the rth block Krylov subspace is

Kr(G;Q) = colspan{Q,GQ, . . . ,Gr−1Q}
Then the block Arnoldi method is used to generate orthonormal basis vectors

from this rth order block Krylov subspace, the algorithm is described as following
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[Silveira et al., 1999]:

Algorithm 2 (block Arnoldi method)

1 Input matrixes E,A,B,C and order r;
2 Compute G = A−1E,Q = A−1B, and QR factorization Q, [V1,T] = qr(Q)
3 For i = 2, . . . , r + 1

3.1 calculate V̄i = G ·Vi−1;
3.2 for j = 1, . . . , i − 1, solve hj,i−1 = VT

j ·G ·Vi−1 and Vi = Vi −
Vj ·hj,i−1;
3.3 QR factorization Vi, [Vi,hi,i−1] = qr(Vi);

4 Let V = [V1,V2, . . . ,Vr];
5 Calculate and output Gr = VT ·G · V,Qr = VT ·Q and Cr = C ·V

So the dimensions of reduced system state matrixes are: Gr ∈ Rr×r,Qr ∈ Rr×p

and Cr ∈ Rm×r, and then the MIMO system is transformed into a ROM system
Gr

dx̃r(t)
dt

= x̃r(t) + Qru(t)

y(t) = Crx̃r(t)
(13)

where x(t) = V · x̃r(t), and x̃r(t) has the dimension of r × r. This algorithm is
suitable for both SISO and MIMO systems. Different from POD/ROM, the block
Arnoldi method is based on the state-space matrixes of original system, so the
ROM system is unique when the order of a reduced system is determined. It is very
suitable for the linearized aeroelastic system described by Eq. (5), which can also
be written as the state-space form.

3. Numerical Simulation

3.1. Mass–Damper–Spring system case

A mass–damper–spring system shown in Fig. 1 is considered to assess the effective-
ness of the ROM method because it is computationally inexpensive. The same case
is also considered using a ROM constructed with the POD technique described by
Amsallem [2010].

Nu
x

1m 2m Nu
m

1x 2x

1k

1c

2k

2c

3k

3c

Nu
k

Nu
c

F

Fig. 1. Mass–damper–spring system with masses mj , dampers cj , and spring kj , j = 1, . . . , Nu.
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Each operating point of this mechanical system consists of 3Nu parameters
corresponding to the 3Nu values of the masses mj , dampers cj , and spring kj ,

j = 1, . . . , Nu. For simplicity, it is assumed that mj = m, cj = c and kj = k,

j = 1, . . . , Nu, so that each operating point of the system is uniquely defined by
the three parameters u = (m, c, k) only. Two systems are considered: System 1
is constituted of N

(1)
u = 12 mass–damper–spring units whereas the system 2 has

N
(2)
u = 48 units. The operating point u = (0.8, 0.6, 0.7) is chosen for both systems.

The government equation of this system is

Mẍ + Gẋ + Kx = F (14)

where

M =



1

. . .
1


 m, G =




2 −1
−1 2 −1

. . .
−1 2 −1

−1 1


 c,

K =




2 −1

−1 2 −1
. . .

−1 2 −1

−1 1




k, F =




0
...

0

1


 F

The second-order system Eq. (18) is first transformed into a first-order system
in state-space coordinates, as shown in the following:

ẋ = Ax + Bu

y = Cx + Du
(15)

where

x =




x1

...

xn

ẋ1

...

ẋn



, A =

[
0 I

−M−1K −M−1G

]
, B =

[
0

M−1

]
, C =




0
...

1

0
...

0




, D = [0]

The block Arnoldi method is used to reduce the system’s dimension. The system
is given a range of A0sin(ωt) excitation and the signal out of the system will be
assumed as A1sin(ωt − Φ). Figures 2(a) and 2(b) show the Bode diagrams and
Nyquist diagrams of the FOM (full order model) and different order ROMs of
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(a)

(b)

Fig. 2. Comparison of the frequency responses and Nyquist diagrams of the original system and
the ROMs with different size for system 1. (a) Full order system (24) and ROM of size 10. (b) Full
order system (24) and ROM of size 8.

system (1). The magnitude of the variable presented in diagram is response gain,
which is defined as 20 lg(A1/A0). The gain and phase shift Φ are a function of
frequency. It can be observed that the 10-order ROM is accurate enough for both
the low and high frequencies while the 8-order ROM is a little inaccurate. In the
Nyquist diagrams, the Nyquist plots are most common used for assessing the sta-
bility of a system with feedback. The 10-order and 8-order ROMs have the same
stability property with the original system in low and high frequencies.

Various orders’ ROMs built by the block Arnoldi method are compared with
POD/ROM for system 2. Figures 3 and 4 show the Bode diagrams and Nyquist
diagrams of the block Arnoldi/ROM and POD/ROM. In Bode diagrams compar-
ison, for the same 18-order ROM, the phase diagram of Arnoldi/ROM shown in
Fig. 3(a) is less accurate than the POD/ROM in Fig. 3(b) in the region of mid-
dle frequencies. However, in high excitation frequencies, the 18-order POD/ROM is
deviate far away from the full-order diagram while the block Arnoldi/ROM can still

1450069-9
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(a) (b)

Fig. 3. Comparison of frequency responses of original and reduced system 2. (a) Full order
system (98) and Block Arnoldi method of size 18. (b) Full order system (98) and POD method of
size 18

(a) (b)

Fig. 4. Comparison of Nyquist diagrams of system 2. (a) Full order system (96) and Block Arnoldi
method of various orders (4, 6, 8 and 10). (b) Full order system (96) and POD method of various
orders (16, 18, 20 and 22).

keep the good consistence with the full-order model in both magnitude and phase
diagram. In the comparison of Nyquist diagrams from Fig. 4, it can be observed
that the 6-order block Arnoldi/ROM is accurate enough while the POD/ROM needs
more than 18 vectors to catch the accuracy of the full-order system.

The mass–damper–spring system case demonstrates that the block Arnoldi/
ROM provides a good tool for the reduction of a large system in low and high
frequencies. It can catch the dominate system behaviors with much lower order
than POD/ROM and well maintain the system stability. In the next section, the
block Arnoldi/ROM will be constructed for predicting the nonlinear responses of a
nonlinear transonic aeroelastic system.
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cg 

ba bxa

+α

b b

+h

M

Kh

Kα

L 

ea 

Fig. 5. Aerofoil model with two-degrees (α and h) of freedom.

3.2. ROMs for nonlinear aeroelastic system

3.2.1. Aeroelastic model for pitch-plunge aerofoil

As shown in Fig. 5, a two-DOF, damped spring mass system allowing for plunging
and rotational motion is considered. The torsional motion represents twisting of the
wing, and the plunging motion of the section represents bending of the wing along
the span. b is semi chord and xα is the distance between elastic axis and center
of gravity, L is the sectional aerodynamic lift (positive up), M is the aerodynamic
moment about the center of gravity (positive nose up), Kh and Kα are bending and
torsional spring stiffness, and h and α are the plunging coordinate (positive down)
and the angle of attack (in radians). The equation of motion for the system can be
written by considering sum of all forces and moments acting on the aerofoil center
of gravity.

Based on Lagrange equation, the dynamic equations of the aeroelastic system
can be written as

mḧ + Sαα̈ + Khh = −L

Sαḧ + Iαα̈ + Kαα = M
(16)

where

Sα =
∫ 2b

0

rdm = mxαb, L = ρ2
∞bCL

Iα =
∫ 2b

0

r2dm = mr2
αb2, M = 2ρ2

∞b2CM

r2
α is radius of gyration per half cord (squared).

By defining τ = tU/b, (̇ ) indicates a differentiation with respect to t and ( )′

indicates a differentiation with respect to τ , so that ˙( ) = U/b( )′. Then Eq. (17) can
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be written in non-dimensional form [Da Ronch et al., 2012].

ξ′′1 + xαα′′ +
( ω̄

U∗
)2

ξ1 = − 1
πµ

CL(τ)

xαξ′′1 + r2
aα′′ +

( ra

U∗
)2

α =
2

πµ
Cm(τ)

(17)

where ξ1 = h/b, U∗ is reduced velocity U∗ = U/(b ·ωα), µ is mass ratio µ = m/πρb2,
and ω̄ = ωh/ωα. The system dynamic Eq. (17) can be written in matrix form as

M · ξ̈ + K · ξ = F (18)

where

ξ =

{
ξ1

ξ2

}
=

{
h/b

α

}
, M =

[
1 xα

xα r2
α

]
,

K =

[
(ω̄/U∗)2 0

0 (rα/U∗)2

]
, F =

1
πµ

{
−CL

2CM

}
.

3.2.2. Linearization model validation

In order to accurately predict the aeroelastic responses, the full-order linearized
unsteady aerodynamics CL and CM should be validated first. The Euler equation is
discretized by the second-order Van Leer scheme on the 80 × 30 O-type structural
meshes. NACA0012 aerofoil with unsteady plunging motion was analyzed in this
subsection. Meshes of the flow field are shown in Fig. 6. The full-order linearized flow
equation DOFs is Nf = 4× 80× 30 = 9600. The initial flow condition is Ma = 0.70,

X

Y

-3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

Fig. 6. Computational domain for NACA0012 aerofoil.
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(a) (b)

Fig. 7. Comparison the responses of the linearized model and nonlinear CFD model under pre-
scribed oscillation of a NACA0012 aerofoil at condition of Ma = 0.70, α = 0◦, h/b = 0.01sin(ωt),
ω = 20π. (a) Lift coefficient response with time and (b) moment coefficient response with time.

α = 0◦ and the aerofoil oscillates as h/b = 0.01 sin(ωt), ω = 20π. Figures 7(a)
and 7(b) show the time responses of the unsteady aerodynamic loads at a time step
of dt = 2π/20000s. The responses are predicted by the dynamic linearized model
based on CFD and nonlinear unsteady CFD, respectively. The good agreement of
the two models indicates that the dynamic linearized model has near the same
accuracy as the nonlinear CFD model at small perturbation.

In order to analyze the stability of the aeroelastic system, Eq. (18) must be cou-
pled with Eq. (1) or Eq. (5). So next we will analyze the free responses of the couple
system after a small disturbance in pitching motion is given. The parameters for
NACA0012 structural model are shown in Table 1. This test case corresponds the
heave case was described by Badcock et al. [2004]. At the condition of Ma = 0.5,
U∗ = 1.0, different free responses including Plunge, Angle of attack and force coeffi-
cient are shown in Figs. 8(a)–8(d). From the time responses described in Fig. 8, the
system is asymptotically stable. The tendency and amplitude of different models
are very close except a little fluctuation in Fig. 8(b) corresponding angle of attack.
So the linearized model based on CFD solver is accurate enough for a small pertur-
bation to the system. After validating the accuracy of aerofoil prescribed oscillation
and free aeroelastic responses by the linearized model, the model will be used to
construct ROMs in next section.

Table 1. Inertial parameters for NACA0012 aeroelastic model.

Parameter ω̄ µ a xα rα

Value 0.342 100 −0.2 0.2 0.539
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Fig. 8. Comparison the free responses of the linearized model and nonlinear CFD model at the
initial condition of Ma = 0.5, U∗ = 1.0, v1 = 0.01 (t = 0). (a) Plunge response with time, (b)
angle of attack response with time, (c) lift coefficient response with time and (d) moment coefficient
response with time.

3.2.3. Aeroelastic responses based on ROM

In the same flow condition above, at the base of linearization model, the POD
snapshots are calculated in time domain with the time step of 5 × 10−3 s. And
taking 800 snapshots samples of the resulting uncoupled fluid response by given that
2 displacement and 2 velocity inputs. Based on the snapshots samples, we reduce the
full-order linearized model to a 50-order and a 20-order model by POD/ROM. And
then we reduce the linearized model to an 8-order model directly through Eq. (5)
by block Arnoldi/ROM. The aeroelastic responses predicted by different models
were presented in Figs. 9(a)–9(d). It is obviously seen that the aeroelastic responses
of the 8-order block Arnoldi/ROM are as nearly the same accurate as those of
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Fig. 9. Comparison the free responses of the linearized model and different ROMs at the initial
condition of Ma = 0.5, U∗ = 1.0, v1 = 0.01 (t = 0). (a) Plunge, (b) angle of attack, (c) lift
coefficient and (d) moment coefficient.

the full-order linearized model. As the POD method is sensitive to the choice of
snapshots and difficult to produce snapshots which contain all the energy inspired
by drive signal, even the 50-order POD/ROM has not good accuracy with the 8-
order Arnoldi/ROM. The lower order models are expected in control design and
optimization design. At the beginning, different models’ curves are very consistent,
while with the increase of the time, different ROM models’ results gradually slightly
deviate from the full order model.

From the displacement response results shown in Figs. 9(a) and 9(b), the dif-
ference between the 8-order Arnoldi/ROM and 50-order POD/ROM calculations is
small. However, from the force and moment responses in Figs. 9(c) and 9(d), the
50-order (blue dashed line) and 20-order (green dashdot line) POD results show
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obvious deviation with the full-order linearization results. While the results calcu-
lated by the 8-order block Arnoldi/ROM (black solid line) keep a good tendency
with the full order model. These analyses indicate that the block Arnoldi/ROM
with less order can well keep the stability of the system characteristic and does
not appear large deviation with the full-order system in time-varying phenomena.
However, a higher number order POD/ROM is required to maintain the tendency
and accuracy.

3.2.4. Flutter boundary prediction

To find a flutter point at a given Mach number, different reduced velocity U∗

should be tested through coupling simulations. Figs. 10(a)–10(c) are the responses

(a) (b)

(c)

Fig. 10. Responses comparison at different reduced velocity in Mach 0.8. (a) U∗ = 2.8, amplitude
damp with time indicates stable situation. (b) U∗ = 3.23, amplitude unchanged with time indicates
neutral situation. (c) U∗ = 3.5, amplitude diverge with time indicates unstable situation.
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Fig. 11. Flutter boundary prediction of NACA0012 aeroelastic model by block Arnoldi/ROM,
CFD/CSD coupling simulation and reference [Badcock et al., 2004].

comparison at different reduced velocity at Mach 0.8. As shown in Fig. 10(a) at
U∗ = 2.8, the pitching and plunging amplitudes damp with time, indicating that
the aeroelastic system is stable at this condition. Figure 10(b) is the flutter point
responses at U∗ = 3.23 and Fig. 10(c) shows the system is unstable because pitching
and plunging responses diverge with time.

At last, we will apply the block Arnoldi/ROM to predict the flutter boundary
of the NACA0012 aeroelastic model between Mach numbers of 0.5 and 0.91. The
transonic effects are included in this Mach range and the time step is 0.01 s. The
order of the selected Arnoldi/ROM is 44 (40 fluid Dofs and 4 structural Dofs) which
is much smaller than the full order model with 9604 (9600 fluid Dofs and 4 structural
Dofs). The comparisons of the flutter boundary predicted by CFD, Arnoldi/ROM
and reference results [Badcock et al., 2004] are shown in Fig. 11. It can be noted that
our CFD solver and Arnoldi/ROM can well compare with the reference results base
on hopf bifurcation calculations. The results are also very sensitive to the Mach
numbers in transonic region (about Ma = 0.8 − 0.91). So it is tedious and time
consuming to find the flutter boundary in this region by a CFD/CSD couple solver.
However, the use of low order model produced by block Arnoldi/ROM just needs
several seconds to judge the system stable or not. The block Arnoldi/ROM provides
a good tool to aeroelastic system stability analysis.

4. Conclusion

A reduced order modeling based on the block Arnoldi method for nonlinear MIMO
transonic aeroelastic systems has been investigated. A simple mass–damper–spring
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system and a two-DOF transonic nonlinear aerofoil aeroelastic system were used to
demonstrate the efficiency and accuracy of this method. POD/ROM is also tested to
compare with block Arnoldi/ROM. In the block Arnoldi method, the construction
of the basis vectors only requires the matrixes of the state-space equations of the
full-order model, while the POD/ROM is obtained from the system snapshots which
may be sensitive to the choice of drive signals or frequencies. The mass–damper–
spring case shows that the low order system produced by the block Arnoldi method
can well keep the dynamic property with the original system in low and high fre-
quencies while the POD/ROM has some deviation in high frequencies. At last, the
flutter boundary of NACA0012 aeroelastic system was quickly obtained through
the block Arnoldi/ROM and well compared with the CFD/CSD coupling method
and reference results. The block Arnoldi/ROM provides a good tool to analyze
MIMO nonlinear transonic aeroelastic system’s stability. With the low order model
produced by Arnoldi/ROM, it is easy to couple structural equations and control
models for active control law design.
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