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Abstract Topology optimization to minimize the structural
dynamic compliance in a thermal environment is carried out
in this paper. A bi-material plate subjected to a uniform
temperature rise is investigated. The structure is driven by
a time-harmonic surface loading with prescribed excitation
frequency and amplitude. The stress induced by the equiv-
alent thermal force which is known as design-dependent
load could reduce the stiffness of the structure, thus alter-
ing the optimal topology design. A way to carry out the
optimization in the thermal environments is presented here.
The thermal stress is first evaluated, and then considered
as pre-stress in the subsequent dynamic analysis with the
introduction of the geometric stiffness matrix. The sensitiv-
ity analysis is carried out through adjoint method which can
save significant computational resources by avoiding the
derivatives of the thermal displacement (or thermal stress)
on the design variables. The cost to obtain these derivatives
can be very high since each design variable affects all the
nodal displacements. The structural damping is neglected.
Several pre-buckling cases are investigated.
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1 Introduction

One of the problems encountered by the hypersonic vehi-
cles is the high thermal environment to which the aircraft
is subjected during a significant portion of the flight enve-
lope. Severe thermal environment due to the aerodynamic
heating induces compressive stresses which could alter the
dynamic characteristic and even cause thermal buckling.
Thus, the structural design for the spacecraft operating in
such extreme environment is of significant importance to
provide light-weight structures with good dynamic proper-
ties under thermal conditions.

Topology optimization has been extended to dynamic
field to find the optimal configurations of structures with
respect to different dynamic criteria since the landmark
work of Bendsøe and Kikuchi (1988). Diaz and Kikuchi
(1992) first studied the shape and topology optimization of
structures to maximize a natural frequency using homoge-
nization method. Ma et al. (1993, 1995), Min et al. (1999)
applied the homogenization method to vibrating structures.
ESO (Evolutionary Structural Optimization) was employed
to optimization problems with frequency constraints (Xie
and Steven 1996) and dynamic loads (Huang et al. 2010).
Jog (2002) studied the topology configuration of structures
subjected to periodic loadings from the global and local dy-
namic constraints. Du and Olhoff (2007b) employed SIMP
(Solid Isotropic Material with Penalization) to maximize
the eigenfrequency of higher order, or the gap between two
consecutive eigenfrequencies of given orders.

One of other challenging research fields is the topo-
logical design involving so-called design-dependent loads
(Rozvany 2001; Bruyneel and Duysinx 2005; Gao and
Zhang 2010), of which the thermal load is a typical one (Gao
and Zhang 2010). Rodrigues and Fernandes (1995) first
studied the topology optimization of a 2-D linear-elastic
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solid subjected to thermal loads. Li et al. (1999) employed
ESO to minimize the displacement under thermal and
mechanical loading. Kim et al. (2006) and Penmetsa et al.
(2006) applied ESO in the topological design of thermal
protection system of spacecraft. A particular characteris-
tic of the thermal load is that it concerns both the elas-
tic modulus and the thermal expansion coefficient. For a
bi-material structural topology optimization, the penalties
of these two parameters should match each other; other-
wise incompatibility may occur for intermediate densities
between stiffness and thermal load during the optimization.
Gao and Zhang (2010) characterized the design-dependent
property of thermal-load by penalizing the thermal stress
coefficient, i.e. the product of elastic modulus and ther-
mal expansion coefficient, which in fact can be found in
Rodrigues and Fernandes (1995).

It is well known that thermal stress may change the
stiffness of structure, thus altering the dynamic character-
istic (Zienkiewicz and Taylor 2005). Things become more
interesting when the effect of thermal stress is taken into
account in the dynamic optimization.

Literature survey shows that limited work has been done
to study the effect of the thermal environments on the struc-
tural dynamic topology optimization. A common way to
study the dynamic characteristic of structures subjected to
some particular environment is to treat the initial stress as
pre-tress. Pedersen (2001, 2002) optimized the static com-
pliance or eigenvalues of pre-stressed isotropic and lami-
nated plates in MEMS design. The stresses were given at
different values to study its influence on the topology. In
fact, these thermal stresses are constantly changing during
the optimization.

In this paper, topology optimization with respect to
the dynamic compliance of a bi-material plate subjected
to a uniform thermal environment and driven by a time-
harmonic surface load is carried out. The dynamic surface
load is of prescribed excitation frequency and amplitude.
The critical buckling temperature is first evaluated to deter-
mine the upper limit of the temperature rise, so that a
pre-buckling small-deformation could be assumed to estab-
lish the dynamic formula in a stress stiffening form (Cook
1994). The thermal stress is then calculated and used to
form the geometric stiffness matrix to obtain the thermal
dynamic equation. Both direct and adjoint methods are dis-
cussed, and the adjoint method is implemented to carry out
the sensitivity analysis, which is much more computational-
economical than the direct method; accordingly the opti-
mization is carried out. During the optimization, the critical
buckling temperature is monitored to check whether the
structure is in the pre-buckling state.

The thermal stress coefficient (Rodrigues and Fernandes
1995; Gao and Zhang 2010) is employed to characterize the
equivalent thermal force. The RAMP (Rational Approximation

of Material Properties) interpolation model (Stolpe and
Svanberg 2001) and GCMMA (Svanberg 1995), the glob-
ally convergent version of MMA (Method of Moving
Asymptotes) (Svanberg 1987) are used in this paper.

The paper is organized as follows. Finite element for-
mulas for dynamic structure in a thermal environment are
presented in the next section. Then the optimization prob-
lem is detailed in Section 3, followed by the sensitivity
analysis in Section 4. Finally some optimization cases are
presented and discussed in Section 5.

2 Dynamic structure in a thermal environment

2.1 Buckling analysis

When a plate is subjected to temperature rise from the ambi-
ent, thermal stress develops. The thermal stress may induce
buckling of the structure when the temperature change is
high enough. The optimization is carried out when the plate
is in the pre-buckling state; thus, the critical buckling tem-
perature Tcr is first evaluated to determine the upper limit
of the uniform temperature rise. An eigenvalue buckling
analysis could be stated as (Cook 1994)

(K + λKG) � = 0 (1)

where λ is a scalar multiplier, � is the eigenvector and K
is the stiffness matrix. �T = T1 − T0 is the temperature
change.

Tcr = T0 + λ�T (2)

KG refers to the geometric stiffness for bending induced by
the in-plane thermal stress (Zienkiewicz and Taylor 2005)

KG =
∑

i

∫

Ai

GTSGd A (3)

where S is the membrane stress matrix at the element level;
G is a strain-displacement matrix; Ai is the area of the
element.

2.2 Membrane stress analysis

If the temperature change across the thickness is uniform,
the thermo-elastic problem of the plate could be described
by the plane-stress constitutive equation,

σ = Dm (ε − α�T) = EDε − βD�T (4)
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where σ is the membrane stress vector; E , α, β=Eα are the
elastic modulus, the thermal expansion coefficient and the
thermal stress coefficient respectively; Dm is the membrane
elasticity matrix; �T is the temperature rise vector.

The strain in (4) could be written in FE form

ε = BUti (5)

where B is the strain-displacement matrix; Uti is the dis-
placement vector of element i , which could be obtained with
the boundary conditions through

KUt = Ft (6)

where Ft is the equivalent thermal force induced by the uni-
form temperature rise; Ut is the thermal displacement; the
index “t” denotes the word “thermal”.

The equivalent membrane thermal force Ft has the form
(Zienkiewicz and Taylor 2005)

Ft = −
∑

i

∫

Ai

αBTDm�Td A

= −
∑

i

∫

Ai

βBTD�Td A (7)

Equation (7) indicates that the equivalent thermal force is
design-dependent, related to the thermal stress coefficient
β. The relationship between Ft and the interpolation func-
tion (that is, R(ζ ) in (12)) will be quadratic if the thermal
stress coefficient β=Eα is not introduced. Since K is the
linear function of R(ζ ), incompatibility may occur between
the stiffness and the thermal load. By employing the ther-
mal stress coefficient β, the penalty could be made properly
to the thermal load Ft, and the incompatibility could be
efficiently avoided (Rodrigues and Fernandes 1995; Gao
and Zhang 2010).

2.3 Dynamic formula

When the thermal load is below Tcr, the dynamic finite ele-
ment formula of the plate in a uniform thermal environment
could be written in a stress stiffening form (the damping is
neglected) (Cook 1994)

(
K + KG − ω2M

)
U = F (8)

where K, M are the stiffness and mass matrices respectively;
F is the amplitude vector of the time-harmonic external
load; ω = 2π f is the angular frequency; U is the dynamic
displacement response vector.

3 Optimization problem

3.1 Problem formulation

Ma et al. (1995) defined the dynamic compliance of an
undamped structure as the product of the time-harmonic
force and the displacement vectors, that is

C = FTU (9)

As pointed out by Jog (2002), the dynamic compliance be-
comes negative if the excitation frequency is slightly higher
than the fundamental frequency; minimization of this func-
tion drives the system towards resonance instead of away
from it.

A way to avoid this is to minimize the square of the
product (Bendsøe and Sigmund 2003), that is

C = {
FTU

}2
(10)

Thus the dynamic topology optimization problem in the
thermal environment could be stated as

min C = {
FTU

}2

s.t.
(

K + KG − ω2M
)

U = F

KUt = Ft

n∑

i

Viζi ≤ V (1)

ζi ∈ (0, 1) (11)

where ζ i is the design variable, denoting the artificial
volume fraction of material 1 (the stiffer one of the two
materials) in the element i ; n is the total number of the
elements; Vi is the volume of the element i ; V (1) is the
maximum volume of material 1 in the structure. At each
iteration, the second constraint equation is first assembled
and solved to calculate the thermal displacement Ut. With
(4) and (5), the membrane thermal stress σ can be obtained
to get the geometric stiffness matrix KG. The first constraint
equation can then be solved.

3.2 Interpolation model

It has been shown (Pedersen 2000; Bruyneel and Duysinx
2005; Gao and Zhang 2010) that the volume constraint may
not be a binding one in SIMP interpolation model and the
compliance becomes unbounded in low-density regions for
design-dependent problems. The reason is that SIMP has a
zero-slope at ζ = 0.

RAMP proposed by Stolpe and Svanberg (2001) turns
out to be effective in dealing with such difficulty (Bruyneel
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and Duysinx 2005; Gao and Zhang 2010) (A more flexible
interpolation model NLPI, can be found in Pedersen and
Pedersen (2012)). The RAMP interpolation models of the
elastic modulus, the mass density and the thermal stress
coefficient can be written as

Ei = R (ζi ) E (1) + (1 − R (ζi )) E (0) (12)

ρi = R (ζi ) ρ(1) + (1 − R (ζi )) ρ(0) (13)

βi = R (ζi ) β(1) + (1 − R (ζi )) β(0) (14)

where the superscripts 0 and 1 denote material 0 and
material 1 respectively;

R (ζi ) = ζi

1 + p (1 − ζi )
(15)

and p is the penalty factor.

4 Sensitivity analysis

The sensitivity could be written as

dC

dζi
= �T

(
dK
dζi

+ dKG

dζi
− ω2 dM

dζi

)
U (16)

where � is the solution of the problem
(

K + KG − ω2M
)

� = −2
{
FTU

}
F (17)

Note that KG is symmetric since the membrane stress S is
symmetric (Zienkiewicz and Taylor 2005).

The key to the sensitivity analysis is how to deal with
the derivative of the geometric stiffness matrix KG, since
it involves not only the temperature change, but also the
strain induced by the design-dependent equivalent thermal
force, see (3) and (4). Furthermore, the strain of element j
is related to all the design variables and so is the KG j .

Equation (16) can be written as

dC

dζi
= �T

i

(
dKi

dζi
− ω2 dMi

dζi

)
Ui +

n∑

j

�T
j

dKG j

dζi
U j (18)

In this paper, both direct method and adjoint method are
discussed.

4.1 Derivatives of stiffness and mass matrices

The derivatives of Ki and Mi in (18) are as follows,

dKi

dζi
= 1 + p

(1 + p (1 − ζi ))
2

(
K(1)

i − K(0)
i

)
(19)

dMi

dζi
= 1 + p

(1 + p (1 − ζi ))
2

(
M(1)

i − M(0)
i

)
(20)

4.2 Direct method

According to (4), the membrane stress in (3) could be
stated as

S = E� − β� (21)

where E� and β� refer to the strain part and the thermal
expansion part respectively. Since KG j is only related to the
membrane stress of the element j , it could be divided as
follows,

KG j =
∫

A j

GTSGd A

=
∫

A j

GT (
E j� − β j�

)
Gd A

=
∫

A j

E j GT�Gd A −
∫

A j

β j GT�Gd A

= KI
G j + KII

G j (22)

Accordingly the derivative of KG j could be written as

dKG j

dζi
= dKI

G j

dζi
+ dKII

G j

dζi

= dE j

dζi

∫

A j

GT�Gd A

+ E j

∫

A j

GT d�

dζi
Gd A

− dβ j

dζi

∫

A j

GT�Gd A (23)

dE j /dζ i , dβ j /dζ i can be obtained with (12) and (14) when
i = j , and equal 0 when i �= j.It can be found that only the
second part of the right-hand items is left to deal with. Since
the membrane stress S has been stated as (21) according to
(4); the derivative of � is in fact equivalent to the derivative
of ε; both refer to the derivatives of the membrane strains.
With (5), the derivative is shown as,

dε j

dζi
= d

(
BUt j

)

dζi
= B

dUt j

dζi
(24)

Differentiate (6) as follows

d (KUt)

dζi
= dFt

dζi
(25)

K j
dUt j

dζi
= −dK j

dζi
Ut j + dFt j

dζi
(26)

Note that dFt j /dζ i equal 0 when i �= j ,

dFti

dζi
= dβi

dζi

∫

Ai

BTD�Td A (27)
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In this direct method, the computer cost can be huge for
large-scale problems, since (26) needs to be solved for the
sensitivity on each design variable in every iteration.

4.3 Adjoint method

It can be seen from (23) KG is the function of Ut, E , β, ζ ,
so (16) can be rewritten as

dC

dζi
= �T

(
dK
dζi

− ω2 dM
dζi

)
U

+ �T

((
∂KG

∂Ut

)T
∂Ut

∂ζi
+ ∂KG

∂E
∂E
∂ζi

+ ∂KG

∂β

∂β

∂ζi

)
U

(28)

where E=(E1, E2,. . . ,En), β=(β1,β2,. . . ,βn) are the vec-
tors of the elastic modulus and the thermal expansion
coefficient respectively.

With the introduction of an adjoint vector � of the
thermal displacement, (28) can be written as

dC

dζi
= �T

(
dK
dζi

− ω2 dM
dζi

)
U

+ �T

((
∂KG

∂Ut

)T
∂Ut

∂ζi
+ ∂KG

∂E
∂E
∂ζi

+ ∂KG

∂β

∂β

∂ζi

)
U

+ �T
(

K
dUt

dζi
+ dK

dζi
Ut − dFt

dζi

)
(29)

which can be rearranged as

dC

dζi
= �T

(
dK
dζi

− ω2 dM
dζi

)
U

+ �T
(

∂KG

∂E
∂E
∂ζi

+ ∂KG

∂β

∂β

∂ζi

)
U

+ �T
(

dK
dζi

Ut − dFt

dζi

)

+ �TK
dUt

dζi
+ �T

(
∂KG

∂Ut

)T
∂Ut

∂ζi
U (30)

In order to avoid the computation of ∂Ut/∂ζ i ,

�TK
dUt

dζi
+ �T

(
∂KG

∂Ut

)T
∂Ut

∂ζi
U = 0 (31)

Thus, (30) can be simplified to

dC

dζi
= �T

(
dK
dζi

− ω2 dM
dζi

)
U

+ �T
(

∂KG

∂E
∂E
∂ζi

+ ∂KG

∂β

∂β

∂ζi

)
U

+ �T
(

dK
dζi

Ut − dFt

dζi

)
(32)

This equation can be written at element level and please note
that ∂ E j /∂ζ i , ∂β j /∂ζ i , ∂K j /∂ζ i , ∂M j /∂ζ i ,∂Ft j /∂ζ i equal
0 when i �= j

dC

dζi
= �T

i

(
dKi

dζi
+ ∂KGi

∂ Ei

∂ Ei

∂ζi
+ ∂KGi

∂βi

∂βi

∂ζi
− ω2 dMi

dζi

)
Ui

+ �T
i

(
dKi

dζi
Uti − dFti

dζi

)
(33)

Equation (31) can also be written at element level and please
note that Ut j only affects KG j .

�T
j K j

∂Ut j

∂ζi
+ �T

j

(
∂KG j

∂Ut j

)T ∂Ut j

∂ζi
U j = 0 (34)

in which

(
∂KG j

∂Ut j

)T ∂Ut j

∂ζi
= ∂KG j

∂Ut j1

∂Ut j1

∂ζi
+ · · · + ∂KG j

∂Ut jk

∂Ut jk

∂ζi

+ · · · + ∂KG j

∂Ut jm

∂Ut jm

∂ζi
(35)

where Ut jk refers to the thermal displacement at the kth
DOF (degree of freedom) of j th element; m is the total DOF
number of the j th element. Thus (34) can be written as

�T
j K j

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ut j1
∂ζi

∂Ut j2
∂ζi
...

∂Ut jm

∂ζi

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�T
j

(
∂KG j

∂Ut1

)T

U j

�T
j

(
∂KG j

∂Ut2

)T

U j

...

�T
j

(
∂KG j

∂Utm

)T

U j

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

T

·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ut j1
∂ζi

∂Ut j2
∂ζi
...

∂Ut jm

∂ζi

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0 (36)

that is,

(
K j� j + �T

j

(
∂KG j

∂Ut j

)T

U j

)T
∂Ut j

∂ζi
= 0 (37)

Thus, � can be obtained by solving

K� = −�T
{

∂KG

∂Ut

}T

U (38)
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Fig. 1 First 15 natural frequencies and 3 excitation frequencies

As the relationship between KG j and Ut j is linear
(Zienkiewicz and Taylor 2005), ∂KG j /∂Ut j can be obtained
through

∂KG j

∂Ut j
= KG j

(
Ut j + �u j

)

�u j
(39)

where �u j is the displacement change at element j . The
kth DOF component of (39) is

∂KG j

∂Ut jk
= KG j

(
Ut jk + �u jk

)

�u jk
(40)

By adjoint method, (38) needs to be solved only once in
each iteration, and the computational cost can be effectively
controlled.

(a) ΔT = 0οC (b) ΔT = 50οC

(c) ΔT = 75οC (d) ΔT = 90οC

Fig. 2 Topology of the case f = 50 Hz (white: material 0; black:
material 1)
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Fig. 3 Iteration history of the dynamic compliance of the case f =
50 Hz

5 Numerical examples

A four-edge clamped bi-material square plate with dimen-
sion 1 m × 1 m × 0.01 m is studied. The plate is subjected
to a uniform temperature rise �T = T1 − T0 with T0 =
0 ◦C. The material properties are as follows:

E (0) = 70GPa, ρ(0) = 2650kg/m3, α(0) = 1.5 × 10−5◦C−1

E (1) =210GPa, ρ(1) = 6500 kg/m3, α(1) = 1.1 × 10−5◦C−1

A mesh of 40 × 40 with isoparametric 4-node element is
used here, and there are 1600 design variables. The normal
external surface loading is defined in such a way that unit
concentrated force is applied to each node of the mesh.

The volume fraction of material 1 is up to 50 %, that is
V (1)/V = 0.5, where V is the volume of the plate. And the
initial value of all the design variables is ζ i = 0.5.

Since (38) needs to be solved during the sensitivity
analysis, the dynamic compliance may possibly be non-
monotonous. GCMMA algorithm (Svanberg 1995) is
employed.
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Fig. 4 Iteration history of the fundamental frequency of the case f =
50 Hz
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f = 50 Hz

Filtering of the sensitivity is implemented to control
the checkerboards (Sigmund 2001; Bendsøe and Sigmund
2003). The filtering radius is 1.5× dimension of the
element.

In the following examples, p = 3 is used.

5.1 Buckling and eigenvalue analysis

To ensure that the uniform temperature rise does not induce
buckling of the initial plate, Tcr = 100.8 ◦C is first calcu-
lated as the upper limit of �T by carrying out an buckling
analysis (1). Four thermal cases, i.e. �T = 0 ◦C, 50 ◦C,
75 ◦C, 90 ◦C, are chosen for analysis in this work.

It is shown later that Tcr increases as the optimization pro-
ceeds, indicating that the plate is always in the pre-buckling
state.

(a) ΔT = 0οC (b) ΔT = 50οC

(c) ΔT = 75οC (d) ΔT = 90οC

Fig. 6 Topology of the case f = 250 Hz (white: material 0; black:
material 1)
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Fig. 7 Iteration history of the dynamic compliance of the case f =
250 Hz

The first 15 order frequencies of the initial plate are
obtained for the four thermal cases, shown in Fig. 1. It can
be found that the natural frequencies decrease as the tem-
perature rises. The fundamental frequencies are 184.2 Hz,
131.8 Hz, 94.4 Hz and 61.3 Hz respectively.

According to the eigenvalue analysis, three excitation
frequency cases are selected, that is, f = 50 Hz, 250 Hz,
1000 Hz. f = 50 Hz is below all the fundamental frequen-
cies of the initial plate in the four thermal environments;
f = 250 Hz is higher than the fundamental frequencies but
lower than the 2nd order frequencies; case f = 1000 Hz is
a relatively high-frequency case.

5.2 Excitation frequency 50 Hz

First, a case with the excitation frequency f = 50 Hz is
studied, which is lower than all the four fundamental fre-
quencies. Figure 2 shows the optimal topology of the plate
under different thermal conditions. As the temperature rise,
some materials (material 1) move from the marginal and
central parts to connect the two parts stripily.

0 5 10 15 20 25 30
100

105

110

115

120

125

130

135

Iteration

C
ri

ti
ca

l B
uc

kl
in

g 
T

em
pe

ra
tu

re
 o C

ΔT=50oC

ΔT=75oC

ΔT=90oC

Fig. 8 Iteration history of the critical buckling temperature of the case
f = 250 Hz
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(a) ΔT = 0οC (b) ΔT = 50οC

(c) ΔT = 75οC (d) ΔT = 90οC

Fig. 9 Topology of the case f = 1000 Hz (white: material 0; black:
material 1)

Figure 3 shows that the dynamic compliance of the ini-
tial plate is larger for the higher temperature cases, due to
that the fundamental frequency is lower and the plate tends
to resonance. The dynamic compliance becomes smaller
as the iteration grows, since the fundamental frequency
increase with respect to the iteration number and the gap
between the fundamental frequency and the excitation fre-
quency becomes larger (Fig. 4), which also can be found in
Ma et al. (1993), Du and Olhoff (2007a).

Figure 5 shows the iteration history of Tcr which
increases as the iteration grows, indicating that the plate
is always in the pre-buckling state during the optimization
process. In some sense, it also means that the optimization
yields a “stiffer” thermal structure. Tcr is unnecessary to
evaluate for the subcase �T = 0 ◦C.
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Fig. 10 Iteration history of the dynamic compliance of the case f =
1000 Hz

(a) p=2 (b) p =3

Fig. 11 Topology of the case f = 1000 Hz and �T = 90 ◦C (white:
material 0; black: material 1)

5.3 Excitation frequency 250 Hz

Figure 6 shows that the optimal topology of the case f =
250 Hz. It can be seen that as the temperature rise, the
marginal parts gradually become ribbonlike, which is a bit
similar to that of the case f = 50 Hz.

Figure 7 shows that the dynamic compliance of the initial
plate is larger for the lower temperature cases, which is quite
opposite to the case f = 50 Hz. This indicates that the
fundamental mode may be the main component that affects
the dynamic response. If it is not, according to Fig. 1, the
2nd natural mode would be the main one and the dynamic
compliance of the subcase �T = 90 ◦C might be greater
than that of the other cases.

Figure 8 shows the iteration history of Tcr.

5.4 Excitation frequency 1000 Hz

Figures 9 and 10 show that the optimal topology and the
dynamic compliance of the case f = 1000 Hz in the four
thermal conditions. The topology is more complex than
that of the two low-frequency cases. The temperature rise
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Fig. 12 Iteration history of the dynamic compliance for the case f =
1000 Hz and �T = 90 ◦C
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Fig. 13 Iteration history of the critical buckling temperature of the
case f = 1000 Hz

may significantly change the topology. It is noticed that
the final convergent dynamic compliance of the subcase
�T = 90 ◦C is larger than the initial value. It is known that
the initial compliance is highly related to the factor p, while
the optimal structural after optimization is supposed to be
independent to the factor (same topology and few gray
elements), illustrated in Figs. 11 and 12.

Figure 13 shows the iteration history of Tcr.

6 Conclusion

Topology optimization of a thermally stressed bi-material
plate in the pre-buckling state is carried out in this paper
to minimize the dynamic compliance. The thermal stress
induced by the uniform temperature rise changes the dy-
namic characteristic, thus altering the optimal topology. The
thermal dynamic formula is presented in a stress stiffening
form. Both direct and adjoint methods are discussed and the
latter is employed to keep the computational cost at a rel-
atively low level by avoiding the sensitivity of the thermal
displacement (stress). The effect of the thermal environment
is investigated though some typical pre-buckling numerical
examples.

It is found that when the excitation frequency is below the
initial fundamental frequency, i.e. for the case f = 50 Hz,
the compliance increases as the temperature rises, and some
materials moves to connect the marginal and central parts
together. For the case f = 250 Hz in this research, the
effect of the thermal environment on the topology is kind of
similar to the f = 50 Hz. In both cases, the fundamental
mode may be the main component that affects the dynamic
response. For the case f = 1000 Hz, the topology is more
complex than the low-frequency cases, and the temperature
rise may significantly change the topology. It is also shown

that the plate is always in the pre-buckling state during the
optimization.
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