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This paper presents a method for automatic reconstruction of finite element (FE) mesh models for heter-
ogeneous materials by taking into account their real microstructures. The method is developed by map-
ping the FE mesh model with the serial images captured by X-ray tomography. The material components
are segmented by grayscale thresholds to reflect the microstructures. Improved reconstruction accuracy
is achieved by applying the contrast limited adaptive histogram equalization, median filter and pixel
interpolation to the serial images. Image trim and pixel merging are proposed to reduce the elements
contained in the model. In the reconstruction of Al2O3/(W,Ti)C ceramic composite, it is demonstrated that
the reconstructed models accurately reflect the microstructural features. By predicting the macroscopic
properties numerically based on homogenization method, the reconstructed models are proved to be
valid and applicable to FE analysis.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Heterogeneous materials that are composed of domains of mul-
tiple material components (or phases) are prevalent in natural and
synthetic products [1]. Examples include composites, cellular sol-
ids, phase-separated metallic alloys and so forth. The macroscopic
properties, such as stiffness, strength and toughness, of these
materials are determined by their microstructures. Therefore, a
thorough understanding of how a heterogeneous material’s micro-
structure affects its macroscopic properties is of great importance
in design and development of high performance heterogeneous
materials. Various theoretical and numerical methods are pro-
posed to clarify the relationship of the microstructure and the mac-
roscopic property, of which the FE analysis is an important
effective method. The FE analysis primarily requires the develop-
ment of methods to automatically generate geometrical or mesh
models to actually take into account complex microstructures of
heterogeneous materials. However, due to the very irregular shape
and complex distribution of phases, the incorporation of the infor-
mation about microstructures into the models is one of the chal-
lenges in computational mechanics [2].

Numerous methods are developed to overcome the difficulties
for modeling. The unit cell models [3] with idealized or disordered
shapes and arrangements of material components have a longest
history and are most widely used to analyze the microstructure–
ll rights reserved.
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macroscopic property relationship. These models, which assume
that sufficiently large samples of heterogeneous materials behave
homogeneously though the real microstructures are locally heter-
ogeneous [4], are designed in a minimum volume to represent and
describe the overall material structure of interest. The unit cell
models have been developed from the simplest 2D versions, which
assume rather specific shape and distribution of phases, to com-
plex 3D models, which take into account most characteristics of
the real shape and distribution of material components [5]. These
models appear to be very efficient in the analysis of the effect of
constituent, volume fraction, shape and arrangement of phases
on the macroscopic properties of the heterogeneous materials.
However, evidently unrealistic material structure assumptions
are made in these models and the effect of many real microstruc-
tures on macroscopic properties are neglected in the analysis using
FE techniques [3]. It follows that an accurate simulation of hetero-
geneous materials can be really obtained only by incorporating ac-
tual microstructures into the numerical models.

With the increasing power of digital image processing technol-
ogies, new geometrical approaches to model microstructures of
heterogeneous materials are emerged. The digital images, which
show the realistic internal microstructure of materials, are ob-
tained by detecting the attenuation of beams that penetrate the
material (e.g. X-ray tomography) or by photographing the sample
from a series of parallel sections (e.g. serial sectioning) [6]. The
geometrical surface or solid models are reconstructed by segment-
ing the digital images into different components and then extract-
ing the edges of the components [7–10] or by using various
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statistical correlation functions that are ascertained from the digi-
tal images to quantify the shape and distribution of phases [11–
13]. These models considering the inherent morphology, clustering
and arrangement of phases, with minimal microstructural approx-
imations, are frequently adopted to analyze the macroscopic
behaviors of heterogeneous materials.

Although recent advances have been made in reconstructing the
geometrical microstructures of heterogeneous materials, novel
methods for generating numerical models are still needed as: (1)
current geometrical models should be additionally meshed to per-
form FE analysis and the elements meshed on the complex geo-
metrical surface and solid are generally in the form of triangular
and tetrahedral, which are of low precision for FE analysis; (2) rel-
atively small microstructural features are easily lost during the
meshing process. This paper is intended to develop an innovative
digital image-based reconstruction method for immediately gener-
ating the FE mesh models of heterogeneous materials by taking
into account their actual microstructures. The reconstructed model
is composed of four-node rectangular elements and eight-node
rectangular hexahedral elements for 2D and 3D, respectively.
Material properties of the elements are differentiated by the gray-
scale thresholds of the digital images to characterize the material
components. It is demonstrated that the microstructural features
with dimensions as small as the size of each image pixel can be
accurately reconstructed.

2. Digital image acquisition and digitization

The real microstructures of heterogeneous materials are cap-
tured by X-ray tomography [14,15], which is an advanced tech-
nique for acquiring a stack of sectional images, with the
advantage of rapidly acquiring accurate digital information of the
internal microstructure in a non-destructive manner. The method
is commonly applied using a relatively standard X-ray source and
different material components are distinguished by their linear
attenuation coefficients.

Fig. 1a illustrates a draft for obtaining the 3D serial images of
heterogeneous materials. A cylindrical sample is cut and mounted
for illustration. Then a left-handed coordinate system is built as
shown in the figure. A representative rectangular surface region
I1 with width w and height h is selected to be the capture site of
Fig. 1. Serial images acquisition and digitization: (a) Acquisition of 3D
the sectional image. The selection of the representative region is
very important and meanwhile it is somewhat subjective. It is
desirable to encompass several phase clusters in the representative
region to allow entire clusters being reconstructed in the model;
nevertheless, the amount of encompassed clusters should be re-
stricted to maintain high image resolution and fast reconstruction
speed. The digital image of the surface region is photographed with
X-ray tomography. Then the scanning position of X-ray tomogra-
phy is translated axially to a new position, which is parallel to
the representative region without any displacements in x and y
directions, to capture new sectional image. By repeating the above
operation, a series of closely spaced slices are serially captured and
a total number of D images are generated. In order to accurately
characterize the microstructural features of the material, the dis-
tance dn(n = 1 � D � 1) between two successive sections In and
In + 1 should be a value as small as possible to reach the size of each
image pixel. Moreover, the selection of the total thickness of the D
sections should assure that the reconstructed model encompasses
several phase clusters in z direction.

Each acquired image is consisted of a rectangular array of image
pixels, which can be specified by a pixel coordinate system as
shown in Fig. 1b. The array size along i and j directions are respec-
tively noted as W and H. Each image pixel is a square with size s = w/
W = h/H. At each pixel, the image brightness is sensed and assigned
with an integer value that is named as grayscale. For the mostly
used 256 gray images, the grayscale has the integer interval from
0 to 255. As a result, the grayscale of pixel (i, j) in the pixel coordi-
nate system can be expressed as a discrete function g(i, j) and the
2D image can be noted as a matrix [g(i, j)](i = 1 �W, j = 1 � H). For
a series of serial images, a left-handed k coordinate is added to
the 2D pixel coordinate system to specify the serial numbers of
images. In a similar way, discrete function g(i, j, k) is used to express
the grayscale of pixel (i, j, k) and the serial images are noted as a 3D
array {g(i, j, k)}(k = 1 � D).

3. Material component segmentation

The grayscale in the X-ray tomography image is mainly deter-
mined by the density of the material component. The higher the
density, the more X-ray is absorbed by the material component,
which results in higher grayscale value in the captured image.
serial images. (b) Pixel coordinate system and image digitization.
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According to this law, different material components can be seg-
mented by the grayscale of the image. To segment the material
components, the grayscale histogram h(g) is introduced by count-
ing the number of pixels with a certain grayscale:

hðgÞ ¼ count
16i6W;16j6H

fgði; jÞ ¼ gg ð1Þ

Collection of these counts for all grayscales forms the histo-
gram. This histogram function is, in general, a rough estimate of
the grayscale density function.

Considering a typical two-phase heterogeneous material shown
in Fig. 2a, which is a slice of original grayscale image of Al2O3/
(W,Ti)C ceramic composite [16]. It is consisted of matrix material
Al2O3 with density 3980 kg/m3 and reinforced material (W,Ti)C
with density 9490 kg/m3, thus the grayscale of Al2O3 (shown as
black) is lower than that of (W,Ti)C (shown as white). The numbers
of pixels along i and j directions are W = 606 and H = 597, while the
actual sizes of the image are w = 16.12 lm and h = 15.88 lm, thus
the size of each pixel is consequently s = 0.0266 lm. Fig. 2b shows
the histogram (vertical lines connected by solid line) of the Al2O3/
(W,Ti)C ceramic composite. It illustrates that the grayscale of the
two material components are mainly distributed around the wave
crests 88 and 209, respectively. A wave trough at the grayscale 154
can be observed in Fig. 2b. The grayscale of the wave trough is the
grayscale threshold, which is noted as T1, to segment the material
components. The pixels with grayscale lower than the threshold T1

represent Al2O3 while the others represent (W,Ti)C.
The volume fraction of each phase can be determined by the

cumulative distribution function f(g), which is normalized by the
amount of pixels in the image with the following formulation:
Fig. 2. An example of component segmentation: (a) A slice of X-ray tomography
image for Al2O3/(W,Ti)C ceramic composite. (b) The grayscale histogram and
cumulative distribution function for the image shown in (a).
f ðgÞ ¼ 1
WH

X
n6g

hðnÞ ð2Þ

The cumulative distribution function for Al2O3/(W,Ti)C ceramic
composite is shown as a dash-dotted line in Fig. 2b. The volume
fraction v1 of matrix material Al2O3 is the value of f(g) at threshold
T1, that is to say, v1 ¼ f ðgÞg¼T1

¼ f ð154Þ ¼ 53:55%.
The extension to multi-phase heterogeneous material with M

phases, where M > 2, is straightforward. In this case, different
phases in the material generally have different densities and thus
different grayscale values in the X-ray tomography image. It is be-
lieved that thresholds Tn(n = 1, 2, . . ., M � 1) can be obtained from
the grayscale histogram and different material components can
be differentiated by these threshold values. The pixels in the image
with lower grayscales than T1 belong to the phase that has the low-
est density within the heterogeneous material and the volume
fraction of this phase is v1 ¼ f ðgÞg¼T1

. While the pixels with gray-
scales in the interval (T1, T2] belong to the phase that has the sec-
ond lowest density and its volume fraction is v2 ¼ f ðgÞg¼T2

� v1.
The remaining phases and their volume fractions can be decided
in a similar way.

As a validation of the proposed segmentation method, we com-
pare the results of Al2O3/(W,Ti)C ceramic composite with the
experimental data. The experiment reveals that the volume frac-
tion v1 of the matrix material Al2O3 is approximately 55.00%, there-
fore, the value determined by the X-ray tomography image is lower
than the experimental data with a relative error of 2.64%. This dis-
crepancy between these two volume fractions is mainly influenced
by the inaccuracy of digital images, as the process of converting ac-
tual serial regions into digital images is very complicated and eas-
ily affected by external environment. Therefore, preliminary image
processing such as image contrast enhancement and image noise
reduction methods are needed to obtain a better result for the
material microstructure reconstruction.

3.1. Image contrast enhancement

Image contrast enhancement can help to reproduce real mate-
rial microstructure as it enhances the contrast between different
inner material components. One particular method of interest,
which is extensively used for enhancement of digital images, is
the contrast limited adaptive histogram equalization (CLAHE) pro-
posed by Pizer et al. [17] and realized by Zuiderveld [18]. Detailed
mathematical description of CLAHE can be found in the excellent
review paper given by Reza [19].

For the original image shown in Fig. 2a, it is processed by CLAHE
and illustrated in Fig. 3a, which shows more obvious difference be-
tween the matrix and the reinforced material. In the enhancement
process, the number of regions is selected to be 9 by equally divid-
ing the image by 3 in each direction and the clip factor is appropri-
ately selected to be 2 (refer to [19] for the meaning of the
parameters).

The grayscale histogram and cumulative distribution function
of the CLAHE processed image are depicted in Fig. 3b. The thresh-
old value T1 can be observed in the figure with a value T1 = 140, and
the volume fraction of the matrix material Al2O3 determined by the
cumulative distribution function at the threshold is v1 = 54.92%.
The relative error of the volume fraction to the experimental value
is only 0.08%, which indicates that CLAHE contributes to the recon-
struction of real microstructure.

3.2. Image noise reduction

Digital images are prone to be degraded by a variety of noises in
the image acquisition and transmission process, which results in
grayscale values do not reflect the real scenes [20]. In order to



Fig. 3. Result of CLAHE processing: (a) CLAHE processed image. (b) The grayscale
histogram and cumulative distribution function for the image shown in (a).

Fig. 4. Result of MF processing: (a) MF processed image. (b) The grayscale
histogram and cumulative distribution function for the image shown in (a).
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reduce the influence of noise on the microstructure reconstruction,
noise reduction method is adopted here. The commonly used noise
reduction methods include mean filters, order-statistics filters and
adaptive filters. Among these methods, the best-known order-
statistics median filter (MF) [21,22] is quite popular, because for
certain types of random noise, it provides excellent noise reduction
capabilities, with considerably less blurring the edges and other
sharp details than any other methods.

By referencing to [20], the original image in Fig. 2a is processed
by MF with a 3-by-3 neighborhood filtering window and the resul-
tant image is shown in Fig. 4a. The histogram and cumulative dis-
tribution function of the processed image is illustrated in Fig. 4b.
The threshold value observed in Fig. 4b is T1 = 154, and the volume
fraction of the matrix material Al2O3 is v1 = 53.63%, which is more
accurate compared with that of the original image but is worse
than that of the CLAHE processed image.

3.3. Combinational image processing

The above mentioned two image processing methods are indi-
vidually performed on the image and each method helps to acquire
the real microstructure of material. In order to investigate the ef-
fect of the combination of these methods, the original image
shown in Fig. 2a is successively processed by CLAHE and MF, and
by the reversed processes. The volume fractions determined by
these two processed images are respectively 54.98% and 54.54%,
with relative errors of 0.04% and 0.84%. By comparing the results
with those of the original image and the images individually pro-
cessed by CLAHE and MF, we can conclude that the image firstly
processed by CLAHE and then by MF most accurately represents
the real microstructure of the material. It is necessary to mention
that the error of volume fraction estimated by X-ray tomography
image is always there, no matter what kind of processing per-
formed on the image. This is due to the resolution limit of the im-
age, which cannot detect microstructures in the sample with
dimensions less than the size of each pixel. High-resolution ap-
proaches can be used to acquire digital images of the material
and it will clearly indicate that a higher-resolution image can de-
tect more minor microstructures.

The image successively processed by CLAHE and MF is depicted
in Fig. 5a for further study. The histogram and cumulative distribu-
tion function are shown in Fig. 5b, which demonstrates that the
grayscale threshold of Al2O3 is 140. All the images used for recon-
struction thereinafter will be firstly processed by CLAHE and then
by MF to most accurately take into account the microstructural
features.

4. 2D FE mesh model reconstruction

In this section, the method of 2D FE mesh model reconstruction
is introduced, which lays the foundation for 3D reconstruction. A
monolayer of the serial images is firstly processed by CLAHE and
MF. A 2D FE mesh model, whose elements form a one-to-one cor-
respondence with the pixels of the image, is generated as shown in
Fig. 6a. The model is consisted of four-node rectangular quadrilat-
eral elements and the element size along x and y directions are
equal to the actual size s of the pixels.

The identification numbers of the nodes and elements are as-
signed in the form as shown in Fig. 6b to provide a convenience
for computing the coordinates of the nodes and determining the
anticlockwise four-nodes of the elements. The coordinates of node
n can be concisely computed by:

xn ¼ ðn� 1Þ%ðW þ 1Þs
yn ¼ b n�1

Wþ1cs

(
n ¼ 1;2; . . . ; ðH þ 1ÞðW þ 1Þ ð3Þ



Fig. 5. Result of combinational processing: (a) Image successively processed by
CLAHE and MF. (b) The grayscale histogram and cumulative distribution function
for the image shown in (a).

Fig. 6. 2D FE mesh model construction: (a) Mapping of 2D FE mesh model with
image. (b) Numbering of nodes and elements.
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where xn and yn are the coordinates of node n in x and y directions.
In this paper, the operator ‘‘%’’ is modular arithmetic, which finds
the remainder of division; while ‘‘ b�c ’’ is a round down operation
to take the floor integer towards minus infinity. The anticlockwise
four-nodes of the element n can be decided by the following
formulations:

N1
n ¼ nþ bn�1

W c
N2

n ¼ N1
n þ 1

N3
n ¼ N1

n þW þ 2

N4
n ¼ N1

n þW þ 1

8>>>><
>>>>:

n ¼ 1;2; . . . ;HW ð4Þ

where N1
n , N2

n, N3
n and N4

n are the anticlockwise four nodes of element
n. The material property of element is determined by differentiating
the grayscale of the mapping pixel using threshold value. In the FE
mesh data file, the material property of element is characterized by
its property identification number. The material property identifica-
tion numbers of different material components in heterogeneous
material are assumed to be natural numbers beginning with 1
and smaller numbers represent lower density components while
greater numbers represent higher density ones. In this way, the
material property pn of element n can be decided by adopting the
following criteria:

pn ¼
1; gði; jÞ 6 T1

r; gði; jÞ 2 ðTr�1; Tr�;
M; gði; jÞ > TM�1

8><
>: 1 < r < M ð5Þ

where i and j are decided by:

i ¼ 1þ ðn� 1Þ%W

j ¼ 1þ n�1
W

� �
(

ð6Þ

By using the proposed 2D FE mesh reconstruction method, the
Al2O3/(W,Ti)C ceramic composite is reconstructed as shown in
Fig. 7a based on the processed digital image in Fig. 5a. The most
left-bottom one thirty-sixth part of the mesh model is shown in
Fig. 7b to illustrate the microscopic details of the structure.

Compared with the original and processed images, the FE mesh
model preserves most detailed microstructural information of the
material. However, the number of elements in the mesh model is
equal to that of pixels in the corresponding image, which is very
enormous. With the resolution increased, the digital image will
contain more pixels and the resultant FE mesh model will contain
more elements, which is time-consuming for further FE analysis.
As the pixels near image boundary are mostly affected by noise,
we can trim the boundary pixels away from the perimeter to re-
duce the number of elements contained in the model.

4.1. Image trim

Considering the image shown in Fig. 5a, different amount of
pixels are removed from the left, right, bottom and top of the im-
age with almost equal increments to produce new images. The
numbers of removed pixels are shown in Table 1. The grayscale
thresholds, volume fractions of the matrix Al2O3 and relative errors
for corresponding new images are also listed in Table 1, which
shows that the relative errors of the investigated images are less
than 2.79%. The amount of pixels trimmed can be determined sub-
jectively by simultaneously considering the accuracy requirement
and computation time. For instance, if the required accuracy is
approximately not more than 1.00%, 28 surrounding pixels can
be cut from the image in Fig. 5a to keep a relative error of 0.68%.

However, the more pixels trimmed, the less clusters or other
microstructural features will be contained in the reconstructed
model. This leads to the immediate challenge of balancing the



Fig. 7. An example of 2D FE mesh model reconstruction: (a) Reconstructed model for Al2O3/(W,Ti)C ceramic composite. (b) The detailed most left-bottom 1/36 part of the
mesh model.

Table 1
Segmentation results for trimmed images.

Pixels removed Threshold T1 Volume fraction, m1 (%) Relative error, d (%)

Left Right Bottom Top

0 0 0 0 140 54.98 0.043
8 8 9 8 140 55.11 0.21

18 18 19 18 139 54.73 0.49
28 28 29 28 139 54.63 0.68
38 38 39 38 139 54.42 1.06
48 48 49 48 139 54.06 1.71
58 58 59 58 139 53.89 2.02
68 68 69 68 139 53.93 1.94
78 78 79 78 139 54.00 1.82
88 88 89 88 139 53.96 1.89
98 98 99 98 139 54.28 1.31

108 108 109 108 139 54.30 1.27
118 118 119 118 139 54.32 1.24
128 128 129 128 139 54.16 1.54
138 138 139 138 139 53.46 2.79

Table 2
Segmentation results for pixel merged images.
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image size and microstructural features included in the image,
which can be investigated by merging the pixels.
Pixels merged a = b Volume fraction, m1 (%) Relative error, d (%)

1 54.97 0.043
2 55.12 0.22
3 55.06 0.11
4 54.97 0.056
5 54.92 0.14
6 55.10 0.18
7 55.19 0.34
8 54.88 0.22
9 55.27 0.49

10 56.07 1.94
4.2. Pixel merging

Pixel merging is realized by using the following formulation:

ĝði; jÞ ¼ 1
ab

Xia

r¼ði�1Þaþ1

Xjb

t¼ðj�1Þbþ1

gðr; tÞ
$ %

ð7Þ

where ĝði; jÞ is the pixel grayscale of the new image, a and b are the
amount of pixels merged along i and j directions. If W and H cannot
be divided exactly by a and b, respectively, the absent pixels outside
the right and top boundaries are padded by replicating the values
from the nearest border pixels. As the original grayscale values
are averaged during the pixel merging process, the grayscale
threshold for differentiating phases cannot be easily determined.
It is reasonable to segment the image by adopting the threshold va-
lue determined by the raw image unprocessed by pixel merging and
it is proved to very effective in the implementation.

As shown in Table 2, different amounts of pixels are merged for
the image in Fig. 5a. The volume fractions of Al2O3 and relative er-
rors for corresponding images are listed in the table. It is shown
that the investigated image can be adjusted by merging less than
10 pixels in each direction with relative error of not more than
1.94% to get smaller models while preserving the microstructural
features of the material.

4.3. Illustrative reconstruction and model verification

A suitable ultimate image processed by image trim and pixel
emerging that synthetically balanced the accuracy and computa-
tion time can be chosen by trial-and-error. Here, 28 surrounding
pixels are trimmed from the image in Fig. 5a and the image is then
processed by merging 5 pixels in each direction. The resultant im-
age is formed with parameters of W = 110, H = 108, T1 = 140,
v1 = 54.81% and d = 0.352%. The corresponding FE mesh model is
illustrated in Fig. 8a.
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To verify the applicability of the reconstructed FE mesh model,
the homogenization method [23] is adopted to predict the macro-
scopic stiffness of Al2O3/(W,Ti)C ceramic composite. The elastic
modulus and Poisson’s ratio for matrix material Al2O3 and rein-
forced material (W,Ti)C are respectively:

Ematrix ¼ 400 GPa; mmatrix ¼ 0:26; Ereinforced ¼ 570 GPa;

mreinforced ¼ 0:20 ð8Þ

Based on the homogenization method, the elastic modulus and
Poisson’s ratio in x and y directions for the overall Al2O3/(W,Ti)C
ceramic composite are predicted to be:

Eoverall
x ¼ 474:42 GPa; Eoverall

y ¼ 474:26 GPa;

moverall
x ¼ 0:2296; moverall

y ¼ 0:2311 ð9Þ

Fig. 8b shows an accurate characteristic deformation of the FE
model as a unit-cell, which indicates that the reconstructed FE
mesh model is completely applicable to analyze the macroscopic
properties of materials.

5. 3D FE mesh model reconstruction

The 3D microstructural model of heterogeneous material is
reconstructed by stacking 2D serial images in z direction. CLAHE
and MF are firstly applied to each serial image to accurately reflect
the real sectional microstructures. As mentioned in Section 2, to
present the actual microstructural features in z direction precisely,
the distances between adjacent images should be almost the same
size as the resolution of the 2D images, i.e., the following formula
should be maintained:

EðdÞ þ rðdÞ 6 ns ð10Þ

where E(d) and r(d) are the mathematical expectation and the stan-
dard deviation of the distances:

EðdÞ ¼ 1
D

XD

n¼1

dn ð11Þ

rðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

XD

n¼1
ðdn � EðdÞÞ2

r
ð12Þ

The coefficient n is circumstantially determined by the required
accuracy of reconstruction and it is recommended to be in the
interval of 1.0 6 n 6 2.0. The vast majority of dn(n = 1, 2, . . ., D) is
not greater than E(d) + r(d), thus Eq. (10) means that the serial
Fig. 8. Result of 2D FE mesh model reconstruction for Al2O3/(W,Ti)C ceramic composit
merging. (b) Characteristic deformation shown on undeformed model.
images can be directly used to reconstruct the 3D model if most
of the distances are smaller than the upper bound ns. On the con-
trary, if E(d) + r(d) exceeds the upper bound, the serial images
should be interpolated to meet Eq. (10). New images between
antecedent images will be generated and intermediate microstruc-
tural features be reproduced after interpolation. In the interpola-
tion process, the amount of images interpolated between images
In and In + 1, and the adjacent distance of interpolated images are
determined by:

Dn ¼
dn

ns

� �
ð13Þ

d̂n ¼
dn

Dn
ð14Þ

The interpolated images and antecedent images are renum-
bered according to their coordinates in z direction. The grayscales
of the interpolated images are calculated by:

gði; j; kÞ ¼ PðZk; gði; j;nÞÞ; k 2 Ni; n 2 Na ð15Þ

where Ni and Na are number sets whose elements respectively
point to interpolated and antecedent images; Zk is the coordinate
of the k th image along z direction; P(Z,g) is a kind of approximation
function interpolated by the points (Zn, g(i, j,n)), n e Na.

A 3D eight-node rectangular hexahedral FE mesh model is built
to map with the serial images, as shown in Fig. 9a, each element
layer maps to one image with a similar mapping method to two
dimensional reconstruction.

The nodes and elements are numbered in the way as shown in
Fig. 9b, which allows us to easily determine the coordinates of
nodes and the eight-nodes of elements. The coordinates of node
n is calculated by:

xn ¼fðn�1Þ%½ðWþ1ÞðHþ1Þ�g%ðWþ1Þs

yn ¼ ðn�1Þ%½ðWþ1ÞðWþ1Þ�
Wþ1

j k
s

zn ¼ Zr ; r¼ n�1
ðWþ1ÞðHþ1Þ

j k
þ1

n¼1;2; . . . ;ðWþ1ÞðHþ1ÞðTþ1Þ

8>>>>><
>>>>>:

ð16Þ

where xn, yn and zn are the coordinates of node n along x, y and z
directions. The eight-nodes of element n can be concisely decided
by the following formulations:
e: (a) Reconstructed model for Al2O3/(W,Ti)C after applying image trim and pixel



Fig. 9. 3D FE mesh model construction: (a) Mapping of 3D FE mesh model with
serial images. (b) Numbering of nodes and elements.

Fig. 10. An example of 3D serial images segmentation: (a) Eleven serial images for
Al2O3/(W,Ti)C ceramic composite. (b) The grayscale histogram and cumulative
distribution function for the image shown in (a).

Fig. 11. Result of 3D FE mesh model reconstruction for Al2O3/(W,Ti)C ceramic
composite.
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N1
n ¼ nþ n�1

W

� �
þ n�1

WH

� �
ðW þ 1Þ

N2
n ¼ N1

n þ 1

N3
n ¼ N1

n þW þ 2

N4
n ¼ N1

n þW þ 1

Nr
n ¼ Nr�4

n þ ðW þ 1ÞðH þ 1Þ ; r ¼ 5;6;7;8

8>>>>>>><
>>>>>>>:

n ¼ 1;2; . . . ;WHT

ð17Þ

where Nr
nðr ¼ 1;2; . . . ;8Þ are the eight nodes of element n. The same

procedure in 2D reconstruction can be applied to decide the mate-
rial property pn of element n by the grayscale of corresponding im-
age pixel and the thresholds with a similar formulation:

pn ¼
1; gði; j; kÞ 6 T1

r; gði; j; kÞ 2 ðTr�1; Tr�; 1 < r < M

M; gði; j; kÞ > TM�1

8><
>: ð18Þ

The pixel coordinate (i, j, k) of element n is determined by:

i ¼ 1þ ðn� 1Þ%W

j ¼ 1þ ðn�1Þ%ðHWÞ
W

j k
k ¼ 1þ n�1

HW

� �
8>><
>>: ð19Þ

Considering the aforementioned Al2O3/(W,Ti)C ceramic com-
posite, eleven serial images are captured by X-ray tomography as
shown in Fig. 10a. The pixel width and height of these images
are W = H =256, while the real sizes are w = h = 6.8096 lm. All
the distances between adjacent images are dn = 0.158 lm
(n = 1, 2, . . ., D � 1).

The serial images are successively processed by CLAHE and MF
to accurately reflect the real microstructure. The histogram and



Fig. 12. 3D FE mesh model for Al2O3/(W,Ti)C ceramic composite: (a) Reconstructed 3D model for Al2O3/(W,Ti)C after applying pixel merging. (b) Characteristic deformation
shown on undeformed model.
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cumulative distribution function of these images are illustrated in
Fig. 10b, which indicates that the grayscale threshold is 139 and
the corresponding volume fraction of Al2O3 is 54.66% with a rela-
tive error of 0.62%.

As E(d) + r(d) exceeds the upper bound ns = 0.0266 lm (n is se-
lected to be 1.0), the natural cubic spline interpolation is applied to
the serial images. After the pixel interpolation, there are 61 images
in the new series and the updated distance between adjacent
images is 0.0263 lm, which is small enough to reconstruct micro-
structural features. As shown in Fig. 11, the 3D FE mesh model is
reconstructed by adopting the grayscale threshold of 139. Note
that the threshold is decided by the CLAHE and MF processed
images rather than the interpolated images. The volume fraction
v1 of the reconstructed model is 55.21%, which is 0.38% greater
than the experimental value.

The reconstructed 3D models usually contain a great amount of
elements, which results in time-consuming for further FE analysis.
Image trim and pixel merging proposed in Section 4 can be applied
to the serial images by judging and weighing the reconstruction
accuracy and computation time. Note that the same processes
should be exactly applied to each image to keep the microstructure
alignment along z direction and maintain equal numbers of pixels
along x and y directions. For the serial images in Fig. 10a, 2 pixels
are merged in each direction and the resultant 3D FE mesh model
is shown in Fig. 12a with a relative error of 0.49%.

The applicability of the reconstructed 3D FE mesh model is also
verified by predicting the macroscopic stiffness of Al2O3/(W,Ti)C
ceramic composite based on the homogenization method. The
microscopic mechanical properties of the material components
have been provided in Section 4. The elastic modulus and Poisson’
ratio in various directions for the overall Al2O3/(W,Ti)C ceramic
composite are predicted as follows:

Eoverall
x ¼ 472:04 GPa; Eoverall

y ¼ 471:87 GPa; Eoverall
z ¼ 469:36 GPa

ð20Þ
moverall
x ¼ 0:235; moverall

y ¼ 0:233; moverall
z ¼ 0:232 ð21Þ

It is easy to see that the properties in the xy plane are almost the
same as those predicted by the 2D model. The characteristic defor-
mation of the FE mesh model is shown in Fig. 12b. The figure illus-
trates the real microstructural deformation form of typical
heterogeneous material. The reconstructed models can be used to
accurately predict other macroscopic properties of heterogeneous
materials, which will be presented in further studies.
6. Summary

This paper presents a novel FE mesh model reconstruction
method based on the X-ray tomography image for heterogeneous
materials by directly taking their real microstructures into account.
In this method, serial images are captured by X-ray tomography to
reflect the microstructural features, and the images are digitized to
grayscale matrices or 3D array. The grayscale histogram is intro-
duced to decide thresholds for segmenting the images into differ-
ent material components. The volume fractions of the material
components are determined by the grayscale cumulative distribu-
tion function. By mapping with the segmented serial images, 2D
and 3D FE mesh models with rectangular quadrilateral and hexa-
hedral elements are reconstructed. Besides, the image contrast
enhancement, noise reduction and pixel interpolation methods
are applied to the images to accurately reflect the actual micro-
structures, while image trim and pixel merging are proposed to re-
duce the elements contained in the reconstructed model.

The proposed method is implemented by using the C++ pro-
gramming language and Windows GDI platform. The developed
program package outputs the FE mesh models in the neutral file
format used in MSC.Nastran. Using Al2O3/(W,Ti)C ceramic compos-
ite as an example, the paper has shown that the proposed method
can be used to efficiently reconstruct the microstructures with
high accuracy.

The method overcomes the shortcomings of traditional model-
ing approaches by reconstructing the FE mesh models of heteroge-
neous materials directly. The reconstructed models accurately
reflect the microstructural features of materials and they could
be immediately used for FE analysis to predict the macroscopic
properties, and this will be very helpful to design and optimize
the high performance heterogeneous materials.
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