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This paper carries out the structural topology optimization to minimize the radiated
acoustic power in a thermal environment for the first time. The stress induced by the
thermal environment which can reduce the stiffness of the structure, thus changing its
radiation property and optimal design. An approach to investigate this effect is presented
through studying a baffled bi-material plate. The plate is excited by a harmonic load
and subjected to a uniform temperature rise. The thermal stress is first evaluated and
considered as pre-stress in the structural dynamic analysis. With the dynamic response,
the acoustic power can be obtained using Rayleigh integral. Sensitivity analysis with
respect to the design variables is calculated according to the material interpolation model.
Some typical cases are studied; the thermal environment is below the critical buckling
temperature and the driving frequency is lower than the plate’s second natural frequency.
Numerical results show that the natural frequencies decrease with the increase of the
temperature and the structure tends to resonance; thus the radiated sound power level
becomes higher and the pattern of the optimal topology resembles that of the associated
mode shape more closely. The sound power level of the optimal plate becomes lower
than that of the initial plate, especially for the higher temperature cases. During the
optimization process, the critical buckling temperature increases and the structure is
always in pre-buckling.

Keywords: Topology optimization, Acoustic power, Thermal environment.

1. Introduction

One of the problems encountered by hypersonic aircrafts is the high thermal and
acoustic environments to which the aircraft is subjected during a significant por-
tion of the flight envelope. Severe thermal environment due to aerodynamic heating
induces compressive stresses which could cause thermal buckling and alter the natu-
ral frequencies. High-intensity acoustic load could cause failure of the structure and
dysfunction of the payload. Thus, the structural design for spacecrafts operating
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in such extreme environments is of significant importance to provide light-weight
structures with good thermal-acoustic properties.

Structural-acoustic design was first carried out in automobile manufactures; Ma
and Hagiwara [1991] carried out a coupled structural-acoustic sensitivity analysis
of a NVH problem. Belegundu et al [1994] and Salagame et al [1994] described
a general way to minimize the sound radiation of a baffled plate. The structure
response is first evaluated by numerical method; the acoustic power can be obtained
with Rayleigh integral. Christensen and Sorokin et al [1998] reviewed developments
in the structural-acoustic analysis and optimization, and typical objective functions
and optimization formulations were discussed. Lee and Wang [2003] designed thin
structures with respect to radiation and scattering of sound using multi-domain
BEM based on the commercial code SYSNOISE. Kim and Dong et al [2003, 2006]
employed sequential FEM and BEM to carry out design sensitivity analysis for
structural–acoustic problems. The structural dynamic behavior was first obtained
through frequency-response analysis, and BEM was used to solve for the pressure
response of the acoustic domain.

Since the landmark work of Bendsøe and Kikuchi [1988], topology optimization
has been extended to various fields to find the optimal configurations of structures
with respect to different criteria. The first application in acoustic design was carried
out by Luo and Gea [2003], employing an approach based on topology optimization
to study the optimal configuration of stiffeners for the interior sound reduction in
a coupled structural-acoustic system. Lee and Wang et al [2004] used the topology
optimization to design holes on the thin-body through a normal derivative integral
equation. Yoon and Jensen [2007] et al carried out a structural-acoustic optimization
using a mixed finite element formulation, in which displacements as well as pres-
sure are the primal variables. Du and Olhoff [2007, 2010] dealt with the topology
optimization problems to minimize the sound power or sum of the pressure square
radiated from the structural surface(s) into a surrounding acoustic medium. The
structural dynamic displacement response was first calculated and then the acous-
tic pressure was obtained. Akl and El-Sabbagh [2009] developed a mathematical
model based on FEM to optimize a plate coupled with an acoustic cavity to reduce
the fluid-structure interactions at different structural frequencies, verified through
experiment by monitoring the vibration and sound radiation into a rigid acoustic
cavity of the optimized plates.

However to the authors’ knowledge, there are few works on structural-acoustic
topology optimization in thermal environments. It is well known that thermal
stress may change the stiffness of structure, thus altering its dynamic characteristic
[Zienkiewicz and Taylor, 2005]. Pedersen [2001, 2002] optimized the static compli-
ance or eigenvalues of pre-stressed isotropic and laminated plates. The initial stress
was given at different constant levels to study its influence on the topology. In fact,
the thermal load induced by the elevated thermal environment is design-dependent
load, varying with the design variables [Rozvany, 2001; Bruyneel and Duysinx, 2005;
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Gao and Zhang, 2010]. Another particular characteristic of the thermal load is that
it involves both the elastic modulus and the thermal expansion coefficient. For topol-
ogy optimization of bi-material structures as in this work, the penalties of these two
parameters should match each other; otherwise incompatibility may occur between
stiffness and thermal load. The thermal stress coefficient, i.e. the product of elastic
modulus and thermal expansion coefficient has been proposed to characterize the
design-dependent property of thermal-load [Rodrigues, 1995; Gao and Zhang, 2010].

In this paper, topology optimization respect to the sound radiation in thermal
environments is carried out for the first time. The thermal stress is first evaluated
and used to form the geometric stiffness matrix. Then the structural response in
the thermal environment is obtained through the stress stiffening dynamic formula.
With the dynamic response, the acoustic power can be acquired by Rayleigh inte-
gral. Based on the material interpolation model, sensitivity analysis with respect
to the design variables is calculated. A bi-material plate subjected to a harmonic
force with prescribed amplitude and frequency in a uniform thermal environment is
studied. The critical buckling temperature is evaluated to determine the upper limit
of the temperature rise, so that a pre-buckling small-deformation can be assumed to
establish the dynamic formula in a stress stiffening form [Cook, 1994]. The RAMP
interpolation model [Stolpe and Svanberg, 2001] and GCMMA algorithm [Svanberg,
1995] are used in this paper.

2. Dynamic Structure in Thermal Environment

2.1. Buckling analysis

When a plate is subjected to temperature rise from the ambient, thermal stress
develops in the plate. The thermal stress may induce buckling of the structure when
it is high enough. The optimization is carried out when the plate is in pre-buckling
state; thus, the critical buckling temperature Tcr is first evaluated to determine the
upper limit of the uniform temperature rise. An eigenvalue buckling analysis can
be stated as [Cook, 1994]

(K + λKG)Φ = 0 (1)

where λ is a scalar multiplier, Φ is the eigenvector and K is the stiffness matrix.
∆T = T1 − T0is the temperature change.

Tcr = T0 + λ∆T (2)

KG refers to the geometric stiffness for bending induced by the in-plane thermal
stress [Zienkiewicz and Taylor, 2005]

KG =
∑

e

∫

Ae

GTSGdA (3)

where S is the membrane stress matrix at the element level; G is the strain-
displacement matrix; Ae is the area of the element.
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2.2. Membrane stress

If the temperature change across the thickness is uniform, the thermo-elastic prob-
lem of the plate can be described with the plane-stress constitutive equation,

σ = Dm (ε− αT ) = EDε− βDT (4)

where σ is the membrane stress vector, comprised of the same components as the
membrane stress matrix S; E, α, β = Eα are the elastic modulus, the thermal expan-
sion coefficient and the thermal stress coefficient respectively; Dm is the membrane
elasticity matrix; T is the temperature rise vector.

The strain in Eq. (4) can be written in FE form

ε = Buti (5)

where B is the strain-displacement matrix; uti is the element displacement vector
which can be obtained with the boundary conditions through

KUt = Ft (6)

where Ft is the equivalent thermal force induced by the uniform temperature rise;
Ut is the thermal displacement; the index “t” denotes the word “thermal”.

The equivalent membrane thermal force Ft has the form [Zienkiewicz and Taylor,
2005]

Ft = −
∑

i

∫

Ai

αBTDmTdA = −
∑

i

∫

Ai

βBTDTdA (7)

Eq. (7) indicates that the equivalent thermal force is design-dependent. For the bi-
material topology optimization problem, both the elastic modulus and the thermal
expansion coefficient have to be switched simultaneously from one material to the
other. Incompatibility may occur between the stiffness and the thermal load. By
introducing the thermal stress coefficient β, the penalty can be made properly to
the thermal load Ft, and the incompatibility can be efficiently avoided [Gao and
Zhang, 2010].

2.3. Dynamic formula

When the temperature is below Tcr, the dynamic FE formula of the plate in a
uniform thermal environment can be written in a stress stiffening form (with the
damping neglected) [Cook, 1994]

(K + KG − ω2M)U = F (8)

where K, M are the stiffness and mass matrices respectively; F is the amplitude
vector of the time-harmonic external load; ω = 2πf is the circle frequency; U is the
dynamic displacement response vector.
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Using mode superposition, U can be represented as

U =
m∑

l

λlΦl (9)

where λl is mode participation factor, m is the number of modes used and Φl is the
lth eigenvector.

Premultiply Eq. (8) by ΦT

ΦT (K + KG − ω2M)Φλ = λTF (10)

Note that ΦT(K + KG)Φ = diag(ωnl) and ΦTMΦ = I, where ωnl is the structural
lth natural frequency in the thermal environment.

λl =
m∑

l

Φ− lTF
ω2

nl − ω2
(11)

3. Finite Element Discretization for Radiated Power

Consider a vibrating plate mounted on a rigid baffle and placed in a light fluid such
as air. The pressure p at any observation point r on the surface of the plate can be
described using Rayleigh integral as

p = jρ0ω

∫

A

vaG(r− ra)dA (12)

where va refers to the normal surface velocity at point ra; ρ0 indicates the density
of air; G(r-ra) is the half-space Green’s function

G(r− ra) =
e−jk|r−ra|

2π|r− ra| (13)

k = ω/c is the wave number and c is the speed of sound in air.
The acoustic power radiated from the vibrating plate can then be written as

W =
∫

A

1
2
Re(pv∗)dA

=
jρ0ω

4π

∫

A

∫

A

va
e−jk|r−ra|

|r− ra| dAv∗dA (14)

=
ρ0ω

4π

∫

A

∫

A

va
sin k|r− ra|
|r− ra| dAv∗dA

where *(asterisk) indicates complex conjugation of the quantity. Note that when r
=ra, sin(k|r-ra|)/|r-ra| approaches k and the singularity can be avoided.

Restate Eq. (14) in FE form

W =
ρ0ω

4π

∑

i

∑

i

vT
a Ja

sin k|r− ra|
|r− ra| Jv∗ = V∗ZV (15)

Note that single point Gaussian quadrature is used. va and v are now the normal
velocity at the centroids (ra and r) of the element. Ja and J are the values of the
Jacobian at the element centers.
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The surface velocity can be easily obtained based on results from Eq.(8)

V = −jωUn (16)

Un is the normal displacement of the plate, i.e. the transverse displacement com-
ponent in this paper. Readers can refer to Belegundu et al [1994], Salagame et al
[1994], Herrin and Martinus [2003] for more details.

4. Optimization Problem and Sensitivity Analysis

4.1. Problem formulation

Besides the acoustic power, the acoustic energy or the weighted sum of the magni-
tudes of squared pressures are often chosen as the objective functions in structural
acoustics. Although slight differences exist, all these physical quantities measure a
level of radiated energy [Christensen and Sorokin, 1998].

The topology optimization problem for minimizing the radiated sound power of
the bi-material plate in the thermal environment can be stated as

min W =
∫

A

1
2
Re(pv∗)dA

s.t. (K + KG − ω2M)U = F

KUt = Ft (17)

p = jρ0ω

∫

A

vaG(r− ra)dA

∑

i

Viζi ≤ V

ζi ∈ (0, 1)

where ζi is the design variable, denoting the artificial volume fraction of material 1
(the stiffer material of the two materials) in the element i; Vi is the volume of the
element i; V is the maximum volume of material 1 of the structure.

At each iteration, the second constraint equation is first assembled and solved to
calculate the displacement Ut. With Eqs. (5) and (6), the membrane thermal stress
σ can be obtained to get the geometric stiffness matrix KG. The first constraint
equation can then be solved to obtain the structural response. The third constraint
equation describes the sound radiation from baffled vibrating plate. Note that the
feedback is neglected and it is a sequential vibro-acoustic problem.

4.2. Sensitivity analysis

The sensitivity of the objective function W with respect the design variables can
be written as

∂W

∂ζi
=

∂V∗

∂ζi
ZV + V∗ ∂Z

∂ζi
+ V + V∗Z

∂V
∂ζi

= 2V∗Z
∂V
∂ζi

(18)
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The design variable in this work is the artificial volume fraction of material 1, and
the structure is subjected to harmonic load with a prescribed frequency; thus the
derivative of matrix Z to ζi is zero. Note that “the derivative is localized in the
sense that the derivative only involves information at the element level” [Bendsøe
and Sigmund, 2003], and the derivative of the velocity ∂V/∂ζi in Eq. (18) is in fact
∂Vi/∂ζi. “However, there is an effect from other design variables hidden ” in the
velocity V.

According to Eq. (16), the velocity derivative can be obtained by differentiating
Eq. (8)at element level. Note that the harmonic load F is design-independent.

(Ki + KGi − ω2Mi)
∂Ui

∂ζi
= −

(
∂Ki

∂ζi
+

∂KGi

∂ζi
− ω2 ∂Mi

∂ζi

)
Ui (19)

Its global form can be written as

(K + KG − ω2M)Up = Fp (20)

where Up, Fp can be regarded as pseudo response and load vector. Eq. (20)is a
generalized dynamic formula, describing a model that has the same eigenvalues and
eigenvectors as Eq. (8)

Using mode superposition, Up can be represented as

Up =
m∑

l

λp
l Φl (21)

with

λp
l =

m∑

l

ΦT
l FP

ω2
nl − ω2

(22)

To obtain Fp, derivatives of the matrices on the right hand of Eq. (19) need to be
calculate respectively.

4.2.1. Derivatives of the stiffness and mass matrices

It has been shown by Bruyneel et al [2005] and Gao et al [2010] that in SIMP
model the volume constraint may not be a binding one and the compliance becomes
unbounded in low-density regions for design-dependent problems. The reason is that
SIMP has a zero-slope at ζi = 0.

RAMP proposed by Stople and Svanberg [2001] turns out to be effective in
dealing with such difficulty [Bruyneel et al, 2005; Gao et al, 2010]. The RAMP
interpolation models of the elastic modulus, the mass density and the thermal stress
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coefficient can be written as

Ei = RE(ζi)E(1) + (1−RE(ζi))E(0) (23)

ρi = Rρ(ζi)ρ(1) + (1−Rρ(ζi))ρ(0) (24)

βi = Rβ(ζi)β(1) + (1−Rβ(ζi))β(0) (25)

where the superscripts 0 and 1 denote material 0 and material 1 respectively;

R(ζi) =
ζi

1 + p(1− ζi)
(26)

and p is the penalty factor. The penalty factors for each material property parameter
can be different and pE , pρ, pβ refer to the penalty factors for the elastic modulus,
the mass density and the thermal stress coefficient respectively.

The derivatives of K and M in Eq. (19) at the element level are as follows

∂Ki

∂ζi
=

1 + pE

(1 + pE(1− ζi))2
(K(1)

i −K(0)
i ) (27)

∂Mi

∂ζi
=

1 + pρ

(1 + pρ(1− ζi))2
(M(1)

i −M(0)
i ) (28)

4.2.2. Derivatives of the geometric stiffness matrix

The key is the derivative of the geometric stiffness matrix KG; it involves not
only the temperature change, but also the strain induced by the design-dependent
equivalent thermal force. With Eq. (4), the membrane stress S in Eq. (3) can be
stated as

S = EΞ− βΘ (29)

where EΞ, βΘ refer to the strain part and the thermal expansion part respectively.
Thus the geometric stiffness matrix can be divided as follows

KGi =
∑

i

∫

Ai

GTSjGdA

=
∑

i

∫

Ai

GT(EiΞi − βiΘi)GdA

=
∑

i

∫

Ai

EiGTΞiGdA−
∑

i

∫

Ai

βiGTΘiGdA

KI
Gi + KII

Gi

(30)

Accordingly the partial derivative of the geometric stiffness matrix for the element
i can be written as

∂KGi

∂ζi
=

∂KI
Gi

∂ζi
+

∂KII
Gi

∂ζi

=
∂Ei

∂ζi

∫

Ai

GTΞiGdA + Ei

∫

Ai

GT ∂Ξi

∂ζi
GdA− ∂βi

∂ζi

∫

Ai

GTΘiGdA

(31)
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It can be found that only the second part of the right-hand items is left to deal
with, that is, the derivative of the ith element’s thermal strain with respect to its
artificial volume fraction.

Since the membrane stress S has been restated as Eq. (29) according to Eq. (4),
the derivative of Ξ is in fact equivalent to the derivative of ε, both referring to the
derivatives of the membrane strains. It is as follows with Eq. (5)

∂ε

∂ζi
=

∂(Buti)
∂ζi

= B
∂uti

∂ζi
(32)

The derivative of the thermal displacement in Eq. (32) can be obtained through
differentiate Eq. (6) at the element level

∂(KiUti)
∂ζi

=
∂Fti

∂ζi
(33)

Ki
∂Uti

∂ζi
= −∂Ki

∂ζi
Uti +

∂Fti

∂ζi
(34)

Note that Ft is design-dependent and related to the thermal stress coefficient β; its
derivative is non-zero. According Eq. (7), the derivation of Ftcan be written as

∂Fti

∂ζi
=

∂βi

∂ζi

∫

Ai

BTDΓdA (35)

The global form of Eq. (34) should be assembled and then solved with the boundary
conditions to obtain the derivative of thermal displacement in Eq. (32).

So far, the derivative of the geometric stiffness matrix KG has been obtained,
and the sensitivity analysis is now finished.

5. Numerical Example

A four-edge clamped bi-material square plate with dimension 1m×1m×0.02m is
studied. The plate is subjected to a temperature rise ∆T = T1−T0with T0 = 0◦. The
specific mass of the fluid (i.e. air) is ρ0 = 1.21 and the sound speed c = 343.4m/s.
The material properties are as follows:
E(0) = 70GPa, ρ(0) = 2650kg/m3, α(0) = 1.5× 10−5◦−1

E(1) = 210GPa, ρ(1) = 6500kg/m3, α(1) = 1.1× 10−5◦−1

A mesh of 40 × 40 with isoparametric 4-node element is used here. The control
volume fraction of material 1 is 50%, uniformly distributed for the initial structure.
A harmonic concentrated load with 1N amplitude is applied at the quarter-point
(0.25, 0.25) of the plate. pE = pρ = 3 and pβ = 0 used in the following calculations.

Both Eqs. (19) and (34) need to be solved during the sensitivity analysis, and the
property of the sensitivity is intricate, and the dynamic compliance may possibly
be non-monotonous. GCMMA [Svanberg, 1995], the globally convergent version of
MMA [Svanberg, 1987] is employed.
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Fig. 1. Acoustic radiation from the four-edge clamped square plate driven by an unit harmonic
concentrated load.
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Fig. 2. The critical buckling temperature of the initial plate.

5.1. Eigenvalue and buckling analysis

Tcr is first evaluated by carrying out an eigenvalue buckling analysis Eq. (1). It
serves as the upper limit of ∆T , to ensure that the uniform temperature rise does
not induce buckling of the initial plate.

According to Fig. 2, four thermal cases, i.e. ∆T = 0◦, ∆T = 40◦, ∆T =
60◦,∆T = 70◦, are chosen for analysis in this work. It is shown later from the
numerical results that Tcr increases as the optimization proceeds, indicating that
the plate is always in the pre-buckling state.

The first two natural frequencies and mode shapes of the initial plate in the
four thermal conditions are shown in Table 1 and Fig. 3 respectively. Although the
natural frequencies decrease obviously, the mode shapes hardly change. According
to the eigen-analysis, two excitation-frequency cases, f = 50Hz and f = 250Hz, are
chosen and studied.

Table 1. First two natural frequencies

∆T = 0◦ ∆T = 40◦ ∆T = 60◦ ∆T = 70◦

1st 184.1Hz 129.7 Hz 89.9 Hz 60.4 Hz
2nd 375.1 Hz 317.0 Hz 283.1 Hz 264.4 Hz
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(1)                                                                             (2) 

Fig. 3. (1) 1st and (2) 2nd mode shapes in the four thermal environments a ∆T = 0◦, b ∆T = 40◦,
c ∆T = 60◦, d ∆T = 70◦.
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Fig. 4. Iteration history of the sound power level of (1) case f = 50Hz and (2) case f = 250Hz.

5.2. Results and discussions

The iteration history of the sound power level (SPL) is shown in Fig. 4.
For case f = 50Hz, the SPL is 21.2dB, 27.1dB, 34.6dB, 47.9 dB initially and

decreases 3%, 10.6%, 19.8% and 36.7% respectively after optimization. As the tem-
perature rises, the natural frequencies decrease and the structure tends to resonate;
thus the SPL becomes higher.

For case f = 250Hz, the increase of SPL with temperature implies that the sec-
ond natural frequency is probably the main component that affects the response. If
this is not the case, then the fundamental frequency one will be the main compo-
nent. Due to the fact that the natural frequencies decrease with the temperature,
SPL verse the temperature could not be monotonous.

The optimal topology in the four thermal cases is shown in Fig. 5. Rayleigh
integral indicates that the SPL is only related to the normal velocity; thus, so will
be the distribution of the stiffer material (material 1) in the optimization. The
change of the topology also reflects the effect of the thermal environment on the
normal velocity.
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 (1)                                                                              (2) 

Fig. 5. Topology of the bi-material plate (white: material 0; black: material 1) with (1)f = 50Hz
and (2) f = 250Hz in the four thermal environments a ∆T = 0◦, b ∆T = 40◦, c ∆T = 60◦, d
∆T = 70◦.

(1)                                                                              (2) 

Fig. 6. (1)1st mode shape for the case f = 50Hz and (2) 2nd mode shape for the case f=250Hz
of the optimal plate after optimization in the four thermal environments a ∆T = 0◦, b ∆T = 40◦,
c ∆T = 60◦, d ∆T = 70◦.

The first mode shape of the optimal plate after optimization for the case f =
50Hz is shown in Fig. 6(1). There is barely change compared to Fig. 3(1). The second
mode shape of the optimal plate for the case f = 250Hz is shown in Fig. 6(2). It is
initially symmetrical with respect to the midline in Fig. 3(2) and now symmetrical
(not absolutely symmetrical) with respect to the diagonal.

For the lower-temperature subcases of the case f = 50Hz, more material 1
lumps around the location of the applied load. As the structure tends to resonate
with the temperature rise, the material moves towards the center and the pattern
of the topology becomes more and more similar to that the mode shape. Note that
the mode shape suggests the resonance normal velocity (or displacement) at the
associated natural frequency.
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Fig. 7. Tteration history of the critical buckling temperature of (1) case f = 50Hz and (2) case
f = 250Hz.

For the case f = 250Hz, as the temperature rises, the upper part becomes larger
and its pattern resembles that of the second mode shape more closely, which also
indicates that the topology is mainly affected by the second natural frequency other
than the first.

During the optimization process, Tcr is monitored to check whether the plate
is pre-buckling state to ensure that Eq.(8) can be used. It is shown in Fig. 7 that
Tcr increases as the iteration grows, indicating that no bifurcation occurs. In some
sense, it means that the optimization yields a stiffer structure.

6. Conclusion

In this paper structural topology optimization in a thermal environment with
respect to the radiated acoustic characteristic is investigated for the first time.
The thermal stress is regarded as pre-stress, through which the dynamic formula is
obtained to evaluate the structural response. The radiation sound power can then
be calculated by Rayleigh integral. Sensitivity analysis is carried out in which the
derivative of the geometric stiffness matrix is the key point.

A bi-material plate subjected to a harmonic force with prescribed amplitude and
frequency is studied. Through buckling and eigenvalue analysis, four pre-buckling
thermal cases and two excitation frequency cases are chosen. Numerical results
show that the natural frequencies decrease with the increase of the temperature,
the structure approaches to resonance; thus the radiated sound power level becomes
higher. The pattern of the optimal topology resembles that of the mode shape
more closely, which is due to the fact that only the normal velocity is needed in
the Rayleigh integral to calculate the radiated sound power. It also shows that
during the optimization process, the critical buckling temperature increases and
the structure is always in the pre-buckling state.
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