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The design of classic active flutter controllers has often been based on low-fidelity and low-accuracy linear

aerodynamic models. Most of these models were usually treated as a linear time-invariant system, without

considering time-varying parameters, such as the Mach number, the angle of attack, the Reynolds numbers, etc. A

high-fidelity reduced-order model based on the proper orthogonal decomposition adaptation algorithm is used to

develop a new general linear parameter-varying aeroservoelastic model with aerodynamic nonlinearity. A robust

gain-scheduling control-law design method for active flutter suppression based on the proposed linear parameter-

varying model is investigated. The proposed design method is demonstrated with the Goland� wing aeroelastic

model. The simulation results show that the linear parameter-varying gain-scheduled controller can effectively

suppress flutter over a range of airspeeds, and the flutter boundary in the transonic regime is simultaneously

increased by nearly 20% to 30%.

Nomenclature

A = volume of the fluid cell
F = flux value
f, g = generic functions
K = control gain
q = dynamic pressure
R = proper orthogonal decomposition kernel matrix
u = structural displacement
v = structural velocity
W = snapshot matrix
�w, �u, �_u = perturbations of the steady-flow values
� = deflection of the control surface
�r = proper orthogonal decomposition basis

I. Introduction

F LUTTER is a dynamic instability caused by the interaction of
structural, inertial and aerodynamic loads that can lead to the

sudden mechanical failure of an aircraft wing during fight. Because
of the severity of the potential emergence failure, a real aircraft
typically operates in the region well below the flutter boundary. The
tendency to reduce the weight and increase the structural flexibility
and operating speed of aircraft with lightweight composite materials
greatly increases the possibility of flutter occurrence within the
aircraft operational envelope. The active control of nonlinear
aeroelastic instability, such as active flutter suppression, is
becoming a promising and attractive technology because it can
simultaneously reduce the weight and increase the performance of
modern aircraft [1].

The design of classic active flutter controllers is usually based on
low-fidelity linear aerodynamicmodels, such as Theodorsen’s quasi-
steady aerodynamic model [2,3], the lift-surface theory, and the
doublet-lattice method used in the ZEARO software system [4].
These low-fidelity models have led to great achievements in the
design of classic flutter controllers, especially in the low-speed
subsonic regime. However, these methods (i.e., panel methods)
require good prior knowledge and experience regarding the
characteristics of the aeroelastic system. The generalized unsteady
aerodynamic forces must be calculated for each structural mode over
a wide range of frequencies; then, they must be transformed into
the time domain to construct the aeroservoelastic model by the
rational-function approximation [5], which is a tedious process. The
greatest shortcoming of this approach is that the low-fidelity linear
aerodynamic model cannot accurately capture the dominant
nonlinear unsteady behaviors of the flow in the transonic regime,
such as shockmovement and flow separation, which have significant
impacts on the aeroelastic responses.

As a benefit of the development of computational aeroelasticity,
the nonlinear aeroelastic response can be accurately predicted by the
high-fidelity physics-based fluid-structure coupling solver, such as
the computational fluid dynamics (CFD) solver and computation
structural dynamics (CSD) solver. However, the use of multistep
time-domain calculations for each aircraft state is computationally
expensive. The high dimensionality of the full-order CFDmodel also
prevents its application to controller design. To reduce the expensive
computational cost and the high order of the CFD model, a novel
concept called the reduced-order model (ROM) has been proposed in
recent years. The ROM seeks to capture the dominant nonlinear
behaviors of the aeroelastic system with the use of a simple
mathematical representative model constructed from the full-order
system. The use of this model is convenient in conceptual design,
control, and data-driven systems [6]. Different approaches for
the reduced-order modeling of aerodynamic systems have been
proposed, including system-identification-based data-driven mod-
els, such as the Volterra theory of nonlinear systems [7] and the linear
model-fitting ARMA model [8], as well as flow eigenmode-based
models, such as the proper orthogonal decomposition (POD)method
[9,10] and the nonlinear dynamic-theory-basedmodels [11,12]. Both
the Volterra/ROM and POD/ROMmethods recently have been used
to design active control laws for suppressing two-freedomaeroelastic
systems [13], BACT models [14,15], and wing models [16,17].

Many types of classic and modern control theories have been
applied to the design of active control laws [1,13–17]. The designs of
most of these control laws are based on linear time-invariant (LTI)
models. The LTI-based controllers must be designed at several
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previously selected operating points and combined with another
explicit gain-schedule controller during their operation. Because of
the lack of a systematic stability analysis method, the control
performance of such controllers in the entire flight envelope cannot
be ensured a priori. Actually, the flow parameters (for example, the
dynamic pressure, Mach number, angle of attack, etc.) are usually
time-varying in operation, and these parameters have a great impact
on the aeroelastic response. Gain-scheduled linear parameter-
varying (LPV) control is a natural extension of H1 control for
systems that vary smoothly as a function of the chosen scheduling
parameters. LPV models can offer many advantages that are not
available from the single operating-point-based LTI models. If the
parameters of the LPV model can be measured in real time, the LPV
control theory can then be used to design an automatically gain-
scheduled stable controller that depends on the same parameters, and
no ad hoc gain-schedulingmethods are required [18]. LPV control of
aeroelastic systems has been investigated by several researchers.
Barker et al. successfully designed a robust control law based on the
LPVmodel by linear fractional control [19]. However, Barker’s LPV
model is constructed from a simple direct linear interpolation of
many LTI models built in different Mach numbers and dynamic
pressures. It is not suitable for nonlinear aeroelastic systems in the
transonic regime. Prime et al. have shown that the LPV controller can
autoschedule with the airspeed and effectively suppress the limit-
cycle oscillations of the three-degrees-of-freedom airfoil aeroelastic
system over a range of airspeeds [3]. Their LPV model is based on
Theodorsen’s low-fidelity quasi-steady aerodynamic model, which
is also not easily applicable to three-dimensional nonlinear
aeroelastic systems, especially in the transonic regime.

Recently, we have investigated physics-based high-fidelity low-
order aeroservoelastic models, which were used to design an active
control law for the Goland� wing based on the Volterra/ROM [16]
and for the AGARD 445.6 wing based on the POD-BT/ROM [17]
combined with the linear-quadratic regulator (LQR) method. The
traditional ROM is sensitive to variation of the flow parameter; thus,
the stability and performance of the LQR controller cannot be
ensured when the flow parameters vary during flight operation. To
maintain the prediction accuracy of the aeroservoelastic model, we
can construct several POD/ROMs over a wide range of the flight
envelope at specified intervals and quickly reconstruct a new ROM
by interpolating the precalculated POD/ROMs. In this paper, we
investigate a new general LPV aeroelastic model based on the
POD adaptation method first proposed by Lieu at al. [20]. As a
demonstration, an LPV controller will be designed for the Goland�
wing based on the LPV aeroelastic model and used to actively
suppress the dynamic instability with flow-parameter variation.

II. Adaptive POD/ROM Model for Aeroelastic System

A. Dynamic Linearized Equation for the Aeroelastic System

For a fully coupled nonlinear aeroelastic system, the Euler/
Navier–Stokes equation discretized by the finite volume method is
written as follows:

�A�u�w�;t � F�w; u; _u� � 0 (1)

where w is the conservative flow variable, F is the flux, A is the
volume of the fluid cell, and u is the displacement of the structural
girds. Supposing that �w, �u, and �_u are small perturbations
around the steady state variables �w0; u0; _u0�, we can obtain the
following linearized equation [20]:

A0� _w�H�w�G�u� �C� E�� _u� 0 (2)

H � @F
@w
�w0; u0; _u0� G� @F

@u
�w0; u0; _u0�

C� @F
@ _u
�w0; u0; _u0� G� w0

@A

@u
�u0� (3)

whereA0 is the volume of thefluid cell in the steady state. To simplify
the notation of the linearized equation, w, u, and _u are used to
represent the perturbation variables �w, �u, and �_u, respectively.

The structural dynamic equation without damping can be written
as follows [21]:8>><

>>:
Mv;t � fint�u; v� � fext�u;w�
fint�u; v� � K0

fext�u;w� � @fext

@u
�u0; w0�u� @fext

@w
�u0; w0�w

(4)

whereM, fint, and fext are the mass matrix, the structural inner force,
and the nonlinear external fluid forces acting at the structural
grid points, respectively. If v� _u, P� �@fext=@w��u0; w0�, and
Ks � K0 � �@fext=@u��u0; w0�, then the linearized flow equation or
the snapshot Eq. (2) can be transformed into the following state-
space equation: �

w� Aw� B� v u �T

F� Cw
(5)

where A��A�10 H, B��A�10 �E� C G �, and C� P. The fully
coupled linearized aeroelastic system equation is obtained by
combining the structure and fluid equations as follows:

_w
_v
_u

2
4

3
5� �A�10 H �A�10 �E� C� �A�10 G

M�1P �M�1C �M�1KS
0 I 0

2
4

3
5 w

v
u

2
4

3
5 (6)

The CFD-based computation of Eq. (6) is too expensive for the
near-real-time simulation of flexible aircraft, and it is impractical for
controller design because of the large order of the equation.
Therefore, the POD approach is used to reduce the full-order
aeroelastic system.

B. POD/ROM of the Aeroelastic System

For one series of data (fxkg, xk 2 1=2n) in the n-dimensional
space, the POD method searches an m-dimensional proper
orthogonal subspace� 2 Rn�m to minimize themapping errors from
fxkg to � [22], where

G�min
�

Xm
k�1
kxk ���Hxkk �

Xm
k�1
kxk ���Hxkk; �H�� I

(7)

Equation (7) is equivalent to

H�max
�

Xm
k�1

h�xk;��2i
k�k2 �

Xm
k�1

h�xk;��2i
k�k2 ; �H�� I (8)

The constraint optimization problem of Eq. (8) is transformed into
the following Lagrange equation:

J��� �
Xm
k�1
�xk;��2 � ��k�k � 1� (9)

Solving the partial-derivative objective function J���with respect
to� produces

d

d�
J��� � 2XXH� � 2�� (10)

where X� fx1; 	 	 	 ; xmg is the matrix of snapshots. Equation (10) is
set equal to zero; thus,

�XXH � �I��� 0 (11)

Equation (11) is a real symmetry eigenvalue problem of the POD
kernel K � XXH . For high-order K 2 Rn�n, the large eigenvalue
problem is not easy to solve. Because XXH and XHX have the same
eigenvalues, � can also be calculated from the following lower m-
dimensional problem: �

XHXV � V�
�� XV��1=2

(12)
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where �� � 1;  2; 	 	 	 ;  m�, �� ��1; �2; 	 	 	 ;  m�, and �1 

�2 
 	 	 	 
 �m. By truncating � to the r-order vector
�� � 1;  2; 	 	 	 ;  r�, we can obtain the following reduced-fluid
model:

�
_wr ��T

r A�rwr ��T
r By

F� P�rwr
(13)

Finally, the traditional r-order time-domain POD/ROM of the
aeroelastic system can be represented as follows:

_wr

_v

_u

2
64

3
75

�
��T

r A
�1
0 H�r ��T

r A
�1
0 �E� C� ��T

r A
�1
0 G

1
2
�1V

2
1 �M�1P�r � �M�1 �C � �M�1 �KS

0 I 0

2
64

3
75

wr

v

u

2
64

3
75

(14)

The order of the reduced system in Eq. (14) is much smaller than
that of the original system in Eq. (6). It can be reduced further, from
hundreds to tens, by the balance-truncation method [17]. The POD/
ROM is convenient for analyzing the stability and observing the time
response of nonlinear aeroelastic systems, and it is much simpler and
more efficient than the full-order CFD simulation.

C. Adaptation of the POD/ROM

Because the POD/ROM is constructed by small perturbations of
the flight parameters (such as the Mach number, Reynolds number,
and angle of attack), at a nonlinear steady state solution of the
coupled aeroelastic system, it is only accurate when the flight
condition is sufficiently close to the nominated steady-state
condition. The global POD method [23] and the direct interpolation
of the basis vectors [21] were proposed for the adaptation of a POD
basis to address parameter variation. However, these approaches
have been shown to provide poor results in the transonic regime. Lieu
and Farhat [24] proposed a numerical procedure to interpolate the
POD bases by means of the subspace-angle interpolation proposed
byGolub andVanLoan [25]. Amsallem and Farhat [26] extended the
POD basis interpolation method to multivariables with better
accuracy based on the matrix approximation algorithm in the tangent
space of the Grassmann manifold [27]. Here, we use Amsallem’s
adaptive POD interpolation method to quickly reconstruct the POD
basis under different flow conditions. The following provides a brief
introduction to the adaptation algorithm.

Let fSigNR�1i�0 denote a set ofN�-dimensional subspaces associated

with a set of different operating points off�igNR�1i�0 . These subspaces

are represented by their corresponding matrices f�i 2 RNf�N�gNR�1i�0 .
The new N�-dimensional subspace SNR , associated with a new
operating point �NR , can be obtained by interpolating the known

subspaces fSigNR�1i�0 as follows:

�I ��i0
�T
i0
��i��T

i0
�i��1 � Ui�iV

T
i �Thin SVD�

�i � Uitan
�1��i�VT

i �NR � UNR
�NR

VT
NR
�Thin SVD�

�NR
��i0

VNR
cos��NR

� � UNR
sin��NR

� (15)

Once the new POD basis �NR
is obtained, the new POD/ROM of

the aeroelastic system can be updated quickly by Eq. (14). The
adaptation procedure specified in the previous algorithm can be
described as an interpolation method in the tangent space of a
Grassmann manifold, which supports multivariable interpolation,
such as theMach number, angle of attack, dynamic pressure, etc. The
details of the interpolation algorithm can be found in [26,27].

D. ROM Validation

1. Unsteady Responses

The Goland�wing model is a variant of the heavy Goland wing,
which was developed as a transonic-flutter test case by Eastep and
Olsen [28]. Based on the original Goland wing, the heavy Goland
wing had increased mass to ensure applicability in the transonic
regime. TheGoland�wing is modeled with a box structure beam to
allow a variety of store attachment options. The wing semispan is
20 ft (6.096 m), the chord is 6 ft (1.8288 m), the thickness-to-chord
ratio is 0.04, and the elastic axis is located 2 ft (0.6096 m) from the
leading edge. The symmetric airfoil section is constant over the
spanwise direction of the wing. Figures 1 and 2 plot the structural
model and the aerodynamic surface mesh, respectively. The wing/
store system has 200,000 aerodynamic grid points. The infinite plane
spline interpolation method is used to deal with the mesh mapping
between the flow and structure. The spring-analogy dynamic-mesh
algorithm is applied to track the movement of the structure.

One of the key elements of the POD/ROM is the construction of
the POD snapshot matrix, which can be calculated from Eq. (13) in
the time domain or in the frequency domain. In the time domain,
applying the central differential scheme to the snapshot Eq. (5)
produces the following form:

wn�1 � wn
�t

�Aw
n�1 � wn

2
�Byn�1=2 (16)

This equation can be rearranged as follows:�
I �A�t

2

�
wn�1 �

�
I �A�t

2

�
wn �B�tyn�1=2 (17)

For a given input, the time responses or snapshots can be computed
from Eq. (17) by the implicit time-marching method. If the order of
the structure mode is s, the number of snapshot vectors is m;
consequently, the dimension of the snapshot matrix is 2s �m. Our
POD/ROM solver used the Dirac triangle-impulse function for
every structural modal displacement and velocity. The solver was
successfully used to simulate nonlinear aeroelastic behaviors, such as
flutter and limit-cycle oscillation, in cases including the NLR 7301
airfoil model, the AGARD 44.6 wing, and the Goland� wing
[12,16,17].

Fig. 1 The structural model of the Goland� wing.

Fig. 2 The aerodynamic surface mesh.

CHEN, SUN, AND LI 975

D
ow

nl
oa

de
d 

by
 X

ia
n 

Ji
ao

to
ng

 U
ni

ve
rs

ity
 o

n 
Se

pt
em

be
r 

24
, 2

01
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

12
36

 

http://arc.aiaa.org/action/showImage?doi=10.2514/1.C031236&iName=master.img-000.jpg&w=159&h=103
http://arc.aiaa.org/action/showImage?doi=10.2514/1.C031236&iName=master.img-001.jpg&w=159&h=116


To construct the adaptive POD/ROM, the traditional POD/ROMs
for the Goland� wing should be preconstructed at several selected
Mach numbers, such as 0.94, 0.89, 0.86, 0.78, and 0.66. For each
chosen Mach number, the state-space snapshot Eq. (17) was first
used to compute the snapshots with a time step of dt� 5 � 10�5 s.
The first 300 time-response samples for each model were chosen to
construct the snapshot matrix. Second, three different-order POD/
ROMs, including 300-order, 80-order, and 60-order ROMs, were
constructed. Third, to select an appropriate ROM, the aeroelastic
time responses of the Goland� wing were calculated by the three
POD/ROMs and the full-order linearized model with a time step of
dt� 0:001 s. An initial vertical velocity of 0.01 was given to the
second structural mode. The comparison results showed that the 300-
order and 80-order ROMs were sufficient to capture the dominant
aeroelastic behavior, whereas the 60-order ROM exhibited obvious
differences. Consequently, the lower 80-order POD/ROM was
finally chosen for all the Mach numbers. The CFD/CSD-coupled
solver took approximately 6 h to compute the structural responses,
whereas the POD/ROM only required approximately 2 min on an
i7-CPU PC. Even when the cost of building the POD/ROM is
considered, the computational efficiency is increased by nearly an
order of magnitude.

The preconstructed and verified POD/ROMs were used to update
the POD/ROMs under new flow conditions by the interpolation
algorithm described in Eq. (15). The unsteady lift coefficient
responses of the aeroelastic system at Mach numbers 0.90, 0.82, and
0.72 were calculated to validate the accuracy and efficiency of the
adaptive POD/ROM model. Figure 3 shows the simulation results
predicted by the adaptive ROM and the full-order model at different
Mach numbers and dynamic pressures. The comparisons in Fig. 3
indicate that the adaptive algorithm and the updated ROMs have
good efficiency and accuracy for predicting the unsteady aerody-
namic responses of the Goland� wing.

2. Flutter-Boundary Prediction

The flutter boundary predicted by the adaptive-interpolation POD/
ROM was compared with those presented by Snyder et al. [29] and
Parker et al. [30]. From Fig. 4, it can be observed that the flutter
boundary predicted by the adaptive POD/ROM agrees well with the
full-order model, especially at Mach numbers below 0.91. The
comparisons of the time responses of the first structural mode
predicted by the adaptive-interpolationROMwith those predicted by
the full-order model are illustrated in Figs. 5 and 6, in which the
dynamic pressures are 46,112 and 48,112, respectively, below and
above the flutter point at Mach 0.9. The stable and unstable time
responses of the first mode predicted by the two models agree well.
This result indicates that the interpolation of the POD/ROM can also
capture the aeroelastic behaviors under new flow conditions with
good accuracy.

It takes nearly 1 h for the reconstruction of the new POD/ROM
under new flow conditions, whereas only several minutes are
required for the interpolation of the POD basis. Considering the high
computational efficiency of the updated ROM, although there are

some obvious differences after Mach 0.91, it still provides a good
initial value for the accurate predication by the CFD/CSD-coupled
simulation. In addition, more preconstructed ROMs can be added to
the database to improve the performance of the adaptive POD/ROM.

The two aforementioned cases indicate that the adaptive POD/
ROM can represent the dominant dynamics of the aeroelastic
behavior over a broad flight envelope. The POD/ROM provides a
potential tool for nearly real-time aeroelastic simulation. In the next
section, we develop an LPV aeroservoelastic model based on the
adaptive POD/ROM.

Fig. 3 The aerodynamic responses of the adaptive POD/ROM and the full-order model.

Fig. 4 Comparison of the flutter boundary predicted by different

models.

Fig. 5 The stable response at Mach 0.9, q� 46112.
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III. LPV Controller Design

A. LPV Aeroservoelastic Model for the Goland�Wing

As a demonstration, oneflap-control surface is used to stabilize the
dynamic instability of the Goland� wing aeroelastic model plotted
in Fig. 2. The following LPV aeroservoelastic model based on the
adaptive POD/ROMis obtained by adding the unsteady aerodynamic
perturbation of the flap-control surface into Eq. (14):

_wr

_v

_u

2
64

3
75

�
��T

r A
�1
0 H�r ��T

r A
�1
0 �E�C� ��T

r A
�1
0 G

1
2
�1V

2
1 �M�1Pw�r � �M�1 �C � �M�1 �KS

0 I 0

2
64

3
75

wr

v

u

2
64

3
75

� q1

Pw�

Pf�

0

2
64

3
75� (18)

where � is the deflection of the flap,Pw� is the perturbation matrix of
the unit deflection of the flap to the flowfield variables, andPf� is the
perturbation matrix of the unit deflection of the flap to the general
aerodynamic force. These control matrices can also be precomputed
by the unsteady CFD solver to build the PODbasis at the givenMach
numbers. The control matrices are also dependent on the flight
conditions, but their new values at the changed flow parameters can
be calculated very quickly by the simple Lagrange interpolation
algorithm. The POD basis �r is dependent on the Mach number,
which can also be updated quickly by the interpolation algorithm
described in Sec. II.C. Before constructing the LPVaeroservoelastic
model, the POD basis database was previously computed at the
selected Mach numbers (i.e., 0.94, 0.89, 0.86, 0.78, and 0.66).
Therefore, the LPV aeroservoelastic model can be updated very
quickly based on the adaptive POD/ROMmethod. Finally, the state-
space equation of the aeroservoelastic model can be written as
follows: �

_x�A�q1;M1�x�B�q1;M1��
y� Cx

(19)

When B� 0, the LPV aeroelastic equation is obtained. This
equation can be used to predict the system response to parameter
variation (such as theMach number or altitude in the flight envelope)
in near-real time. For the active control of the aeroelastic system in
Eq. (19), the input is the deflection of the control surface �, and the

corresponding output is the structural response, i.e., the modal
displacement and the modal velocity. The active control/stability
augmentation problem is the design of the control law ���K�x�,
which stabilizes the unstable structural response or enlarges theflight
envelope.

B. LPV Gain-Scheduled Control-Law Design

The LPV theory offers several advantages over classical gain-
scheduled control, in that the resulting LPV controllers are
automatically gain scheduled, and no ad hoc methods of gain
scheduling are needed. The details of the LPV control theory can be
found in the control-theory references; consequently, only a brief
description is introduced here. The standard LQR control problem
can be represented as the LTI state system described by

_x�Ax�Bu� w z� Q1=2 0

0 R1=2

� �
x
u

� �
(20)

whereQ and R are the weightings of the state variables and the input
variables, respectively. Equation (20) can be represented in the form
of a generalized control problem:

_x
z
y

2
4

3
5� A B1 B

C1 D1 E1

C F1 0

2
4

3
5 x

w
u

2
4

3
5 (21)

with B1 � I, C1 � �Q1=2 0 �T , D1 � � 0 0 �T , E1 � � 0 R1=2 �T ,
F1 � 0.

For a parameter vectorp, the closed-loop linear parameter-varying
state-space form of the generalized control problem of Eq. (21) under
the state feedback C� I with feedback gain K��� is

G��� :� A0��� B0���
C0��� D0���

� �
:� A��� �A���K��� B1���

C1��� � E1���K��� D1���

� �
(22)

With the parameter-dependent Lyapunov variable ���� and the
auxiliary parameter ����, the H2 norm of the closed-loop system is
kG���k22 � � if the analysis linearmatrix inequalities (LMIs) (23) are
feasible [31].

_���� � A0T��� � ����A0T��� ����B0�������
B0������� �I

" #
< 0

���� C0T���
C0��� ����

" #
> 0; Tr ������ < �; D0 � 0 (23)

For the state-feedback case, a transformed Lyapunov variable Y
and controller variable M are introduced. When the congruence
transformation proposed by Scherer [32] is applied to Eq. (24), the
following synthesis LMIs are obtained:

� _Y��� � ~A��� � ~A���T ~B���
~B���T �I

" #
< 0

Y��� ~CT���T

~C��� Z���

" #
> 0; Tr �Z����< �; ~D� 0 (24)

where the new variables are

~A��� ~B���
~C��� ~D���

� �
:� A���Y��� �B���M��� B1���

C1���Y��� � E1���M��� D1���

� �
(25)

Now, the synthesis LMIs are affine in thevariablesY��� andM���.
The Lyapunovmatrix and the gain of the controller can be calculated
as follows:

���� � Y�1���; K��� �M���Y�1��� (26)

Fig. 6 The unstable response at Mach 0.9, q� 48112.
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IV. Simulation and Results

A. Controlled Response of Different Parameters

The time response of the Goland� wing at Mach 0.72 and a
dynamic pressure of 31041.56 are illustrated in Fig. 7. The dynamic

pressure is above the flutter point; thus, the system becomes
divergent very quicklywithout control. The system stabilizes quickly
after the controller is started at the 1300th time step of the simulation.
The deflection of the controlflap is also smooth,which is good for the

Fig. 7 Comparison of the controlled aeroelastic response at Mach 0.72, q� 31041:56.

Fig. 8 Comparison of the controlled aeroelastic response at Mach 0.92, q� 20458:12.

Fig. 9 Aeroelastic response at Mach 0.72, q� 31041:56.
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practical physical realization. Figure 8 illustrates the aeroelastic
response with the LPV controller at Mach 0.92 and a dynamic
pressure of 20485.12, which is also above the flutter point. The
divergent Goland� wing can also be well suppressed after starting
the active controller at the 1300th time step.

Figures 7 and 8 also show that the aeroelastic time responses
predicted by the LPV model agree well with the full-order
model, which demonstrates the capacity and efficiency of the LPV
model. The most important advantage is that the control gain is
autoscheduled without an explicit assignment. As a benefit of the
LPV model, the near-real-time aeroservoelastic simulation of
flexible aircraft based on high-fidelity CFD tools becomes possible.

B. Robust Simulation

The robustness of a controller is important because it is impossible
to build an absolutely accurate plant model, and model errors always
exist. Robustness is also important because the properties of the
structure may change during flight, such as the separation of the
wing-tip store. Consequently, an analysis of the robustness of the
active controller is required. By allowing the structural stiffness to
change by�10%, Figs. 9 and 10 show the aeroelastic responses with
the LPV controller from the 1300th time step at Mach 0.72 and 0.92,
respectively. The simulation results indicate that the designed LPV
controller can still successfully suppress the unstable system with
good performance.

C. Comparison of the Predicted Flutter Boundary

The other performance criterion for controller evaluation is the
improvement of the flutter boundary. The flutter boundaries with and
without the LPV controller are compared in Fig. 11, which shows
that an enhancement of approximately 20–30%was obtained for the
active LPV controller. The controlled flutter boundary predicted by
the interpolation adaptive ROM is very close to that of the POD/
ROM, especially at the previously selected operation points at which
the POD basis was preconstructed. This result implies that the LPV
model is suitable for designing the active control law because of its
good representation of the dynamic behaviors of the Goland�wing
over a wide range of the flight regime.

V. Conclusions

A new general linear parameter-varying aeroservoelastic model
based on the adaptive proper orthogonal decomposition reduced-
order model was investigated. The linear parameter-varying model
enabled the use of linear parameter-varying control theory to design a
robust and implicit gain-scheduled flutter controller. The method
proposed a general framework for the physics-based high-fidelity
numerical simulation method to be applied to the design of active
flutter-suppression control laws. The linear parameter-varyingmodel
was also able to deal with the time-varying flow parameters in the
flight envelope with nonlinear aerodynamic effects in the transonic
regime. The proposed method is a promising method and an
attractive tool for integrated flight simulation, which combines rigid
flight dynamics with the aeroelastic dynamics of a flexible aircraft
based on high-fidelity computational fluid dynamics tools.
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