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When the amplitude of the oscillation of the unsteady flow is large or there is large
perturbation relative to the mean background flow, the traditional proper orthogonal

decomposition/reduced order model (POD/ROM) based on linearized time or frequency
domain small disturbance solvers cannot capture the main nonlinear features well such
as limit cycle oscillation (LCO), which is very dangerous for the structure. Therefore,
the traditional linear ROMs are not good enough for limit cycles prediction and active
control law design. A new nonlinear ROM based on dynamically nonlinear flow equation
NPOD/ROM was investigated. The nonlinear second-order snapshot equation in time
domain for POD basis construction is obtained from the Taylor series expansion of the
flow solver. The simulation results indicate that the NPOD/ROM can capture LCO
very well and is also very convenient for active control law design, while the traditional
POD/ROM lose effectiveness.

Keywords: Reduced order model; limit cycle oscillation; proper orthogonal decomposi-
tion; aeroelasticity; active control.

1. Introduction

With the development of computational aeroelasticity, the aeroelastic response can
be accurately predicted by the high-fidelity physics-based mathematical model such
as CFD/CSD couple solver. However, the computation cost is too large for these
high-fidelity methods to be applied to the multidisciplinary conception design in
which there are lots of iterations. Unlike high-fidelity couple solver, reduced order
model (ROM) seeks to construct a simple mathematical representation model, which
captures the dominate behavior of aeroelastic system and can be convenient to use
in conception design, control, and data-driven systems [Lucia et al. (2004)].

Many approaches for constructing linear flow and aeroelastic ROMs have been
developed and shown to produce good numerical results that compare well with
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high-fidelity nonlinear solver. Among these approaches, the ROM based on proper
orthogonal decomposition (POD/ROM) is recently becoming the most popular.
For example, the POD/ROM was successfully applied to the CFD-based aeroelas-
tic analysis of airfoil [Thomas et al. (2004)], wing [Thomas et al. (2003)], and full
aircraft [Lieu et al. (2006)], especially in flutter prediction [Thomas et al. (2003);
Lieu et al. (2006); Lai and Tsai (2008)]. These ROMs are typically constructed
based on the linearized time or frequency domain small disturbance solvers that
are dynamically linearized about some nonlinear stationary background flow state.
Most aeroelastic phenomena such as flutter and gust response can be deal with
these ROMs based on dynamically linearization equation. However, unfortunately,
some important strong nonlinear dynamics with large structure deformation cannot
be simulated by the small disturbance solvers, for example, limit cycle oscillation
(LCO), which is one of the major nonlinear dynamic aeroelastic unstable phenom-
ena and very dangerous to aircraft structure. Because of the poor performance
in LCO prediction, the POD/ROM is scarcely used in active control law design
for LCO.

For modeling the cases where the amplitude of the unsteady flow oscillation is
large or large changes occur in the mean background flow, the ROMs for dynamically
nonlinear solvers are required, for the linearized time or frequency domain small
disturbance solvers cannot capture the main nonlinear features [Dowell et al. (2003);
Hu and Dowell (2008)]. Such ROMs are essential for matched point flutter onset
analysis as well as nonlinear LCO analysis. The low fidelity model cannot predict
the strong aerodynamic nonlinearity very well, so the design of control law for LCO
is a tedious work that requires the help of high fidelity tool such as CFD/CSD
couple solver. There are seldom successful reports for the traditional time-domain
POD/ROM to predict LCO generate by the aerodynamic nonlinearity. On behalf of
the harmonics including some nonlinear flow information, the first-order frequency-
domain HB/POD solver developed by Dowell [Thomas et al. (2004); Dowell et al.
(2004)] can capture LCO very well in some instances; however, there are still obvious
errors in other instances far away from the frequency where the ROM was created.
Recently, Badcock had put forward a fully nonlinear ROM construction method
based on bifurcation theory, which is an excellent fully nonlinear ROM and can
predict LCO very well [Badcock and Woodgate (2007)]. Badcock’s bifurcation ROM
is a new type of ROM, not belong to POD/ROM.

We will develop a new dynamically nonlinear solver-based POD/ROM, or
NPOD/ROM, which will enable the rapid modeling of nonlinear unsteady aero-
dynamic flows and the associated fluid forces, especially for the LCO prediction
and control. The main idea of NPOD/ROM is to extend the conventional dynam-
ically linear POD snapshot equation to dynamically nonlinear snapshot equation
by second-order Taylor serials expansion in time domain. It means that the tra-
ditional POD/ROM is first-order model, while the NPOD/ROM is second-order
model.
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2. The POD Algorithm

For one series data {xk}xk ∈ Cn, which is called snapshot, construct an m-
dimension proper orthogonal subspace Ψ ∈ �n×m to minimize the mapping errors
from {xk} to Ψ:

G = min
Φ

m∑
k=1

‖xk − ΦΦHxk‖ =
m∑

k=1

‖xk − ΨΨHxk‖, ΦHΦ = I. (1)

It equals to:

H = max
Φ

m∑
k=1

〈(xk,Φ)2〉
‖Φ‖2

=
m∑

k=1

〈(xk,Ψ)2〉
‖Ψ‖2

, ΦHΦ = I (2)

〈·〉 is mean value operator, which can be neglected if the snapshot matrix is com-
puted by numerical method, and (·, ·) is inner product. The constraint optimization
problem of Eq. (2) can be transformed into Lagarange equation:

J(Φ) =
m∑

k=1

(xk,Φ)2 − λ(‖Φ‖ − 1). (3)

Solve the partial derivative objective function J(Φ) to Φ, and there is:
d

dΦ
J(Φ) = 2XX HΦ − 2λΦ. (4)

X = {x1 x2 · · · xm} is the snapshot matrix. Let Eq. (4) equal zero:

(XX H − λI)Ψ = 0. (5)

Equation (5) is a real symmetry eigenvalue problem about POD kernel K = XX H .
Considering that XX H and XHX have the same eigenvalue, we can obtain Ψ from
the follow lower m-dimension problem:{

XHXV = V Λ

Ψ = XV Λ−1/2.
(6)

Ψ = [ψ1 ψ2 · · · ψm],Λ = diag(λ1 λ2 · · ·λm), λ1 ≥ λ2 ≥ · · · ≥ λm. Truncate Ψ to
r-order vector Ψr = [ψ1 ψ2 · · ·ψr], the n-order full system xn×1 can be reduced to
an r-order system:

xn×1 = Ψrξ
r×1. (7)

3. NPOD/ROM Method

3.1. Aeroelastic equation

The full-coupled nonlinear aeroelastic equation decentralized by finite volume
method for flow and finite element method for structure is:

dA(u, u̇)w
dt

+ R(w,u, u̇) = 0 (8)

Mv,t + f int(u, v) = f ext(u,w). (9)
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For the flow equation, �w is conservative flow field value including flow velocity,
flow density, and enthalpy. R is flux value, A is fluid cell volume, �u is structure gen-
eral displacement, and �v is structure general displacement derivatives. For structure
equation, M is mass matrix, f int is structure inner force, and f ext is the aerody-
namic loads acting on the structure.

3.2. Dynamically nonlinear flow equation

3.2.1. Nonlinear snapshot equation

The first step for reducing the flow system is to compute the values of the operators
(·, ·) and 〈·〉, or the covariant matrix of the unsteady flow values, which are the so-
called snapshots. For the FVM-decentralized NS equation, at the convergent steady
flow (w0,u0, u̇0), there are:

dA(u0, u̇0)w0

dt
= R(w0,u0, u̇0) = 0

R(w,u, u̇) = 0, ẇ0 = 0, u0 = 0, u̇0 = 0, ü0 = 0.

Suppose (δw, δu, δu̇) is the flow perturbation around the nonlinear steady back-
ground flow (w0,u0, u̇0) and then expand the flow Eq. (8) at (w0,u0, u̇0) by the
Taylor serials. The first item of Eq. (8) is:

A(u, u̇)ẇ +
(
w
∂A

∂u

)
· u̇ +

(
w
∂A

∂u̇

)
· ü = A(u, u̇)ẇ + E · u̇ + D · ü. (10)

Considering that the Geometry Conservation Law of FVM method is only with
second-order accuracy, the third-order effect, or the gird acceleration effect can be
neglect. Therefore, the last item of Eq. (10) is neglected. By retaining the second-
order items of Taylor serials of the above equation, we obtain:

A(u, u̇)ẇ = A(u0 + δu, u̇0 + δu̇)(ẇ0 + δẇ)= A(u0 + δu, u̇0 + δu̇)δẇ

=
[
A(u0,o) +

(
∂A

∂u

)
0

δu +
(
∂A

∂u̇

)
0

δu̇
]
δẇ (11)

Eu̇ = E0 · u̇0 + E0 · δu̇ +
(
∂E
∂w

δw +
∂E
∂u

δu +
∂E
∂u̇

δu̇
)

0

· u̇0

+
(
∂E
∂w

δw +
∂E
∂u

δu +
∂E
∂u̇

δu̇
)

0

δu̇

= E0 · δu̇ +
(
∂A

∂u
δw + w

∂2A
∂u2

δ2u + w
∂2A
∂u∂u̇

δu̇δu
)

0

δu̇

= w0
∂A

∂u
(u0) · δu̇ +

(
∂A

∂u

)
0

δwδu̇. (12)
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Expand the second item of equation and neglect the third-order item, there is:

R(w,u, u̇) = R(w0,u0, u̇0) +
(
∂R
∂w

)
0

δw +
(
∂R
∂u

)
0

δu +
(
∂R
∂u̇

)
0

δu̇

+
1
2!

(
∂

∂w
δw +

∂

∂u
δu +

∂

∂u̇
δu̇

)2

0

R(w,u, u̇)

=
1
2

(
∂2R
∂2w

)
0

δ2w +
[(

∂R
∂w

)
0

+
(
∂2R
∂w∂u

)
0

δu +
(
∂2R
∂w∂u̇

)
0

δu̇
]
δw

+
1
2

(
∂2R
∂2u

)
0

δ2u +
1
2

(
∂2R
∂2w

)
0

δ2u̇

+
(
∂2R
∂u∂u̇

)
0

δuδu̇ +
(
∂R
∂u

)
0

δu +
(
∂R
∂u̇

)
0

δu̇. (13)

The total second-order Taylor serials or the discrete NS equation can be rearrange
by δw: [

A(u0,o) +
(
∂A

∂u

)
0

δu +
(
∂A

∂u̇

)
0

δu̇
]
δẇ +

1
2

(
∂2R
∂2w

)
0

δ2w

+
[(

∂R
∂w

)
0

+
(
∂A

∂u

)
0

δu̇ +
(
∂2R
∂w∂u

)
0

δu +
(
∂2R
∂w∂u̇

)
0

δu̇
]
δw

+
1
2

(
∂2R
∂2u

)
0

δ2u +
1
2

(
∂2R
∂2u̇

)
0

δ2u̇ +
(
∂2R
∂u∂u̇

)
0

δuδu̇

+
(
∂R
∂u

)
0

δu +
[
w0

∂A

∂u
(u0) +

(
∂R
∂u̇

)
0

]
δu̇ = 0. (14)

The accuracy of the spatial discretization scheme is not more than third order, and
the derivatives of flux to grid displacement and velocity are bigger than second-order
partial derivatives. The nondimensional δu and δu̇ are also smaller than one. There-
fore, the second-order items (∂2R

∂2u )0δ2u, (∂2R
∂2u̇ )0δ2u̇, ( ∂2R

∂u∂u̇)0δuδu̇ are lesser than the
first-order items of δu and δu̇, and they can be neglected. Finally, we obtain the
dynamically nonlinear POD snapshot equation such as:

A1δẇ + B1δ
2w + H1δw + G1δu + (C1 + E1)δu̇ = 0

A1 = A(u0,o) +
(
∂A

∂u

)
0

δu +
(
∂A

∂u̇

)
0

δu̇

B1 =
1
2

(
∂2R
∂2w

)
0

,

H1 =
(
∂R
∂w

)
0

+
(
∂A

∂u

)
0

δu̇ +
(
∂2R
∂w∂u

)
0

δu +
(
∂2R
∂w∂u̇

)
0

δu̇.

(15)
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The partial derivatives, including the first and second Jacobian terms, should be
computed previously according to the background flow. In order to ensure the accu-
racy of the Jacobian terms, the automatic differentiation tool was used, which is as
good as analytical method. The inputs are δu and δu̇, and the output is δw, which
can be solved by the Newton–Raphson technique. δw is the nonlinear snapshot
required for ROM construction.

3.2.2. NPOD/ROM for aeroelastic system

Suppose the snapshot matrix is W and the POD kernel matrix is R = WWT . Use
the POD algorithm to obtain an r-dimension proper orthogonal subspace Ψr which
can be considered as the fluid mode, then project Eq. (8) to Ψr, and we can get the
nonlinear NPOD/ROM for aeroelastic system:

A1Ψrδẇr + B1Ψ2
rδ

2wr + H1Ψrδwr + G1δu + (C1 + E1)δu̇ = 0

Mü + Cu̇ + Ksu − q∞PΨrδwr = 0,
(16)

where P = ∂fext

∂w (u0, w0),Ks = K0− ∂fext

∂u (u0, w0). The s is the order of the structure
equation, which can be reduced by structure modes. The order of the system (16)
is just 2s + r and it is smaller than the original system. It is very convenient to
analyze the stability and the time response of the system from the NPOD/ROM.
It is simple and efficient than CFD/CSD coupled computation.

3.3. Traditional POD/ROM

Retain the first-order items of Eq. (15), and the full-order dynamically linearized
snapshot equation can be obtained:

A0δẇ + Hδw + Gδu + (C + E)δu̇ = 0 (17)

H =
∂R
∂w

(w0,u0, u̇0)

G =
∂R
∂u

(w0,u0, u̇0)

C =
∂R
∂u̇

(w0,u0, u̇0)

E = w0
∂A

∂u
(u0).

(18)

The linearization fluid Eq. (17) can be transformed into the state space equation:{
ẇ = Aw +B[v u]T

F = Cw.
(19)

A = −A−1
0 H , B = −A−1

0 [E + C G], C = P . Use the algorithm in Sec. 2 to obtain
r-dimension proper orthogonal subspace Ψr, project the Eq. (13) into Ψr and we
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can obtain the reduced fluid model:{
ẇr = ΨT

r AΨrwr + ΨT
r By

F = PΨrwr.
(20)

Replace Eq. (20) into Eq. (9), the traditional time-domain POD/ROM of aeroelastic
system can be represented as follows:


ẇr

v̇

u̇


 =




−ΨT
r A

−1
0 HΨr −ΨT

r A
−1
0 (E + C) −ΨT

r A
−1
0 G

1
2
ρ∞V 2

∞M̄
−1PΨr −M̄−1C̄ −M̄−1K̄S

0 I 0






wr

v

u


 . (21)

As it can be seen, the traditional time-domain POD/ROM is just one special case
of the NPOD/ROM.

4. Numerical Validation

4.1. NLR 7301 airfoil aeroelastic model

As a demonstration for the efficiency of the new NPOD/ROM, the NLR 7301 airfoil
section aeroelastic model with the pitch and plunge movement was selected, which
was tested extensively in wind tunnel by Schewe [Dietz et al. (2004)] and numerical
simulated by Dowell [Thomas et al. (2004)]. The detail of the model parameters can
be founded in their references. Transonic two-degree-of-freedom aeroelastic experi-
mental studies were conducted for various Mach numbers and angles of attack and,
and LCO was observed in some instances.

4.2. Snapshots comparison between linearization

and nonlinear equation

The 400× 100 O-type mesh was used for aerodynamic computation. At Ma = 0.76,
α = 0◦, h = 0, V ∗ = 0.37, the unsteady lift coefficient responses of different fidelity
models were observed. Figure 1 plots the lift coefficient response of CFD, linear, and
nonlinear snapshot equations at airfoil pitch vibration movement with a very little
amplitude. The results of different model are very closely. It verifies once again that
the linear model has the enough accuracy to predict the unsteady aerodynamics
at the case of small disturbance [Dowell et al. (2003)]. It also clearly points out
the essentials why the conventional or first-order POD/ROM can represent the
traditional aeroelastic dynamics very well such as flutter and gust response, because
they are still small perturbation relative to the reference steady flow.

Then enlarge the amplitude of vibration by 10 times and observe the unsteady
aerodynamic response again. Figure 2 is the unsteady lift coefficient response of
CFD, linear, and nonlinear snapshot equations. It is seen clearly that the lineariza-
tion snapshot equation has obvious errors both in amplitude and in frequency, while
the nonlinear snapshot equation still shows good performance.
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Fig. 1. Lift response (little disturbance).

Fig. 2. Lift response (large disturbance).

4.3. LCO prediction

Use the Eqs. (15) and (17) to solve the snapshots with the time step of 5 × 10−5 s
and obtain 200-step response from Dirac triangle impulse function for each mode
displacement and mode velocity for each structure mode movements at the condi-
tion of Ma = 0.75, α = 0◦. Then, 100-order POD/ROM and NPOD/ROM for the
aeroelastic system are constructed. The number of the ROM order was selected
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Fig. 3. Pitch movement predicted by NPOD vs. CFD/CSD solver.

according to the accuracy of the ROM for the flutter prediction. We find that the
100-order POD/ROM was good enough to do that.

We hope to meet the LCO at the reduced velocity V ∗ = 0.376, which is above the
flutter point. In this case, the conventional time-domain linear POD/ROM lose its
way while the NPOD/ROM catches the LCO. Figure 3 is the pitch responses of LCO
predicted by the NPOD/ROM and the direct CFD/CSD couple solver. Figure 4 is
the plunge movement of the LCO. The right of the pictures is the local zoom map.
The amplitude error of the LCO predicted by the NPOD/ROM is less than 8%
of those by the CFD/CSD solver. The LCO is very close to the Tang’s results
[Thomas et al. (2008)], which were computed by the CFL3D solver. The consistent
response shows the capability and accuracy of NPOD/ROM for LCO prediction.
The unsteady flow field after the airfoil run into LCO also was reconstructed by the
100-order NPOD/ROM, and it was founded that the reconstructed flow field was

Fig. 4. Plunge movement predicted by NPOD vs. CFD/CSD solver.
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also similar to the results simulated by the CFD/CSD couple solver including the
position and frequency of the shock.

As same as the traditional POD/ROM, the computation efficiency of
NPOD/ROM is also excellent. For LCO prediction of the two-dimensional viscous
NLR 7301 aeroelastic model, the computation cost is reduced from the order of
hours for direct CFD/CSD solver to on the order of seconds for NPOD/ROM. We
can also find out that the NPOD/ROM can predict the response very well even
at α = 3.5◦, which is far from the steady background flow at α = 0◦ where the
ROM is constructed, while the traditional POD/ROM cannot do that. It means
that the NPOD/ROM is much more robust to flow parameter variation than tradi-
tional POD/ROM. This is on behalf of the second-order items of the dynamically
nonlinear snapshots equation.

4.4. LCO trend prediction

In this section, the NPOD/ROM is constructed at the condition Ma = 0.75, α =
0.2◦. And then, we compute the pitch amplitude of LCO trend in different reduced
order velocity. Figure 5 gives the LCO pitch amplitude vs. reduced velocity predicted
by different models. As it can be seen, the first-order HB/POD can capture LCO
very well in some instances such as the reduced velocity 0.37–0.41, but there are
still great large errors in other conditions [Thomas et al. (2008)]. However, the
LCO trend predicted by NPOD/ROM is very closely to the CFD/CSD solver in
most instances. It indicates again that NPOD/ROM is a great enhancement to the
traditional first-order POD/ROM when the flow state is far away from the steady
background flow such as LCO comes out.

Fig. 5. LCO response trend by different models.
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4.5. Active control for LCO

LCO is very dangerous for the aircraft structures. Active stability augmentation
system is an attractive and promising technology to suppress flutter and LCO. In
order to design a good control law, the control plant model with low order and high
accuracy must be provided. From the above discussion, the NPOD/ROM had been
proved as a good low-order model for representing the nonlinear dynamics. In this
section, we will demonstrate the performance of active control law designed based
on NPOD/ROM. As Fig. 6, the rear flap of the airfoil can be used as an actuator
to stabilize the LCO. We can design the active control law for LCO based on the
NPOD/ROM or the Eq. (16) directly. The flux state wr cannot be measured directly
by the sensors, while the structure movement state variables u and v or the outputs
of the aeroelastic system can be measured directly. Equation (16) is a nonlinear
system, so the static output feedback linearization method was used to design the
control law for stabilizing the nonlinear system [Riccardo and Patrizio (1996)].

In the simulation, the flow condition is as the same as the Sec. 4.3, the time
steps is 0.001 second. The controller will start after the aeroelastic system run into
LCO at the 7300 time steps. Figures 7 and 8 are the responses of pitch and plunge

Fig. 6. Typical aeroelastic model with flap.

Fig. 7. The response of pitch movement with controller (NPOD vs. CFD/CSD).
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Fig. 8. The response of plunge movement with controller (NPOD vs. CFD/CSD).

Fig. 9. The response of the flap control.

movement predicted by the NPOD/ROM and CFD/CSD couple solver. Figure 9
is the response of the flap where the largest deflection is limited below 0.1. It can
be seen that the LCO can be stabilized very quickly. The results from the two
models are very approximate and the NPOD/ROM itself can be used to design
and evaluate the control law for LCO directly, while the traditional POD/ROM
must combined with the CFD/CSD couple solver to evaluate the robustness
of the controller because of linear ROM’s poor performance in LCO prediction
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[Chen et al. (2010)]. It indicates that the NPOD/ROM is good enhancement for
active control law design and evaluation and will reduce the design cost and improve
the performance of the active controller.

5. Conclusion

The NPOD/ROM, a new nonlinear ROM in time domain for computational fluid
dynamic flow solver is investigated. The construction method of NPOD/ROM for
aeroelastic system is obtained by the Taylor series expansion of the flow solver
together with POD method. The efficiency and capability for NPOD/ROM to pre-
dict the LCO is demonstrated by the NRL 7301 aeroelastic experimental model. The
simulation results show that the NPOD/ROM can predict the aeroelastic response
very well even in the condition some far from the steady background flow where
the ROM is constructed with excellent computation efficiency. The other merit is
that the active controller of LCO can be directly designed and evaluated without
CFD/CSD couple solver. The next step is to extend the NPOD/ROM to model the
cases with more flow parameters variation individually or simultaneously such as
Mach number, angel of attack, or bank, etc.
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