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An investigation of the effect of initial stress on the lateral modes in 1-3 piezocomposites is conducted. The Governing equations,
taking into account the piezoelectricity, initial stress, and initial strain, are developed for the piezocomposites. Analytical solutions
of the mechanical displacement and electric potential function are obtained based on the Bloch waves theory. Influence of the initial
stress on the lateral modes frequencies and the stop band are discussed in detail, respectively. The conclusion reached indicates that
the lateral mode frequencies increase with the piezoelectricity of the piezocomposites, but decrease with the poling initial stress in
piezocomposites.
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1. Introduction

1-3 piezocomposites consist of piezoelectric rods or fibers in a
passive polymer matrix. Due to their low acoustic impedance,
low mechanical quality and their high electromechanical cou-
pling coefficient, they are well suited for ultrasonic transducers
in non destructive testing and medical imaging applications.

While 1-3 piezocomposites offer significant advantages over
solid piezoceramic devices, the new microstructure results in
the introduction of additional lateral vibration modes, which
give rise to spurious resonances [1]. The spurious resonances,
caused by the Bragg diffraction of Lamb waves in the periodic
microstructure, were first experienced by Gururaja et al. [1].
Gomez et.al. [2] experimentally studied the relevance of the
stiffness, impedance, and attenuation coefficient of the poly-
mer in the lateral vibration modes in the 1-3 piezocomposites.
The lateral resonances in 3-D periodic layers of finite thick-
ness were explored theoretically by Auld and Wang [3] and
Wang [4] using the Floquet formalism. Other authors [5, 6]
studied lateral resonances by using the finite element meth-
ods. Since these approaches require intensive calculations, a
simpler model is highly desired. Certon et al. [7, 8] investigated
the propagation of purely transverse waves in a 2-D periodic
medium of infinite thickness by using the Bloch waves theory
and membrane method. The Bloch waves theory was first de-
veloped in the area of solid state physics to calculate the energy
bands in a crystal lattice [9]. This approach was described by
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Wang and Auld [10] in general terms for elastic propagation in
3-D periodic medium and they applied it to the particular case
of a 1-D periodic structure. In reference [8], the Bloch waves
theory was extended to a 2-D periodic structure. The disper-
sion curves, the stop band limits, as well as the frequencies and
the displacement fields of the lateral modes were obtained and
compared with experimental results. However, they did not
take into account the piezoelectricity effects. Wilm et al. [11]
developed a full 3D model based on a plane wave expansion
method for general piezoelectric-based composite materials.
Complementary quantitative calculations were performed for
thickness modes in 1-3 piezocomposites and compared to a
well-established theory.

In most cases, 1-3 piezoelectric composites are prepared
from unpoled PZT and the polymer matrix [12, 13]. During
the poling process, the PZT tries to elongate in the poling
direction and contract in the transverse direction. However,
the deformation of the PZT in piezocomposites is hindered
by the surrounding polymer, which results in the occurrence
of residual stresses in composites. In fact, the residual stresses
play a significant role in lateral modes of composites. They
will change the lateral mode frequencies and stopbands of
piezocomposites. Most previous works gave much attention to
the effects of geometry and physical properties on the lateral
modes in piezocomposites. Consequently, so far investigations
related to the study of the influence of initial stress due to
the poling process on the lateral modes in piezocomposites
have not been carried out. This article presents an analytical
solution based on the use of the Bloch waves theory to study
the influence of initial stress on the lateral modes in 1-3 piezo-
electric composites. In Section 2, the governing equations
with the modified piezoelastic parameters in the stressed
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piezocomposites are founded. According to the Bloch waves
theory, the analytical solutions for the displacement and
electric potential functions are constructed in the reciprocal
lattice. A numerical example is given and the effect of the
initial stress on the lateral modes is discussed in Section 3,
and the concluding remarks are finally made in Section 4.

2. Fundamental Formulations and Solutions

2.1. Governing Equations in a Prestressed
Piezoelectric Medium

When a continuum medium undergoes deformation, the mo-
tion of a material point can be described by [14]:

xk = xk (XK , t), K = I, II, III, k = 1, 2, 3, (1)

where t denotes time, X denotes a particle position at the nat-
ural undeformed configuration, and x denotes its position at
current configuration. The subscripts K and k denote the com-
ponents in the Lagrangian coordinate system at undeformed
configuration and the Eulerian coordinate system at current
configuration, respectively. The gradient equations are

εKL = 1
2

(xk,K xk,L − �KL), EK = −�,K . (2)

The equations of motion [14] without body force and the elec-
tric equation without volume charge in the undeformed con-
figuration are

(�KLxl,L),K = � ül , (3)
DK,K = 0. (4)

In Eqs. (2)–(5), � stands for the second Piola-Kirchhoff
stress tensor, � is the Green strain tensor, � is the mass density,
D is the electric displacement, E is the electric field vector, and
� is the electric potential. All the above variables are mea-
sured at the natural configuration. �K L is the Kronecker delta,
a comma at the subscript position denotes space-coordinate
differentiation, and a dot over the letter denotes the time dif-
ferentiation. The following calculations are carried out within
the quasi static hypothesis.

In practical cases, a mechanical biasing state produced by
initial poling stresses is in an equilibrium state. Applying the
external dynamic mechanical or electrical loads, the body is
further perturbed by an additional wave motion of small am-
plitude onto the initial state. Let

�t
KL = �0

KL + �KL, ut
l = u0

l + ul , Dt
K = D0

K + DK , (5)

where �t
KL and Dt

K are the total Kirchhoff stress and total
electric displacement referred to the natural state and ut

l is
the total displacement at Euler coordinate system. �KL, DK ,
and ul are their incremental values. The subscript “0” denotes
the variables in the initial state. Subtracting the equations of
motion in the initial state from those in the perturbed state and
neglecting the small higher-order quantities, we can obtain the

expected governing wave equation in the natural configuration
(for more details, please see reference [15]):

(
�KL �l L + �0

KL ul,L + �KL u0
l,L

)
,K + � fl = � ül . (6)

In practical calculation, the Eulerian coordinate system is as-
sumed to coincide with the Lagrangian coordinate system.
Thus, Eq. (6) can be rewritten as:

(
�ij + �0

iku j,k + �iku0
j,k

)
,i

+ � f j = � ü j i, j, k = 1, 2, 3.

(7)

The constitutive equations of the piezoelectric ceramic are
[14, 15]

�t
ij = Cijkl εt

kl + 1
2

Cijklmn εt
kl εt

mn − emij Et
m − emijkl εt

kl Et
m

− 1
2

lmnij Et
m Et

n + h.o.t, (8a)

Dt
m = emij εt

ij + 1
2

emijkl εt
ij εt

kl+ ∈mn Et
n + 1

2
∈mnp Et

n Et
p

+ lmnij Et
n εt

i j + h.o.t, (8b)

where i, j, k, l, m, n, p = 1, 2, 3, Cijkl, and Ci jklmn are the
second- and third-order elastic constants at constant electri-
cal displacement, emij and emijkl are the second- and third-
order piezoelectric constants, ∈mn and ∈mnp are the second-
and third-order dielectric constants at constant strain, and
lmnij is the electrostrictive constant. Subtracting the constitu-
tive equations in the initial state from those in the disturbed
state and neglecting the higher-order terms, we can get:

�i j = Ĉijkluk,l + êmij�,m, (9a)
Dm = e∗

mijui, j− ∈∗
mn �,n, (9b)

where

Ĉijkl = Cijkl + (Cijnl�km + Cijklmn)u0
m,n + emijkl�

0
,m,

êmij = emij + emijklu0
k,l − lmnij�

0
,n,

e∗
mij = emij + (emil �jk + emijkl) u0

k,l − lmnij �0
,n,

∈∗
mn = ∈mn +lmnij u0

i, j− ∈mnp �0
,p. (10a–d)

If we define C∗
ijkl = Ĉijkl + Cinkl�jmu0

m,n , substituting Eq. (9)
into Eqs. (4) and (7), we get [16]:

(
�∗

i j + u j,k�0
ik

)
,i

+ � f j = � ü j , (11)

Di,i = 0, (12)

where

�∗
i j = C∗

ijkluk,l + e∗
mij�,m, (13a)

Dm = e∗
mijui, j− ∈∗

mn �,n, (13b)

where C∗
ijkl, e∗

mij, and ∈∗
mn are effective elastic, piezoelectric, and

dielectric constants, respectively. If u0
i, j is small, then �∗

i j = �i j .
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In the following text for convenience, �∗
i j is replaced by �i j ,

but it should be noted that they are different from those �i j in
previous equations.

2.2. Governing Equations in the Prestressed
1-3 Piezocomposites

The 2-D geometry of 1-3 piezocomposites is illustrated in Fig-
ure 1. The Cartesian x, y, z co-ordinate system is used, with
x, y corresponding to the cross section of the composite and
z corresponding to the poling direction. dp is the ceramic rod
width, and dis the pitch of the structures. Due to the fact
that piezoelectric pillars are in square pitch arrangement, we
assume 1-3 piezocomposites are transversally isotropic. Fol-
lowing Voigt notation: 11–1, 22–2, 33–3, 23–4, 13–5, 12–6, for
a z-polarized wave propagating in the x-y plane at frequency
�, Eq. (13) reduces to:

∂

∂x

[(
C∗

44 + �(0)
xx

)∂w

∂x
+ �(0)

xy
∂w

∂y
+ e∗

15
∂�

∂x

]

+ ∂

∂y

[(
C∗

44 + �(0)
yy

)∂w

∂y
+ �(0)

xy
∂w

∂x
+ e∗

15
∂�

∂y

]
= −��2w,

(14)
∂

∂x

(
e∗

15
∂w

∂x
− ∈∗

11
∂�

∂x

)
+ ∂

∂y

(
e∗

15
∂w

∂y
− ∈∗

11
∂�

∂y

)
= 0, (15)

where w is the displacement along direction z.
In the following calculations, all quantities taken in the

piezoelectric phase are marked with the letter “p” while the
letter “r” distinguishes those in the polymer phase. The mean
value of the function Ci j (x, y), calculated using the definition
of the mean value of a periodic function, is given by:

C̄∗
i j =

∫ +d/2
−d/2

∫ +d/2
−d/2 C∗

i j (x, y)dxdy∫ +d/2
−d/2

∫ +d/2
−d/2 dxdy

=
(

dp

d

)2

C∗p
i j

+
[

1 −
(

dp

d

)2
]

C∗r
i j . (16)

Fig. 1. Geometry of 2-D periodic medium (dp is the ceramic rod
width and d is the pitch).

In a similar way, one gets the mean values of the functions
� (x, y), e∗

i j (x, y), ∈∗
i j (x, y), and �

(0)
i j (x, y). Then the material

coefficients and initial stress in 1-3 piezocomposites can be
expressed as:

C∗
i j (x, y) = C̄∗

i j + �Ci j (x, y), � (x, y) = �̄ + �� (x, y),

e∗
i j (x, y) = ē∗

i j + �ei j (x, y), ∈∗
i j (x, y) = ∈̄∗

i j + � ∈i j (x, y),

�
(0)
i j (x, y) = �̄

(0)
i j + ��

(0)
i j (x, y), (17a–e)

where the notaion “�“ represents the spatial variations of the
corresponding quantities around their mean value. Substitut-
ing Eqs. (17a)–(17e) into Eqs. (14) and (15), one gets:

(
C̄∗

44 + �̄(0)
xx

)∂2w

∂x2
+ (

C̄∗
44 + �̄(0)

yy

)∂2w

∂y2
+ 2�̄(0)

xy
∂2w

∂x∂y

+ ē∗
15

(
∂2�

∂x2
+ ∂2�

∂y2

)
+ �̄�2w

= −
[(

�C44 + ��(0)
xx

)∂2w

∂x2
+ (

�C44 + ��(0)
yy

)∂2w

∂y2

+ 2��(0)
xy

∂2w

∂x∂y
+ �e15

(
∂2�

∂x2
+ ∂2�

∂y2

)
+ ���2w

]

−
{[

∂
(
�C44 + ��

(0)
xx
)

∂x
+ ∂��

(0)
xy

∂y

]
∂w

∂x

+
[

∂
(
�C44 + ��

(0)
yy
)

∂y
+ ∂��

(0)
xy

∂x

]
∂w

∂y
+ ∂�e15

∂x
∂�

∂x

+ ∂�e15

∂y
∂�

∂y
]
}

, (18)

ē∗
15

(
∂2w

∂x2
+ ∂2w

∂y2

)
− ∈̄∗

11

(
∂2�

∂x2
+ ∂2�

∂y2

)

= −
[

�e15

(
∂2w

∂x2
+ ∂2w

∂y2

)
− � ∈11

(
∂2�

∂x2
+ ∂2�

∂y2

)]

−
[(

∂�e15

∂x
∂w

∂x
+ ∂�e15

∂y
∂w

∂y

)
−
(

∂� ∈11

∂x
∂�

∂x
+ ∂� ∈11

∂y
∂�

∂y

)]
.

(19)

2.3. Solution

According to the Bloch waves theory [9], the solutions for the
displacement and electric potential in such periodic structures
must satisfy the Bloch periodicity condition, which can be
expressed as:

w(r + Tm,n) = w(r)ejk0·Tm,n , (20)
�(r + Tm,n) = �(r)ejk0·Tm,n , (21)

where r is the position vector given by r = xi + yj, k0 is the
wave vector of the incident plane wave in the first Brillouin
zone of the space, and Tm,n = mdi + ndj (m and n are integers)
are the lattice translation vectors. In order to satisfy Eqs. (20)
and (21), the solutions for the displacement w and electric
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potential � must be expressed as Bloch functions [9],

w(x, y, t) = F(r)e j (�t−k0·r), (22)
�(x, y, t) = G(r)e j (�t−k0·r). (23)

Note that displacement w and electric potential � are func-
tions of both space and time. F(r) and G(r) are scalar periodic
functions of the space with period d. Therefore, they can be
expanded as double Fourier series in the reciprocal lattice,

F(r) =
m,n=+∞∑
m,n=−∞

amne− j (Kmn·r), (24)

G(r) =
m,n=+∞∑
m,n=−∞

bmne− j (Kmn·r), (25)

where Kmn = (2�/d)m i + (2�/d)n j are the reciprocal lattice
vectors. By substituting Eqs. (24) and (25) into Eqs. (22) and
(23), the solutions of the present problem are represented as:

w(x, y, t) =
[

m,n=+∞∑
m,n=−∞

amne− j (kmn·r)

]
e j�t, (26)

�(x, y, t) =
[

m,n=+∞∑
m,n=−∞

bmne− j (kmn·r)

]
e j�t, (27)

with kmn = Kmn + k0.
For a given wave vector k0, the solutions w(x, y) and �(x, y)

can be obtained by calculating the coefficients amn and bmn.
Inserting Eqs. (26) and (27)into the coupled governing Eqs.
(18) and (19), and then using the orthogonality property of
Fourier series components yield the following expressions for
the propagation equation and the Poisson’s condition:

[
�̄�2 − C̄∗

44 |kmn|2 − (
�̄(0)

xx k2
mn(x) + �̄(0)

yy k2
mn(y)

)
− 2�̄(0)

xy kmn(x)kmn(y)
]
amn + (− ē∗

15 |kmn|2
)
bmn

= −
(∑

p,q

Kmnpqapq +
∑
p,q

Lmnpqbpq

)
, (28)

(− ē∗
15 |kmn|2

)
amn + (∈̄∗

11 |kmn|2
)
bmn

= −
(∑

p,q

Lmnpqapq+
∑
p,q

Nmnpqbpq

)
, (29)

m, n → −∞ to + ∞, p, q → −∞ to + ∞,

where Kmn = Kmn(x) i + Kmn(y) j and kpq = kpq(x) i + kpq(y) j.
Here, if m �= p or n �= q,

Kmnpq = [
���2 − �C∗

44kmn · kpq

− (��(0)
xx kmn(x)kpq(x) + ��(0)

yy kmn(y)kpq(y)
)

− (kmn(x)kpq(y) + kmn(y)kpq(x)
)
��(0)

xy

]d2
p

d2

× sin c
(

�(m − p)dp

d

)
sin c

(
�(n − q)dp

d

)
, (30a)

Lmnpq = (− �e∗
15kmn · kpq

)d2
p

d2

× sin c
(

�(m − p)dp

d

)
sin c

(
�(n − q)dp

d

)
, (30b)

Nmnpq = (
� ∈∗

11 kmn · kpq
)d2

p

d2

× sin c
(

�(m − p)dp

d

)
sin c

(
�(n − q)dp

d

)
, (30c)

if m = p and n = q,

Kmnpq = Lmnpq = Nmnpq = 0, (31)

with

�C∗
44 = C∗p

44 − C∗r
44 , �� = � p − � r , �e∗

15 = e∗p
15 − e∗r

15,

� ∈∗
11 = ∈∗p

11 − ∈∗r
11, ��

(0)
i j = �

(0)p
i j − �

(0)r
i j . (32a–e)

Further details concerning the calculation of the coefficients
Kmnpq are given in Appendix A. In order to simplify the cal-
culation of the lateral mode frequencies and the solutions of
displacement and electric potential, we rearrange Eqs. (28)
and (29) as:

∑
p,q

K̂mnpqapq +
∑
p,q

L̂mnpqbpq = 0, (33)

∑
p,q

L̂mnpqapq +
∑
p,q

N̂mnpqbpq = 0. (34)

If m �= p or n �= q:

K̂mnpq = Kmnpq ; L̂mnpq = Lmnpq ; N̂mnpq = Nmnpq ;
(35a–c)

if m = p and n = q:

K̄mnpq = �2�̄ − [(
�̄(0)

xx + C̄∗
44

)
k2

mn(x) + (
�̄(0)

yy + C̄∗
44

)
k2

mn(y)

+ 2�̄(0)
xy kmn(x)kmn(y)

]
,

L̄mnpq = −ē∗
15

|kmn|2 ,

N̄mnpq = ∈̄∗
11

|kmn|2 . (36a–c)

In numerical calculations, one can assume N × N terms in
the Fourier expansions of Eqs. (24) and (25). For non-trivial
solutions, the determinant of coefficients of Eqs. (33) and (34)
should vanish, which gives the frequency �. Furthermore, the
coefficients amn and bmn can be obtained from the eigenvectors,
and the dispersion curves can also be calculated by fixing the
wave vector k0.

3. Numerical Results and Discussion

In order to illustrate the effect of the poling initial stress on
the lateral modes in piezocomposites, a 1-3 piezoelectric com-
posite was considered. As shown in Figure 1, the ceramic rod
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Table 1. Material parameters

Elastic constant, Mass density, Piezoelectric constant, Dielectric constant,
Materials C44(1010 N/m2) � (103 kg/m3) e15(c/m2) ∈11(10−10 F/m)

PZT ceramic 4.2 7.50 17.0 150.45
Polymer matrix 0.17 1.15 0.0 0.398

width is 50 �m and the width-to-pitch ratio is 0.5. The second-
order material constants used in the analysis were listed in
Table 1. For the third-order material constants, please see
Appendix B.

3.1. Dispersion Curves and Stop Bands

Gururaja et al. [1] has shown that two directions of propaga-
tion for the calculation of the first two lateral modes are in the
direction of the vectors i and (i + j). Therefore, the solutions
are, respectively, calculated between |k0| = 0 and |k0| = �/d
along the directions of the vector i and (i + j).

For k0d/� or k0d/�
√

2 equal to 0 or 1, the incident wave
vector k0 is at the edge of a Brillouin zone where the Bragg
diffraction condition is satisfied and corresponds to resonant
standing waves. First, the lateral mode frequencies in two cases
that include and do not include the coupling coefficients are
calculated at |k0| = 0, and the results are listed in Table 2.
It is clear that the present formulation predicts exactly the
same frequencies as that shown in reference [8] by setting the
coupling material coefficients ep

15, ∈p
11, and ∈r

11 to be zero.
Furthermore, the lateral modes frequencies in case 2 are higher
than that in case 1. The differences in lateral mode frequencies
between two cases are a consequence of the stiffening effect
that the piezoelectric terms generate. In general, these terms
tend to increase the overall stiffness of the piezocomposites
because of the internal forces generated by the induced electric
field.

Second, dispersion relations of propagation modes in 1-3
piezocomposites with poling initial stress are demonstrated
in Figures 2 and 3. These dispersion relations depict a full
spectrum of dynamic behavior of the composites. In the cal-
culation, the initial stress in each phase of the 1-3 piezocom-
posites along direction x equals that along direction y for the
transverse-isotropy of the composites. We assume that the ini-
tial stress is independent of x and y throughout the individual
phase. This is clearly not true in detail, as finite-element cal-
culations reveal. The expectation is that this approximation
captures the physical behavior in an average sense. According
to references [16] and [17], the values of initial stresses and

Fig. 2. Dispersion curve of shear wave propagating along the x
axis.

Fig. 3. Dispersion curve of shear wave propagating along the line
x = y.

Table 2. The lateral mode frequencies in 1–3 piezocomposites for different cases

Different cases Coupling coefficients Frequencies (MHz) [|k0| = 0]

Paper [10] — 0 11.57 15.45 16.53 16.53 18.23
Case 1 �

(0)
i j = 0; e p

15 = 0; ∈p
11= 0 0 11.57 15.45 16.53 16.53 18.23

Case 2 �
(0)
i j = 0; e p

15 �= 0; ∈p
11 �= 0 0 11.77 15.67 16.94 16.94 18.40
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Table 3. The lateral mode frequencies in 1–3 piezocomposites with different initial stress cases

�
(0)p
xy MPa �

(0)r
xy MPa �

(0)p
xx = �

(0)p
yy MPa �

(0)r
xx = �

(0)r
yy MPa Frequencies (MHz)

0 0 0 0 0.0 11.7635 15.6690 16.9270 16.9282 18.3978
1.11 0 0.0 11.7636 15.6691 16.9271 16.9283 18.3979

0 −0.37 0.0 11.7622 15.6674 16.9253 16.9265 18.395
1.11 −0.37 0.0 11.7623 15.6675 16.9254 16.9266 18.3960

0.58 0.29 1.11 −0.37 0.0 11.7623 15.6675 16.9259 16.9260 18.3959

initial strains are determined, that is,

�(0)p
xx = �(0)p

yy = 1.11MPa, �(0)p
xy = 0.58MPa

�(0)r
xx = �(0)r

yy = −0.37MPa, �(0)r
xy = 0.29MPa,

ε(0)p
xx = ε(0)p

yy = −9.54 × 10−4, ε(0)p
zz = 1.88 × 10−3,

ε(0)r
xx = ε(0)r

yy = −3.86 × 10−4, ε(0)r
zz = 1.02 × 10−4.

It is obvious that the width of the stop band for the case that
includes the piezoelectricity and initial stress is broader than
that of the case where piezoelectricity and initial stress are not
taken into account (refer to reference [8]).

For resonances where k0d/� or k0d/�
√

2 equals 1, the ad-
jacent ceramic rods are separated by an odd number of half-
wavelengths, so their vibrations are 180◦ out of phase. These
resonances are not electrically coupled [8]. On the other hand,
when k0d/� or k0d/�

√
2 is equal to 0, all the ceramic rods

vibrate in phase. Furthermore, these displacement fields are
either symmetrical or antisymmetrical, due to the transduc-
tion effect, only the former are piezoelectrically coupled. Since
the symmetrical displacement fields are demanded, from Fig-
ures 2 and 3, 11.76 and 18.40 MHz are the first and second
lateral modes.

3.2. Effect of Initial Stress on the Lateral Mode Frequencies

In order to investigate the influence of initial stress in each
phase on the lateral mode frequencies, five different initial
stress cases are considered as follows:

Fig. 4. The first lateral mode versus different initial stress in the
matrix.

1. without the initial stress;
2. only initial normal stress in the ceramic is considered;
3. only initial normal stress in the matrix is considered;
4. only initial normal stresses in the composites are consid-

ered; and
5. the real initial stress condition (including initial normal

stress and initial shear stress in the composites).

With |k0| = 0, the lateral mode frequencies in the above five
cases are calculated and listed in Table 3. The analysis of these
results shows that the compressive initial stress in the matrix
tends to decrease the lateral mode frequencies, but the tensile
initial stress in the ceramic tends to increase the frequencies.
Furthermore, the influence of initial compressive stress in the
matrix is more significant than that of initial tensile stress in
the ceramic. Compared with the influence of initial normal
stress, the influence of shear stress on the lateral modes is tiny.
Thus, in the real initial stress condition, the poling initial stress
would decrease the lateral mode frequencies. By comparing the
numerical results shown in Tables 2 and 3, we can find that
the influence of piezoelectricity on the lateral modes is more
obvious than that of the initial stress.

Figures 4 and 5 show the plots of the first and second
lateral mode frequencies versus the initial normal stress in the
matrix, respectively. Here, only the initial normal stress in the
matrix is changed while keeping other initial stresses fixed.
The numerical results also demonstrate that the lateral mode
frequencies almost decrease linearly with the increase of the
magnitude of the initial normal stress in the matrix.

Fig. 5. The second lateral mode versus different initial stress in
the matrix.
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4. Conclusions

The lateral modes in 1-3 piezocomposites with initial stress
have been investigated using an analytical method. The initial
stresses and initial strains terms have been included in the
governing equations. The wave equations have been solved
based on the Bloch waves theory. Results show that the effects
of the initial stress and piezoelectricity of composites on the
lateral modes are significant.

The lateral mode frequencies rise and the stop band
broadens due to the effects of piezoelectric characteristics of
composites. The lateral mode frequencies increase with the
initial tensile stress in the ceramic phase and decrease with
the initial compressive stress in the matrix. The influence of
the initial compressive stress in the matrix on the lateral mode
frequencies is more significant than that of the initial tensile
stress in the ceramic. Furthermore, compared with that of the
initial normal stress, the influence of the initial shear stress is
tiny. Thus, the poling initial stress tends to decrease the lateral
mode frequencies in the real initial stress condition.
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Appendix A: Theoretical Derivation of the Coefficient

The details of the calculation of the coefficients Kmnpq are
given below;

∫ +d/2

−d/2

∫ +d/2

−d/2
e j (kmn−kpq )·rdxdy

=
∫ +d/2

−d/2

[ ∫ +d/2

−d/2
e j 2�(m−p)

d xdx
]

e j 2�(n−q)
d ydy

= − 1
2�(m−p)

d

· 1
2�(n−q)

d

[
e j 2�(m−p)

d x
]+d/2

−d/2

[
e j 2�(n−q)

d y
]+d/2

−d/2
= 0,

(A1)∫ +dp/2

−dp/2

∫ +dp/2

−dp/2
e j (kmn−kpq )·rdxdy

= −2 j sin �(m−p)dp

d
2�(m−p)

d

· 2 j sin �(n−q)dp

d
2�(n−q)

d

= d2
p sin c

(
�(m − p)dp

d

)
sin c

(
�(n − q)dp

d

)
, (A2)

∫ +d/2

−d/2

∫ +d/2

−d/2
[���2]e j (kmn−kpq )·rdxdy

=
∫ +d/2

−d/2

∫ +d/2

−d/2

[
−
(

dp

d

)2

���2
]

e j (kmn−kpq )·rdxdy



Lateral Modes In 1-3 Piezocomposites 129

+
∫ +dp/2
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Substituting Eqs. (A1)–(A5) into Eq. (28), we can get:

Kmnpq = [
���2 − �C44kmn · kpq

− (��(0)
xx kmn(x)kpq(x) + ��(0)

yy kmn(y)kpq(y)
)

− (kmn(x)kpq(y) + kmn(y)kpq(x)
)
��(0)

xy

]d2
p

d2

× sin c
(

�(m − p)dp

d

)
sin c

(
�(n − q)dp

d

)
(A6)

Appendix B: Material Constants

Third-order elastic constants of the piezoelectric ceramic
in units of 1011 N/m2 (abbreviated notation):

C111 = −21.2, C112 = −5.3, C113 = −5.7, C114 = 2.0,

C123 = −2.5, C124 = 0.4, C133 = −7.8, C134 = 1.5,

C144 = −3.0, C155 = −6.7, C222 = −23.3,

C333 = −29.6, C344 = −6.8, C444 = −3.0.

Third-order piezoelectric constants of the piezoelectric ce-
ramic in units of C/m2:

e115 = 17.1, e116 = −4.7, e125 = 19.9, e126 = 15.9,

e135 = 19.6, e136 = −0.9, e145 = 20.3, e311 = 14.7,

e312 = 13.0, e313 = −10.0, e314 = 11.0, e333 = −17.3,

e344 = −10.2.

Third-order elastic constants of polymer in units of 1011

N/m2:

C111 = −2.1, C112 = −3.45, C113 = 0.12,

C114 = −1.63, C123 = −2.94, C124 = −0.15,

C133 = −3.12, C134 = 0.02, C144 = −1.34,

C155 = −2.0, C222 = −3.32, C333 = −8.15,

C344 = −1.10, C444 = −2.76.
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