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Abstract 
 
Effects of thermal stress on the vibration characteristics, buckling limit and critical speed of a rotating pretwisted beam clamped to 

rigid hub at a stagger angle were investigated. By considering the work done by thermal stress, the thermal influence on stiffness matrix 
was introduced in the dynamic model. The motion equations were derived based on Lagrange equation by employing three pure Carte-
sian deformation variables combined with nonlinear von Karman strain formula. Numerical investigations studied the modal characteris-
tics of the beam. Numerical results calculated from a commercial finite element code and obtained with the present modeling method 
were in good agreement with the previous results reported in the literature. The combined softening effects due to the thermal stress and 
the rotation motion were observed. Furthermore, it is shown that the inclusion of thermal stress is necessary for blades operating under a 
high temperature field. Buckling thermal loads and the critical rotating speed were calculated through solving the corresponding nonlin-
ear equations numerically, and some pertinent conclusions are outlined. It is also found that the peak value position of the first mode 
shape approaches to the tip of blade with the increment of rotating speed and hub radius. However, the variation in the environment tem-
perature causes only a slight alteration in the mode shape.  
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1. Introduction 

The blade is a vital part of a turbo-machine, and its dynamic 
strength is of considerable importance. It is well-known that 
the turbo-machine blades are exposed under a severe thermal 
load, especially in gas turbines. Furthermore, in order to im-
prove the efficiency, the operating temperature is desired to be 
raised to an even higher level. To some extent, the appendages 
(i.e., outer shroud) could prevent fatigue failures of turbo-
machine blades. However, at the same time, the thermal ex-
pansion is restricted by the friction between the outer shrouds 
during rotating. As a result, thermal stress is produced 
throughout the blade. To design such structures properly, we 
need a better understanding of the dynamic characteristics of 
blades under thermal environment to avoid some undesirable 
problems such as resonance phenomena and buckling instabil-
ity. 

Generally, a turbo-machine blade is idealized as a tapered 
pretwisted rotating beam in theoretical research works. The 
modeling method and vibration analysis of a rotating flexible 

beam have attracted widespread attention. An extensive list of 
related papers was well reviewed by Rao [1]. Without consid-
ering the thermal environment, many investigations about the 
vibration characteristics of blades under rotating and non-
rotating conditions have been carried out during past two dec-
ades. The upper bound for the nth natural frequency of an 
exponentially tapered beam under rotation was determined 
theoretically by Sahu [2]. Yoo et al. [3] established a model 
for pretwisted rotating blades with a concentrated mass and 
analyzed the vibration characteristics of a rotating blade. 
Ramesh and Rao [4] extended Yoo’s modeling method for 
estimating natural frequencies of a functionally graded rotat-
ing pre-twisted cantilever beam. Piovan and Sampaio [5] used 
finite element method and Hamilton’s principle to examine 
nonlinear dynamics of a rotating beam made of functionally 
graded materials. Banerjee [6-9] applied the dynamic stiffness 
method combined with the Wittrick and Williams algorithm to 
study the modal characteristics of rotating tapered Euler-
Bernoulli, Timoshenko and Rayleigh beams, respectively. 
Chu et al. [10] studied the impact of vibration characteristics 
on a shrouded blade under wake flow excitations. Chiu and 
Yang [11] emphasized the coupling behavior between shaft-
torsion and blade-bending with a rotor system composed of 
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shaft, multi-disk and blades packeted by lacing. Zhang and Li 
[12] observed a series of perturbation frequency components 
in dynamic response of a rotating shaft with a breathing trans-
verse crack. Khan and Parhi [13] used the radial basis function 
neural network technique to detect the transverse cracks in 
composite beam. Yao et al. [14, 15] adopted Galerkin’s ap-
proach and perturbation method to study the nonlinear dy-
namic response of the rotating pretwisted thin-walled blade 
with varying speed. Hamdan and El-Sinawi [16] established 
the Euler-Lagrange equations of the nonlinear vibrations of a 
slender flexible rotating arm attached to a rotating hub at a 
stagger angle. Kaya and Ozgumus [17] performed free vibra-
tion analysis of a uniform, rotating, cantilever Timoshenko 
beam featuring coupling between flapwise bending and tor-
sional vibration. For the topic of the dynamic stability of beam, 
there have been also some papers available in the literature. 
Sakar and Sabuncu [18] pointed out the effects of coupling 
due to shear center distance from the centroid, pretwist angle, 
rotating speed, stagger angle on the static buckling loads and 
dynamic instability regions of an aerofoil blade. Lee [19] stud-
ied buckling and dynamic stability of spinning pretwisted 
beams under compressive axial loads. Badagi and Ganesan 
[20] investigated the effects of the ratio of the width of the 
thick section to thin section, boundary conditions, effects of 
axial and compressive force on natural frequency and buck-
ling analysis. Fu et al. [21] provided a set of analytical meth-
ods to solve the thermal buckling of composite beams. Ran-
jbaran et al. [22] investigated the buckling behavior of sand-
wich plate using layer-wise method. 

A few research works consider the thermal environment 
when investigating the dynamic behavior of a rotating blade. 
Considering transient thermal effect, Johnston and Thornton 
[23] investigated the dynamic performance of a flexible canti-
levered hub-appendage with tip mass with a geometric linear 
model. Saniei and Luo [24] presented the dynamic responses 
for the free vibration heated rotating disk analytically. Ogua-
manam and Hansen [25] observed the nonlinear response of a 
composite laminated panel that is suddenly exposed to a heat 
flux. Liu and Lu [26] developed a geometric nonlinear hybrid 
coordinate formulation for rigid-flexible coupling dynamical 
analysis of rotating hub-beam applied with thermal load. In 
these papers, the authors concentrated just on the transient 
response of a rotating structure under a thermal environment. 
Tomar and Jain [27, 28] determined the thermal effect on fre-
quencies of wedged-shaped and pretwisted beams. Song et al. 
[29] developed a theory for the dynamic analysis of a rotating 
pretwisted thin-walled beam under a temperature field. Na et 
al. [30] addressed the problem of bending vibration, dynamic 
response of a rotating blade impacted by a blast and operating 
in a temperature field. Librescu et al. [31] considered the mod-
eling and free vibration of pre-twisted rotating blades made of 
functionally graded materials under a high-temperature envi-
ronment. The thermal degradation of material properties on 
eigen frequencies was presented by the authors. These papers 
provide a straightforward approach to introduce the thermal 

effect into the dynamic characteristics of rotating structure. 
This approach is assuming the mechanical properties of con-
stituent materials are temperature-dependent. However, the 
research on the influence of thermal stress on the modal char-
acteristics and buckling limit for pretwisted rotating hub-beam 
is insufficient. This paper makes a modest attempt to supple-
ment this topic. Our attention is restricted to the effects of 
thermal stress on dynamic behavior and stability of the rotat-
ing blade.  

We assume the shrouded blade to be a rotating pretwisted 
beam clamped on both ends. The geometric nonlinearity of the 
beam is considered through the von Karman strain-
displacement formula. The motion equations including the 
effect of thermal stress are established by applying Lagrange 
equation. The equations are transformed into a dimensionless 
form through introducing a set of dimensionless parameters. 
The accuracy of the model proposed in this study is validated 
by comparing the natural frequency to that computed from a 
commercial finite-element code. The effects of environment 
temperature and rotating motion on the natural frequencies, 
modal shape, buckling limit and critical speed for the pret-
wisted shrouded blade are investigated. Some new phenomena 
are observed through numerical calculations. 

 
2. Mathematic modeling 

2.1 Description and assumption of the model 

The configuration of a pretwisted shrouded blade is de-
picted in Fig. 1. The pretwisted blade is assembled on a rigid 
hub with a stagger angle. The hub, with radius r, is rotating 
about its central axis at a constant speed of Ω. The whole sys-
tem is operating under a uniform temperature rise (ΔT) from 
stress free status.  

Two types of coordinate system, the global inertial coordi-
nate XYZ and the rotating blade coordinate xyz, are considered 
(see Fig. 2). Associated with these two coordinate systems xyz 
and XYZ, we define the unit vectors i, j, k and I, J, K, respec-
tively. The coordinate xyz is attached at the center of root sec-
tion and rotates with the blade. The axis x is along the unde-
flected blade centroid axes, axis y is in the rotation plane of 
the blade, and axis z is parallel to the axis Z in the inertial co-
ordinate. The axes yr and zr denote the two principal axes of 
root section. Similarly, ytzt and ypzp represent those of tip sec-
tion and a general section, respectively. Point P is an arbitrary 
point placed on the general section. Ψ denotes the blade stag-
ger angle. The pretwist angle between the root section and the 
general section is θ, which is a function of the total pretwist 
angle Θ and the position of the section. The variables u1, u2 
and u3 describe the axial, chordwise and flapwise deformation 
components of the points on the centroid axes of the blade, 
respectively. In this study, it is assumed that the hub and the 
outer shroud are a rigid body and the blade is clamped be-
tween them. This geometric arrangement leads to the possibil-
ity of buckling instability. With Euler-Bernoulli assumption, 
the effects of shear deformation and rotary inertia are not 
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taken into account. The material of the beam is homogeneous 
and isotropic. The variation of pretwist angle is uniform along 
the longitudinal axis. 

 
2.2 Kinetic and potential energy of the system 

The kinetic energy of the blade is given by the following in-
tegration: 

 

0

1 d
2

L T
P PKE A xr= ò v v ,  (1) 

 
where ρ is the density; A is the area of cross section; L is the 
length of the blade; vP is the velocity vector of material point. 
From the kinematics analysis, vP could be written as follows 
[32]: 
 

( ) ( )( )1 2 2 1 3P u u u r x u u= -W + + W + + +v i j k& & & .  (2) 

 
Considering the thermal environment, the potential energy 

of the system consists of three parts: The mechanical deforma-
tion energy Uσ, thermal stress potential energy UT and the 
potential energy Uas due to the axis shortening via transverse 
deformations and the rotational inertial forced. So the total 
potential energy is: 

 

T asPE U U Us= + + .  (3) 
 
With Euler-Bernoulli assumption, the displacement compo-

nents of the material point P in the rotating frame should fol-

low the following form: 
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The geometric nonlinearity is considered through von Kar-

man strain-displacement formula. 
 

2 21 1
2 2

yx z
x

uu u
x x x

e
¶æ ö¶ ¶æ ö= + +ç ÷ ç ÷¶ ¶ ¶è øè ø

.  (7) 

 
Ignoring the third and higher order terms of the displace-

ment variables, the mechanical deformation energy can be 
expressed as: 
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in which E is the Young’s modulus of elasticity, and 
 

2 2
2 3 23d , d , d
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are the second moments of area and the mixed second mo-
ment of area of the general section AP in the rotating frame. 
They can be calculated with rotation transform matrix. 

 
* * * *
2 3 2 3

2 ( ) cos 2( )
2 2

I I I II x q+ -
= + + Yé ùë û ,  (10a) 

* * * *
2 3 2 3

3( ) cos 2( )
2 2

I I I II x q+ -
= - + Yé ùë û , (10b) 

* *
2 3

23( ) sin 2( )
2

I II x q-
= + Yé ùë û . (10c) 

 
Upon the assumption of linear variation, the pretwist angle 

θ could be expressed as: 
 

= x
L

q Q .  (11) 

 
The potential energy due to thermal stress is numerically 

equal to the work done by it. 

 
 
Fig. 1. The configuration of a pretwisted shrouded blade. 
 

 
 
Fig. 2. The coordinate systems and a general cross-section. 

 



4034 B. Zhang et al. / Journal of Mechanical Science and Technology 30 (9) (2016) 4031~4042 
 

 

2 2

1 2 3

0

2 2
2 3

2 20 0

1 1 d
2 2

d d

L

T T

L L

Tz Ty

u u uU N x
x x x

u uM x M x
x x

é ù¶ ¶ ¶æ ö æ ö=- + +ê úç ÷ ç ÷¶ ¶ ¶è ø è øê úë û
¶ ¶

+ +
¶ ¶

ò

ò ò
  (12) 

 
where 
 

( , ) d , ( , ) d ,

( , ) d

T TzA A

Ty A

N E T y z A M E T y z y A

M E T y z z A

a a

a

= D = D

= D

ò ò
ò

  (13) 

 
are the thermal internal force and two thermal bending mo-
ments, in which α is the coefficient of thermal expansion. 

The neutral axis shortening due to transverse deformation 
and axial inertial force results in a contribution to the system 
elastic potential energy known as the axial shortening poten-
tial energy [33-35]. The amount of axial shortening due to the 
transverse deformations reads: 

 
2 2

2 31 1d = d
2 2b

u us x
x x

é ù¶ ¶æ ö æ ö- +ê úç ÷ ç ÷¶ ¶è ø è øê úë û
.  (14) 

 
Considering the clamped-clamped boundary condition and 

equilibrium equation, the axial inertial force due to the rota-
tional motion of clamped beam can be calculated in the form: 

 

( ) ( )2 2 2 21 13 2
6 2PF A L x A r L xr r= W - + W - .  (15) 

 
Then, the axial shortening potential energy is calculated as 

follow expression: 
 

das P bU F s= ò .  (16) 

 
2.3 Equations of motion 

The Assumed modes method (AMM) is used for discretiz-
ing the three displacement components. The displacement 
functions are separated into products of spatial and temporal 
functions. 
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For displacement ui (i =1, 2, 3), ni is number of assumed 

modes, qij(t) are generalized coordinates and ( )ij xf  are to-
tally unrestricted spatial functions, respectively. In the present 
study, the eigenfunctions of a clamped-clamped beam are 
applied. 

The kinetic and potential energy expressions obtained in 
previous section are used to develop the equation of motion 
with Lagrange equation. 
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in which L%  is Lagrangian function. Then we get the equation 
of motion in matrix form. 
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are the mass matrix, damping matrix, stiffness matrix and load 
vector, respectively. These matrices and vector are listed in 
detailed in Appendix A. Special attention is paid to the stiff-
ness matrix. KS is the stretch stiffness; KB2 and KB3 stand for 
the stiffness due to bending deformations; Ω2M11 and Ω2M22 
are the spin softening terms in the plane of rotation; KΩ2 and 
KΩ3 stand for the centrifugal stress effect on the two bending 
vibrations; the terms KT2 and KT3 denote the thermal softening 
effect on the two bending vibrations; KB32 and KB23 represent 
the coupling effects between the flapwise and chordwise vi-
brations resulting from the nonzero pretwist angle and stagger 
angle. 

The skew symmetric matrix C represents the Coriolis effect 
of the rotating beam, which introduces the coupling terms 
between axial and bending vibrations. As Yoo [36] explained, 
for Euler-Bernoulli beam, the first axial natural frequency is 
far from the bending natural frequencies. So the coupling ef-
fects could be ignored. To study the free vibration of the rotat-
ing beam, the load vector is omitted. Consequently, the Eq. 
(19) is reduced to: 
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For the sake of generality, following dimensionless vari-

ables are introduced. 



 B. Zhang et al. / Journal of Mechanical Science and Technology 30 (9) (2016) 4031~4042 4035 
 

  

( ) ( ) ( ) ( )

2 *4
2

* *
3 3

2 4

*
3

, , , ,

, , , ,

, 1,2,3 .

ij
ij

T

i i i

qx h IALt
EI L L w I

L r AL T
w L EI

L x i

rt c x k

rm d g e a

j c f c f

æ ö= = = = =ç ÷
è ø

æ ö= = = W = Dç ÷
è ø

= = =

   (25) 

 
The parameters κ, μ, δ, γ and εT represent height to width ra-

tio, length ratio, hub radius ratio, rotating speed ratio and di-
mensionless temperature (thermal strain), respectively. The 
functions ( )ij c is the shape function of the dimensionless 
position χ. Applying these parameters, the dimensionless 
equation of motion is obtained. 

 
x x+ =M K 0&& .  (26) 

 
The dimensionless matrices and elements are documented 

in Appendix A. 
It is assumed that the solution is of a harmonic form ξ(χ,τ) = 

X(χ)exp(iωτ). The vibration characteristics could be obtained 
by solving the corresponding eigenvalue problem. Obviously, 
the base frequency of the pretwisted rotating beam is an im-
plicit nonlinear function of system parameters and could be 
written as: 

 
( ), , , , , ,base base Tw w k m d g e= Y Q .  (27) 

 
In the buckling limit, note that the term exp(iωτ) grows un-

bounded with increasing time τ, when ω2 < 0. So the stability 
limit is the value of load (such as environment temperature, 
rotating speed) which results in zero base frequency, i.e.,  

 
( ), , , , , , 0base Tw k m d g eY Q = .  (28) 

 
This is equivalent to setting the determinant of stiffness ma-

trix to zero. When all other variables are set to a fixed value, 
the dimensionless buckling temperature εTb and dimensionless 
buckling rotating speed γb could be obtained. 

In addition, when the rotating speed of the blade is close to 
a certain natural frequency of the rotating beam, the resonance 
phenomenon will appear. Catastrophic failures often occur at 
these critical rotating speeds. Hence, the critical rotating speed 
should be given enough attention during designing the rotating 
blade. Similarly, the first critical rotating speed γc could be 
calculated from solving following nonlinear equation 

 
( ), , , , , , = 0base Tw k m d g e gY Q - .  (29) 

 
It is impossible to analytically evaluate these nonlinear Eqs. 

(28) and (29); however, a numerical solution is straightfor-
ward. A program in MATLAB (version 8.1) is written to im-
plement the solution. 

3. Verification of the modeling method 

In the numerical calculations of the present study, unless 
special description, the dimensionless parameters are set as: Ψ 
= 10°, Θ = 30°, κ = 0.5, μ = 900, δ = 1, εT = 5e-4. 

Convergence tests for the natural frequencies are used to 
evaluate the suitability of the base functions for the displace-
ment variables. The convergence characteristics of the first six 
dimensionless natural frequencies are listed in Table 1. It is 
observed that the natural frequencies converge when the trun-
cation modes number approaches 10. Thus, the first ten shape 
functions are applied to solve the eigenvalue problem to 
achieve accurate results in further computations. 

In the present study, three Cartesian variables are employed 
to describe the elastic deformation of the rotating beam. The 
accuracy of this modelling method is examined by comparing 
with the hybrid variables method [32, 36, 37]. In these refer-
ences, the hybrid variables method was successfully applied to 
a rotating cantilever beam. To verify the present modelling 
method with previous references, the mode shape functions 
are replaced with those of the cantilever beam, and the axial 
inertial force is changed to following expression for the 
clamped-free boundary condition: 

 

( ) ( )2 2 2 21
2PF A L x A r L xr r= W - + W - . (30) 

 
Other parameters are chosen as Ψ = 0°, Θ = 0°, κ = 1, δ = 0, 

εT = 0 following the Ref. [36]. The first two dimensionless 
natural frequencies in the flapwise vibration under different 
rotating speed obtained by two modelling methods are dis-
played in Table 2. The numerical result shows the present 
modelling method has a good agreement with previous re-
search. 

The present discretized motion equations are also verified 
by comparing with a commercial FEM code, ANSYS. The 
pretwisted beam is divided into 3D solid elements. Fig. 3 
shows a typical finite element mesh. The dimensional parame-

Table 1. Convergence characteristics for the dimensionless natural 
frequencies (γ = 5). 
  

Dimensionless natural frequencies, ωn Modes 
number ω1 ω2 ω3 ω4 ω5 ω6 

1 13.706 20.170 - - - - 

2 13.207 19.956 41.615 59.221 - - 

3 13.201 19.948 41.103 58.711 84.074 118.13 

4 13.181 19.942 41.096 58.689 83.470 116.82 

5 13.176 19.942 41.086 58.685 83.461 116.76 

6 13.171 19.940 41.082 58.685 83.453 116.75 

7 13.170 19.940 41.079 58.684 83.449 116.75 

8 13.169 19.940 41.077 58.683 83.447 116.75 

9 13.168 19.939 41.076 58.683 83.445 116.75 

10 13.168 19.939 41.075 58.683 83.443 116.75 
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ters used in finite element analysis are listed in Table 3. In 
light of Eq. (25), one can easily find that the dimensionless 
rotating speed is γ = 2 and other dimensionless parameters are 
same as those described before. In the finite element analysis, 
a static problem including the rotating motion and thermal 
environment is initially conducted, and then the produced 
stress field is considered in the subsequent mode analysis. 
Table 4 lists the first three dimensionless natural frequencies 
under different environment temperatures obtained by present 
method and FEM. The maximum difference between them is 

less than 1%. 
From the convergence tests and the comparison with previ-

ous report and commercial finite element code, the accuracy 
of the present model is validated. 

 
4. Numerical investigation 

The effects of thermal stress on the natural frequencies are 
plotted in Fig. 4. Here, the natural frequency reduction is de-
fined as 0T

i iw wD , where T
iw
D  is the ith dimensionless natu-

ral frequency of the rotating beam under the thermal environ-
ment, and 0

iw  is corresponding dimensionless one without 
the thermal effect. The result shows a nearly linear decrement 
of natural frequencies with the dimensionless temperature. In 
addition, the reduce rate is strangest for the first natural fre-
quency, and tends to decay for higher order ones. For the pre-
sent case, the variation of second natural frequency is close to 
that of the third one. In fact, under thermal environment, there 
exists a uniform compressive thermal stress field throughout 
the beam, which results in a softening effect on the rotating 

Table 2. Comparison of first two dimensionless flapwise natural fre-
quencies (Ψ = 0°, Θ = 0°, κ = 1, δ = 0, εT = 0). 
 

First natural frequency Second natural frequency Rotating 
speed ratio Present Ref. [36] Present Ref. [36] 

0 3.5160 3.5160 22.034 22.035 

1 3.6816 3.6816 22.181 22.181 

2 4.1373 4.1373 22.615 22.615 

3 4.7972 4.7973 23.320 23.320 

4 5.5849 5.5850 24.273 24.273 

5 6.4495 6.4495 25.445 25.446 

6 7.3603 7.3604 26.808 26.809 

7 8.2997 8.2996 28.332 28.334 

8 9.2570 9.2568 29.993 29.995 

9 10.226 10.226 31.768 31.771 

10 11.203 11.202 33.638 33.640 

 
Table 3. Material properties and geometric parameters used in FEM. 
 

Notation Description Value 

E Young’s modulus of the material 7e10 N/m2 

ρ Density of the material  2800 kg/m3 

α Coefficient of thermal expansion 2.5e-5 /°C 

Ψ Stagger angle 10° 

Θ Pretwist angle 30° 

L Length 30 m 

w Width 1 m 

h Height 0.707 m 

r Radius of the hub 30 m 

Ω Rotating speed 3.208 rad/s 

ΔT Environment temperature rise 0, 20, 40, 60°C 

 

 
 
Fig. 3. A typical finite element mesh of a pretwisted beam. 

 

Table 4. First three dimensionless natural frequency obtained by the 
present method and FEM (γ = 2). 
 

εT Mode Theory FEM Error (%) 

1st 16.006 16.000 0.035 

2nd 22.009 21.888 0.548 0 

3rd 44.135 43.966 0.384 

1st 13.748 13.749 0.007 

2nd 20.433 20.312 0.592 5.0E-4 

3rd 41.207 41.044 0.396 

1st 10.989 10.998 0.086 

2nd 18.708 18.585 0.656 1.0E-3 

3rd 38.040 37.882 0.416 

1st 7.1589 7.1837 0.347 

2nd 16.784 16.657 0.757 1.5E-3 

3rd 34.568 34.413 0.447 

 

 
 
Fig. 4. The effect of thermal environment on the natural frequencies of 
beam (γ = 2). 
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clamped beam.  
The variation of first two dimensionless natural frequencies 

with the rotating speed is illustrated in the Fig. 5. The spin 
softening term does not appear explicitly in the flapwise com-
ponent (see Eq. (22)). However, nonzero pretwist angle and 
stagger angle introduce the coupling effect between flapwise 
vibration and chordwise vibration. As a result, the spin soften-
ing term in chordwise component will decrease the flapwise 
natural frequency (see Fig. 5(a)). If the rotating speed is high 
enough, the softening effect due to axial stress seems to be 
more significant than the spin softening for the flapwise fre-
quency. From Fig. 5(b), the spin softening is dominant in 
chordwise frequency for a wide range of rotating speed. The 
axial stress effects seem to soften the rotating clamped beam 
in both the flapwise and chordwise vibration. This is different 
from the case of cantilever beam reported in previous papers. 
In fact, the axial force Eq. (15) is not always positive along the 

neutral axis of the rotation beam. For the clamped rotating 
beam, the tensile stress distributes only on the span [0, χ0], in 

which 2
0

1
3

c d d d= - + + + . However, the rest of the beam 

is under compressive stress. Fig. 5 proves that the softening 
effect due to the compressive stress is greater than the stiffen-
ing effect due to the tensile stress.  

The variation of the buckling temperature with rotating 
speed for different hub radii is shown in Fig. 6. It is obvious 
that rotating motion decreases the buckling temperature. For 
larger hub radius, the softening effect due to the axial stress is 
more significant, so the corresponding stable region is reduced. 
For present case, the curves joint at the same value of 1.86e-3, 
when the rotating speed approaches to zero. The increment in 
rotating speed magnifies the difference of buckling tempera-
ture for different hub radii. The effects of thermal environment 
on the critical rotating speed γc are illustrated in Fig. 7. With 
the growth of environment temperature, the curves decline 
and converge to the same point, which just represents the 
thermal buckling status of the non-rotating pretwisted beam, 
with the value of 1.86e-3 as the previous case. 

The effects of hub radius on the buckling rotating speed and 
critical rotating speed for different pretwist angles are discov-
ered in Figs. 8 and 9, respectively. It is seen that γb decreases 
as δ increases. In particular, buckling rotating speed decreases 
sharply for small values of radius ratio. In addition, for small 
radius ratio, a larger pretwist angle could result in a lower 
buckling rotating speed. However, for large radius ratio, the 
difference in γb is shrunk for different pretwist angles. In fact, 
when the radius ratio is large enough, the stiffness KΩi (A.7) 
due to centrifugal stress effect becomes dominant in the total 
stiffness matrix and the effect of the pretwist angle, Eqs. 
(A.3)-(A.5), becomes negligible. The variation characteristics 
of critical rotating speed are quite similar to those of buckling 
rotating speed. 

 
(a) 

 

 
(b) 

 
Fig. 5. Study of spin softening and axial stress effects on the natural 
frequencies: (a) Flapwise frequencies; (b) chordwise frequencies. 
 

 

 
 
Fig. 6. The variation of the Buckling temperature with rotating speed. 
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Fig. 10 displays the first two mode shapes for different ro-
tating speeds (0, 0.5γb, 0.75γb, 0.99γb, in which γb =16.005 for 
present case). The coupling effects between the chordwise 
vibration and flapwise vibration, which are introduced by non-
zero pretwist angle and stagger angle, could be observed. With 
the improvement of rotating speed, these coupling effects are 
magnified. The dominant mode shapes in the two components 
even switch each other for some cases. To observe the effect 
of rotating speed on the mode shapes, the normalized chord-
wise mode shapes are put together and plot in Fig. 11. The 
variation in flapwise mode shapes, which are not displayed 
here, is similar to that of chordwise mode shapes. It is obvious 
that with the growth of rotating speed, the peak value position 
of the mode shape moves to the tip end of the rotating beam, 
and the movement rate increases with the rotating speed rap-
idly. Physically, both the tensile stress near the root end and 
compressive stress near the tip end are improved with the 
increment of the rotating speed. So the root end part is stiff-
ened; however, the tip end part is softened at the same time. 
As a result, the peak value position will move to the softening 
part. 

 
 
Fig. 7. The influence of thermal environment on the critical rotating 
speed. 
 

 
 
Fig. 8. The variation of the buckling rotating speed with hub radius 
under thermal stress. 
 

 
 
Fig. 9. The variation of the critical rotating speed with hub radius 
under thermal stress.  

 

 
(a) 

 

 
(b) 

 
Fig. 10. First two mode shapes for different rotating speeds (δ = 0, εT = 
0): (a) First mode shape; (b) second mode shape. 
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Similarly, the influence of the hub radius δ on the mode 
shapes is discovered in Figs. 12 and 13. The rotating speed is 
set as three quarter of buckling rotating speed for each case 
(for δ = 0, γb = 16.005; δ = 0.5, γb = 12.469; δ = 2, γb = 8.254 
and when δ = 4, γb = 6.220). The exchange in mode shapes 

could also be observed in present cases. In addition, a slight 
movement of the peak value position is revealed. The move-
ment rate decreases with hub radius ratio, hence the mode 
shapes seem to converge to a certain shape as the growth of δ. 
In fact, when the hub radius δ increases from 0 to ∞，the 

 
 
Fig. 13. Normalized chordwise mode shapes for different hub radii. 

 

 
(a) 

 

 
(b) 

 
Fig. 14. First two mode shapes for different environment temperatures:
(δ = 0, γ = 0): (a) First mode shape; (b) second mode shape. 

 

 
 
Fig. 11. Normalized chordwise mode shapes for different rotating speeds. 

 

 
(a) 

 

 
(b) 

 
Fig. 12. First two mode shapes for different hub radii (γ = 0.75γb, εT = 
0): (a) First mode shape; (b) second mode shape. 
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division point χ0, which divides the tensile part from the com-
pressive part, will approach to1 2 from1 3 . So the compres-
sive stress zone is extended, and the peak value position ap-
proaches to the tip end. 

Finally, the influence of thermal environment on the mode 
shapes is studied in Figs. 14 and 15. Four typical temperatures 
(0, 0.5εTb, 0.75εTb and 0.99εTb, in which εTb = 1.86e-3) are 
adopted as thermal environment. Nether the transformation in 
mode shapes nor the movement of the peak value position 
could be observed in the present cases. However, the only 
variation is that the mode shapes seem to become a little 
“thinner” when the temperature is increased. In the present 
study the temperature field along the beam is assumed to be 
uniform, so the axial stress is decreased uniformly along the 
beam when the temperature is increased. As a result, the peak 
value position would not move for different environment tem-
perature. 

 
5. Conclusion 

Equations of motion for rotating pretwisted clamped-
clamped beam under thermal stress were derived by employ-
ing three pure Cartesian deformation variables combined with 
nonlinear von Karman strain. The geometric complexities of 
the rotating blade, such as pretwist angle and stagger angle, 
were considered. The effects of thermal environment, rotating 
speed, the hub radius and pretwist angle on the dynamic char-
acteristics of rotating pretwisted clamped beam were investi-
gated through numerical study. Numerical results obtained 
with the present modeling method are in good agreement with 
the previous results reported in the literature and the results 
calculated from a commercial finite element code. Both the 
thermal environment and rotation motion show a softening 
effect on the rotating clamped beam. The influence of pretwist 
angle and hub radius on the buckling rotating speed and criti-
cal rotating speed was discovered. The coupling effects be-
tween the mode shapes for chordwise vibration and flapwise 

vibration introduced by the pretwist angle and stagger angle 
could be magnified by the rotating speed. The exchange in 
mode shapes can be observed in some cases. The increment in 
the rotating speed and the hub radius could move the peak 
value position of the mode shape to the tip end of the beam; 
however, the variation in temperature will not. It seems that 
the first mode shape will become a little “thinner” with the 
increment of environment temperature. Some related physical 
explanations are discussed in the present paper. 
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Appendix  

A. Matrices in equations of motion 

The matrices and their components in Eq. (22) are derived 
as: 

 

0
d

Lij T
i jM A xr f f= ò  (A.1) 

1, 1,0
d

LS T
x xK EA xf f= ò  (A.2) 

2
3 2, 2,0

d
LB T

xx xxK EI xf f= ò  (A.3) 

3
2 3, 3,0

d
LB T

xx xxK EI xf f= ò   (A.4) 

23 , ,0
d

LBij T
i xx j xxK EI xf f= ò  (A.5) 

, ,0
d

LTi T
T i x i xK N xf f= ò   (A.6) 
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( ) ( )2 2 2
, ,0

1 13 2 d
6 2

Li T
i x i xK A L x r L x xr f fW é ù= W - + -ê úë ûò   (A.7) 

( )2
1 1 1,0 0

d d
L LT T

T xQ A r x x N xr f f= W + +ò ò  (A.8) 

2 2,0
d

L T
Tz xxQ M xf= -ò  (A.9) 

3 3,0
d .

L T
Ty xxQ M xf= -ò   (A.10) 

 
The dimensionless matrices and elements in Eq. (26) are 

written as followings. 
 

22

33

0
0

M
M

é ù
= ê ú
ë û

M   (A.11) 

2 2 22 2 2 23

32 3 3 3

B T B

B B T

K M K K K
K K K K

g W

W

é ù- + -
= ê ú

+ -ë û
K  (A.12) 

1

0
dij T

i jM j j c= ò  (A.13) 

( )
12

2, 2,0

1 1cos 2 d
2 2

B TK cc cc

k k c j j c+ -é ùé ù= - Q + Yê úë ûë ûò  (A.14) 

 

( )
13

3, 3,0

1 1cos 2 d
2 2

B TK cc cc

k k c j j c+ -é ùé ù= + Q + Yê úë ûë ûò  (A.15) 

( )
1

, ,0

1sin 2 d
2

Bij T
i jK cc cc

k c j j c-é ùé ù= Q + Yê úë ûë ûò   (A.16) 

1

, ,0
12 dTi T

T i iK c cme j j c= ò   (A.17) 

( ) ( )
12 2

, ,0

1 11 3 1 2 d .
6 2

i T
i iK xc cg c d c j jW é ù= - + -ê úë ûò  (A.18) 
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