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Analytical study is carried out on the dynamic characteristics of a laminated plate under temperature gra-
dient. Theoretical formulations are derived with the first order shear deformation theory and von Karman
nonlinear strain displacement relationship considering the effect of temperature gradient. Semi-
analytical solutions of vibration and acoustic responses are obtained for different temperature gradients.
The correctness of the theoretical method is demonstrated by comparing with the experimental result
and numerical simulation. The present work theoretically explains why the lowest point (buckling occur-
ring) of the experimental curve of resonant frequencies for thermal structure is shifting up away from the
horizontal axis. It also means that initial thermal deformation and thermal stress have to be considered
together in simulation of the dynamical response for thermal structure. Research results show that with
increasing temperature gradients, the resonant frequency increases, the critical mid-plane temperature
at which resonant frequency drops to the lowest decreases, and the response peaks move toward higher
frequency.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Hypersonic spacecrafts suffer harsh aerodynamic heating in
service. Local high temperature gradient would give rise to non-
uniform thermal stress, even local thermal buckling. Thermal envi-
ronment would result in changing of the stiffness and dynamic
response of structures. Therefore, it’s significant to research the
dynamic characteristics of the thermal structures.

The laminated plate is a typical structure of spacecrafts, of
which vibrational and acoustic responses in thermal environment
were studied by many researchers. Jeyaraj et al. [1,2] presented
numerical simulation studies on vibrational and acoustic responses
of rectangular plates in thermal environment considering the
inherent material damping property. The critical buckling temper-
atures and vibrational responses were obtained using finite ele-
ment method while sound radiation responses were obtained
using a coupled FEM/BEM technique. Yang and Shen [3,4] analyzed
the free vibration with shear and normal deformations effects and
forced vibration for initially stressed functionally graded plates in
thermal environments. In their study, the temperature dependence
of material properties were considered. Pradeep et al. [5,6] studied
free vibration and critical buckling temperature of the viscoelastic
sandwich plates taking the temperature dependence of properties
and effects of pre-stresses into account using finite element
method. Geng et al. [7–9] investigated the influence of thermal
environments on vibrational and acoustic responses of rectangular
thin plates with simply supported and clamped boundary condi-
tions through the theoretical analysis, numerical simulation and
experimental method, and the results obtained by three methods
agree well with each other. Based on the equivalent non-classical
theory, Liu and Li [10] derived analytical solutions of the vibra-
tional and acoustic responses for a rectangular sandwich plate
under thermal environments. The influences caused by thermal
environment on the sandwich and the specific features of various
sandwich plates are deeply discussed in their study. Li and Li
[11] carried out analytical studies on the vibration and sound radi-
ation characteristics for a rectangular laminated plate taking the
effect of thermal environment into account. Applying the piece-
wise low order shear deformation theory, Li and Yu [12] investi-
gated the vibration and acoustic responses of the sandwich
panels constituted of orthotropic materials applied a concentrated
harmonic force in a high temperature environment. Zhang et al.
[13] researched a sandwich structure composed of fiber-
reinforced mullite matrix composite face sheets and ceramic foams
elastic layer subjected to high temperature and large gradient
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thermal environment by both experimental means and finite ele-
ment method. The influence of the plate geometry, the geometry
of the cut-out, the moisture concentration, the thermal gradient
and the boundary conditions on the free flexural vibration and
buckling of laminated composite plates were numerically studied
within the framework of the extended finite element method by
Natarajan et al. [14,15]. Rath et al. [16,17] carried out both
experimental and numerical investigation on the free vibration
behavior of laminated composite plates subjected to varying
temperature and moisture.

A few researchers studied the effects of temperature gradient
on the vibration of laminated plates. The dynamic free response
of thin rectangular plates subjected to one and two dimensional
steady state temperature distributions satisfying Laplace’s equa-
tion was investigated by using the finite difference method and
finite element method [18,19]. Gupta [20] analyzed the vibration
of non-homogenous viscoelastic rectangular plates of linearly
varying thickness subjected to thermal gradient. The effect of a
constant thermal gradient on the transverse vibrational frequen-
cies of a simply supported rectangular plate was investigated by
Fauconneau and Marangoni [21] with various plate width-to-
length ratios as functions of a parameter related to the tempera-
ture dependence of the elastic modulus of the material. Chen
et al. [22] presented a study on the buckling and vibration of ini-
tially stressed composite plates with temperature-dependent
material properties in thermal environments. In Refs. [21,22], the
effect of thermal gradient was considered by temperature-
dependent material properties. The above researches on laminated
plates are all based on the linear theory. With the nonlinear effect,
the researches on thermal post-buckled and large amplitude vibra-
tion were presented in a number of literatures. Based on a higher-
order shear deformation theory incorporating von-Karman nonlin-
ear strain–displacement relations, Girish and Ramachandra [23]
analyzed the post-buckled vibration of a symmetrically laminated
composite plate subjected to a uniform temperature distribution
through the thickness numerically. Park and Kim [24] investigated
thermal post-buckling and vibration behaviors of the functionally
graded plate by nonlinear finite element method. A closed form
solution for linear and nonlinear free vibrations of composite and
fiber metal laminated rectangular plates was obtained with the
multiple time scales method by Shooshtari and Razavi [25].
Amabili [26,27] investigated large-amplitude vibrations of
rectangular plates subjected to harmonic excitations, and the results
were compared considering different boundary conditions by
theory and experiment methods. Bhimaraddi and Chandrashekhara
[28] analyzed the large amplitude vibrations, buckling and post-
buckling of heated angle-ply laminated plates using the parabolic
shear deformation theory, and the effects of initial imperfections
and the temperature loading on the response characteristics of
the plate were discussed. Chen et al. [29] derived the nonlinear
partial differential equations for the vibrating motion of a plate
based on a modified plate theory, and studied the large amplitude
vibrations of an initial stressed plate. Shen and Huang [30,31] pre-
sented the nonlinear vibration and dynamic response of function-
ally graded material plates in thermal environments. The results
revealed that the temperature field and volume fraction distribu-
tion have a significant effect on the nonlinear vibration and
dynamic response of the functionally graded plate. Murphy et al.
[32] investigated the effect of thermal pre-stress on the free vibra-
tion characteristics of clamped rectangular plates in a combined
theoretical and experiment approach. The effect of initial geomet-
ric imperfections, modal coupling, imperfect clamping and post-
buckling were addressed.

Li et al. [33,34] carried out a computational analysis of the non-
linear vibration and thermal post-buckling of a heated orthotropic
annular plate with a central rigid mass for the cases of immovably
hinged as well as clamped constraint conditions of the outer edge.

In previous studies, researchers mostly focus on temperature-
dependent material properties. It is well known that Young’s mod-
ulus is a certain function of temperature, by which the effect of
temperature is considered. The research on this aspect is mature
and the research method is visual. Therefore, this article pays no
attention to the temperature dependent material properties, but
focuses on the effect of thermal stress and thermal deformation.
Effect of thermal stress is also researched in a few literatures as
the above. However, none of available researches are found on
dynamical characteristics of laminated plates considering the
effect of thermal deformation due to thermal gradient. The present
work conducts the theoretical research on vibro-acoustic charac-
teristics of a laminated plate with temperature gradient along
the thickness direction. The vibration governing equations are
established considering the initial deflection caused by tempera-
ture gradient. Vibrational and acoustic responses are analyzed the-
oretically with varying temperature gradients. The experimental
result and numerical simulation are used for validation, and both
show good agreements with present solutions.

2. Formulate

We consider an n-layer laminated plate as shown in Fig. 1(a).
The mid-plane of laminated plate is lying on the x–y plane. Based
on the first-order shear deformation theory, displacement fields
are expressed as

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zuxðx; y; tÞ
vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zuyðx; y; tÞ
wðx; y; z; tÞ ¼ w0ðx; y; tÞ

ð1Þ

where u, v, and w are the in-plane displacements and the transverse
displacement at any point along x, y, z, directions, respectively. u0,
v0, w0 are the corresponding displacements of the point on the
mid-plane, ux and uy are the rotations of a transverse normal about
the y-axes and x-axes, respectively.

It is assumed that the laminated plate is subjected to the linear
temperature distribution along the thickness direction as shown in
Fig. 1(b),

DT ¼ T0 þ sz ð2Þ
where T0 and s are the temperature rise at mid-plane and temper-
ature gradient along the thickness, respectively.

In this paper, arbitrary temperature distribution can be divided
into two parts. One is mid-plane temperature distribution which
causes expansion and contraction at mid-plane, the other is tem-
perature gradient along the thickness which induces thermal
bending deformation. The effects of temperature in plane on the
expansion and compression have been studied very much in Refs.
[7–11,35]. So, the present study focuses on the effects of thermal
bending deformation caused by temperature gradient on vibra-
tional and acoustic characteristics. Assuming the initial thermal
deformations induced by temperature gradient (or thermal post-
buckling) are u0

s ðx; yÞ, v0
s ðx; yÞ, w0

s ðx; yÞ, uxsðx; yÞ, uysðx; yÞ, the total
displacements should be expressed as

u0ðx; y; tÞ ¼ u0
s ðx; yÞ þ u0

t ðx; y; tÞ
v0ðx; y; tÞ ¼ v0

s ðx; yÞ þ v0
t ðx; y; tÞ

w0ðx; y; tÞ ¼ w0
s ðx; yÞ þw0

t ðx; y; tÞ
uxðx; y; tÞ ¼ uxsðx; yÞ þuxtðx; y; tÞ
uyðx; y; tÞ ¼ uysðx; yÞ þuytðx; y; tÞ

ð3Þ



Fig. 1. Laminated plate model, (a) global view, (b) cross view.
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where the characters with the subscripts ‘s’ are the initial static
deformation due to temperature gradient (or thermal post-
buckling), and the characters with the subscripts ‘t’ are the dynam-
ical deformation caused by vibration of the structures.

For considering the initial deflections, von-Karman nonlinear
strain–displacement relation is adopted as follows:

exx ¼ e0xx þ zvxx; eyy ¼ e0yy þ zvyy; ezz ¼ 0

exy ¼ e0xy þ zvxy; eyz ¼ e0yz; exz ¼ e0xz
ð4Þ

where
e0xx ¼
@u0

@x
þ 1
2

@w0

@x

� �2

; e0yy ¼
@v0

@y
þ 1
2

@w0

@y

� �2

;

e0xy ¼
@u0

@y
þ @v0

@x
þ @w0

@x
@w0

@y
;

e0yz ¼
@w0

@y
þuy; e0xz ¼

@w0

@x
þux; vxx ¼

@ux

@x
;

vyy ¼
@uy

@y
; vxy ¼

@ux

@y
þ @uy

@x

ð5Þ
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With the effect of temperature gradient, the constitutive relations
for a laminated plate made up of n layers of orthotropic plates
may be written in the following form:

rxx

ryy

rxy

ryz

rxz

2666664

3777775¼
r0

xx

r0
yy

r0
xy

r0
yz

r0
xz

26666664

37777775þ
rT

xx

rT
yy

rT
xy

rT
yz

rT
xz

26666664

37777775¼
C11 C12 0 0 0
C21 C22 0 0 0
0 0 C66 0 0
0 0 0 C44 0
0 0 0 0 C55

2666664

3777775

�

exx
eyy
exy
eyz
exz

2666664

3777775þ
C11 C12 0 0 0
C21 C22 0 0 0
0 0 C66 0 0
0 0 0 C44 0
0 0 0 0 C55

2666664

3777775�
�axxDT
�ayyDT
�axyDT

0
0

2666664

3777775 ð6Þ

where r0
ij and rT

ij are mechanical stresses and thermal stresses
respectively; Cij are the material stiffness of laminated plates; aij
are thermal expansion coefficient.

Hamilton’s principle is applied to derive the governing
equationsZ

dðU � T þ VÞdt ¼ 0 ð7Þ

Here d is the variation of the functions. U, T and V are the strain
energy, the kinetic energy, work due to external force, which can
be written as

U ¼ 1
2

Z Z Z
rijeijdxdydz

T ¼ 1
2

Z Z Z
q

@l
@t

� �2

þ @m
@t

� �2

þ @w
@t

� �2
" #

dxdydz

V ¼
Z Z

qwdxdy

ð8Þ

in which q is applied force.
Substituting the integral forms of U, T and V into Eq. (7), per-

forming the variation and integral, the governing equations can
be obtained.

For a symmetric laminated plate, there is no bending-
extensional coupling stiffness, that is Bij (i, j = 1,2,6) = 0, then the
governing equations are simplified as

A11u0
;xxþA66u0

;yyþðA12þA66Þv0
;xyþw0

;xðA11w0
;xxþA66w0

;yyÞ
þ A12þA66ð Þw0

;yw
0
;xy� NT

xx;xþNT
xy;y

� �
¼R0u0

;ttðA12þA66Þu0
;xy

þA66v0
;xxþA22v0

;yyþðA12þA66Þw0
;xw

0
;xyþw0

;y A66w0
;xxþA22w0

;yy

� �
� NT

yy;yþNT
xy;x

� �
¼R0v0

;ttw
0
;x

A11u0
;xxþA66u0

;yyþðA12þA66Þv0
;xyþw0

;x A11w0
;xxþA66w0

;yy

� �
þ

ðA12þA66Þw0
;yw

0
;xy� NT

xx;xþNT
xy;y

� �
0@ 1A
þw0

;y

ðA12þA66Þu0
;xyþA66v0

;xxþA22v0
;yyþ A12þA66ð Þw0

;xw
0
;xyþ

w0
;y A66w0

;xxþA22w0
;yy

� �
� NT

yy;yþNT
xy;x

� �0@ 1A
þw0

;xx A11 u0
;xþ

1
2
ðw0

;xÞ
2

� �
þA12 v0

;yþ
1
2
ðw0

;yÞ
2

� �
�NT

xx

� �
þw0

;yy A12 u0
;xþ

1
2
ðw0

;xÞ
2

� �
þA22 v0

;yþ
1
2
ðw0

;yÞ
2

� �
�NT

yy

� �
þ2w0

;xy A66 u0
;yþv0

;xþw0
;xw

0
;y

� �
�NT

xy

� �
þA55 w0

;xxþux;x

� �
þA44ðw0

;yyþuy;yÞþq¼R0w0
;ttD11ux;xxþD12uy;xyþD66ux;yy

þD66uy;xy�A55w0
;x�A55ux� MT

xx;xþMT
xy;y

� �
¼R2ux;ttD66ux;xy

þD66uy;xxþD21ux;xyþD22uy;yy�A44w0
;y�A44uy

� MT
yy;yþMT

xy;x

� �
¼R2uy;tt ð9Þ
where Aij, Dij (i, j = 1,2,6) are the coefficients of extensional and
bending stiffness, respectively. A44 and A55 are the shear stiffness
coefficients. Thermal stress resultants NT

xx, N
T
yy, N

T
xy and moment

resultants MT
xx, M

T
yy, M

T
xy are included in the governing equations.

These coefficients associated with material parameters and thermal
stresses are defined as follows:

ðAij;DijÞ ¼
Z h=2

�h=2
Cijð1; z2Þdz ði; j ¼ 1;2;4;5;6Þ

ðR0;R2Þ ¼
Z h=2

�h=2
qð1; z2Þdz

NT
ij;M

T
ij

� �
¼
Z h=2

�h=2
rT

ijð1; zÞdz ði; j ¼ x; yÞ

ð10Þ

It is assumed that the boundary conditions are all four edges
clamped as follows

u0 ¼ v0 ¼ w0 ¼ ux ¼ uy ¼
@w0

@x
¼ 0 at x ¼ 0; a

u0 ¼ v0 ¼ w0 ¼ ux ¼ uy ¼
@w0

@y
¼ 0 at y ¼ 0; b

ð11Þ

Firstly, the thermal bending deformations u0
s ðx; yÞ,

v0
s ðx; yÞ; w0

s ðx; yÞ, uxsðx; yÞ, uysðx; yÞ due to temperature gradient
(or thermal post-buckling) in Eq. (3) are solved. Substituting
u0
s ðx; yÞ, v0

s ðx; yÞ; w0
s ðx; yÞ, uxsðx; yÞ, uysðx; yÞ into Eq. (9), we can

obtain the following static equations

A11u0
s;xxþA66u0

s;yyþðA12þA66Þv0
s;xyþw0

s;x A11w0
s;xxþA66w0

s;yy

� �
þðA12þA66Þw0

s;yw
0
s;xy� NT

xx;xþNT
xy;y

� �
¼0ðA12þA66Þu0

s;xy

þA66v0
s;xxþA22v0

s;yyþðA12þA66Þw0
s;xw

0
s;xy

þw0
s;y A66w0

s;xxþA22w0
s;yy

� �
� NT

yy;yþNT
xy;x

� �

¼0w0
s;x

A11u0
s;xxþA66u0

s;yyþðA12þA66Þv0
s;xyþw0

s;x A11w0
s;xxþA66w0

s;yy

� �
þ

ðA12þA66Þw0
s;yw

0
s;xy� NT

xx;xþNT
xy;y

� �
0B@

1CA

þw0
s;y

ðA12þA66Þu0
s;xyþA66v0

s;xxþA22v0
s;yyþðA12þA66Þw0

s;xw
0
s;xyþ

w0
s;y A66w0

s;xxþA22w0
s;yy

� �
� NT

yy;yþNT
xy;x

� �
0B@

1CA
þw0

s;xx A11 u0
s;xþ

1
2
ðw0

s;xÞ
2

� �
þA12 v0

s;yþ
1
2
ðw0

s;yÞ
2

� �
�NT

xx

� �

þw0
s;yy A12 u0

s;xþ
1
2
ðw0

s;xÞ
2

� �
þA22 v0

s;yþ
1
2
ðw0

s;yÞ
2

� �
�NT

yy

� �
þ2w0

s;xy A66 u0
s;yþv0

s;xþw0
s;xw

0
s;y

� �
�NT

xy

� �
þA55 w0

s;xxþusx;x

� �
þA44 w0

s;yyþusy;y

� �
¼0D11usx;xxþD12usy;xyþD66usx;yyþD66usy;xy

�A55w0
s;x�A55usx� MT

xx;xþMT
xy;y

� �
¼0D66usx;xyþD66usy;xxþD21usx;xy

þD22usy;yy�A44w0
s;y�A44usy� MT

yy;yþMT
xy;x

� �
¼0 ð12Þ

The thermal bending deformations will be acquired by solving
Eq. (12) using Galerkin method and least-squares iterationmethod.

In order to solve the static equation Eq. (12) and dynamic equa-
tion Eq. (9) conveniently, the following dimensionless quantities
are defined.

x ¼ a1; y ¼ bg; k ¼ a=b; u0 ¼ Uh2
=ð12aÞ; v0 ¼ Vh2

=ð12aÞ
w0 ¼ Wh=ð2

ffiffiffi
3

p
Þ; ux ¼ u1; uy ¼ ug; q ¼ QA11h

3
.

24
ffiffiffi
3

p
a4

� �
ð13Þ
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Eq. (12) can be written in the following dimensionless form:

Us;11 þ d1Us;gg þ d2Vs;1g þWs;1 Ws;11 þ d1Ws;gg
� �þ d3Ws;gWs;1g

þ d44N
T
xx;1 þ d45N

T
xy;g ¼ 0Us;1g þ d6Vs;11 þ d7Vs;gg þWs;1Ws;1g

þWs;g d8Ws;11 þ d9Ws;gg
� �þ d46N

T
yy;g þ d47N

T
xy;1

¼ 0Ws;1

Us;11 þ d1Us;gg þ d2Vs;1g þWs;1 Ws;11 þ d1Ws;gg
� �þ

d3Ws;gWs;1g þ d44N
T
xx;1 þ d45N

T
xy;g

0@ 1A

þWs;g

d3Us;1g þ d28Vs;11 þ d22Vs;gg þ d3Ws;1Ws;1gþ

Ws;g d1Ws;11 þ d29Ws;gg
� �þ d46N

T
yy;g þ d47N

T
xy;1

0@ 1A
þWs;11 Us;1 þ d16W

2
s;1 þ d17Vs;g þ d18W

2
s;g þ d19N

T
xx

� �
þWs;gg d20Us;1 þ d21W

2
s;1 þ d22Vs;g þ d23W

2
s;g þ d24N

T
yy

� �
þ

þWs;1g d25Us;g þ d26Vs;1 þ d25Ws;1Ws;g þ d27N
T
xy

� �
þ d12u1s;1 þ d13Ws;11 þ d14ugs;g þ d15Ws;gg ¼ 0u1s;11

þ d32u1s;gg þ d33ugs;1g þ d34u1s þ d35Ws;1 þ d48M
T
xx;1

þ d49M
T
xy;g ¼ 0ugs;gg þ d38u1s;1g þ d39ugs;11 þ d41ugs

þ d40Ws;g þ d51M
T
yy;g þ d50M

T
xy;1 ¼ 0 ð14Þ

The coefficients of Eq. (14) are given in Appendix.
The solutions of Eq. (14) are assumed as the following forms

which satisfy the boundary conditions:

Us ¼
XM;N

m;n¼1

umnImð1ÞJnðgÞ

Vs ¼
XM;N

m;n¼1

vmnImð1ÞJnðgÞ

Ws ¼
XM;N

m;n¼1

wmnRmð1ÞSnðgÞ

uxs ¼
XM;N

m;n¼1

xmnR
0
mð1ÞSnðgÞ

uys ¼
XM;N

m;n¼1

ymnRmð1ÞS0nðgÞ

ð15Þ

where umn, vmn, wmn, uxmn, uymn are the undetermined coeffi-
cients irrelevant to time, and

Imð1Þ ¼ sinmp1; JnðgÞ ¼ sinnpg
Rmð1Þ ¼ cmðcoshðkm1Þ � cosðkm1ÞÞ þ dm sinhðkm1Þ þ sinðkm1Þ
SnðgÞ ¼ c0nðcoshðk0ngÞ � cosðk0ngÞÞ þ d0

n sinhðk0ngÞ þ sinðk0ngÞ
ð16Þ

The coefficients dm, cm, km, d
0
n, c

0
n, k

0
n are calculated according to the

following equations:

dm ¼ �1; cm ¼ sin km � sinh km
cos km � cosh km

; 1� cos km cosh km ¼ 0

d0
n ¼ �1; c0n ¼ sin k0n � sinh k0n

cos k0n � cosh k0n
; 1� cos k0n cosh k0n ¼ 0

ð17Þ
We then expand the membrane forces and bending moments
due to temperature gradient in the double Fourier series as

NT
xx MT

xx

NT
yy MT

yy

NT
xy MT

xy

8>><>>:
9>>=>>; ¼

XM;N

m;n¼1

NT
xxmn MT

xxmn

NT
yymn MT

yymn

NT
xymn MT

xymn

8>><>>:
9>>=>>;Rmð1ÞSnðgÞ ð18Þ

Substituting the displacement functions Eq. (15) into Eq. (14),
using Galerkin method, multiplying the five equations in Eq. (14)
by the weighted residuals IkJl, IkJl, RkSl, R

0
kSl, RkS

0
l, respectively, then

carrying out the Simpson numerical integration, a set of nonlinear
algebraic equations could be obtained. The static solutions are
attained by solving the nonlinear algebraic equations with least-
squares iteration method by MATLAB.

Vibrational responses could be obtained by solving Eq. (19) using
Galerkin method and variable-step Runge–Kutta method. Equation
(19) are the dimensionless forms of dynamic equation (9).

U;11 þ d1U;gg þ d2V ;1g þW ;1 W ;11 þ d1W ;gg
� �þ d3W ;gW ;1g þ d44N

T
x;1

þ d45N
T
xy;g ¼ d5U;ttU;1g þ d6V ;11 þ d7V ;gg þW ;1W ;1g

þW ;g d8W ;11 þ d9W ;gg
� �þ d46N

T
y;g þ d47N

T
xy;1

¼ d11V ;ttW ;1
U;11 þ d1U;gg þ d2V ;1g þW ;1 W ;11 þ d1W ;gg

� �þ
d3W ;gW ;1g þ d44N

T
x;1 þ d45N

T
xy;g

 !

þW ;g
d3U;1g þ d28V ;11 þ d22V ;gg þ d3W ;1W ;1gþ
W ;g d1W ;11 þ d29W ;gg

� �þ d46N
T
y;g þ d47N

T
xy;1

 !
þW ;11 U;1 þ d16W

2
;1 þ d17V ;g þ d18W

2
;g þ d19N

T
x

� �
þW ;gg d20U;1 þ d21W

2
;1 þ d22V ;g þ d23W

2
;g þ d24N

T
y

� �
þW ;1g d25U;g þ d26V ;1 þ d25W ;1W ;g þ d27N

T
xy

� �
þ d12u1;1

þ d13W ;11 þ d14ug;g þ d15W ;gg þ Q ¼ d31W ;ttu1;11 þ d32u1;gg

þ d33ug;1g þ d34u1 þ d35W ;1 þ d48M
T
x;1 þ d49M

T
xy;g ¼ d37u1;ttug;gg

þ d38u1;1g þ d39ug;11 þ d41ug þ d40W ;g þ d51M
T
y;g þ d50M

T
xy;1

¼ d43ug;tt ð19Þ
The coefficients of Eq. (19) are given in Appendix.
The static displacements Us, Vs,Ws; uxs;uys have been solved by

Eq. (14). According to the boundary conditions of all-edge clamped
plate, the solutions of Eq. (19) are assumed as follows:

U ¼
XM;N

m;n¼1

ðumn þ umnðtÞÞImð1ÞJnðgÞ

V ¼
XM;N

m;n¼1

ðvmn þ vmnðtÞÞImð1ÞJnðgÞ

W ¼
XM;N

m;n¼1

ðwmn þwmnðtÞÞRmð1ÞSnðgÞ

ux ¼
XM;N

m;n¼1

ðxmn þ xmnðtÞÞR0
mð1ÞSnðgÞ

uy ¼
XM;N

m;n¼1

ðymn þ ymnðtÞÞRmð1ÞS0nðgÞ

ð20Þ

where umnðtÞ, vmnðtÞ, wmnðtÞ, uxmnðtÞ, uymnðtÞ are the undetermined
coefficients of dynamical displacements caused by the structural
vibration. The coefficients of total displacement should be the
sum of static coefficients and dynamical coefficients. Using Galerkin
method, Eq. (19) could be transformed into a set of nonlinear ordi-
nary differential equations. Taking the static displacement Us, Vs,
Ws; uxs; uys caused by temperature gradient as the initial condi-
tions of Eq. (19) as follows
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Ujt¼0 ¼ Us;
dU
dt

				
t¼0

¼ 0

V jt¼0 ¼ Vs;
dV
dt

				
t¼0

¼ 0

Wjt¼0 ¼ Ws þWmax;
dW
dt

				
t¼0

¼ 0

uxjt¼0 ¼ uxs;
dux

dt

				
t¼0

¼ 0

uyjt¼0 ¼ uys;
duy

dt

				
t¼0

¼ 0

ð21Þ

where Wmax is the dimensionless amplitude of the transverse dis-
placement. Then, the dimensionless solutions of displacement can
be obtained by using variable-step Runge–Kutta method for a time
span numerically, which is a classical numerical method for solving
differential equations implemented by MATLAB in this paper.

The responses can be transformed from time domain to fre-
quency domain by FFT (Fast Fourier Transform).

FðxÞ ¼ F½f ðtÞ� ¼
Z 1

�1
f ðtÞe�ixtdt ð22Þ

Resonant frequencies are obtained by the values of frequencies
corresponding to resonant peaks.

Performing the Rayleigh integral, the sound pressure at the
observation point ðxp; yp; zpÞ above the plate is acquired as

pðxp; yp; zp; tÞ ¼
jxq0

2p
ejxt

Z
X

ev ðx; y; tÞ � e�jkR

R
dA ð23Þ

where q0 is air density, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxp � xÞ2 þ ðyp � yÞ2 þ ðzp � zÞ2

q
is the

distance between the observation point ðxp; yp; zpÞ in acoustic
field and the integration point, j is the wave number which is
evaluated by x=c, c is the sound speed, ev ðx; y; tÞ is the first
derivative of w(x,y, t).
Fig. 2. Comparison of resonant frequency.

Fig. 3. Comparison of resonant frequency with different release of thermal stresses.
3. Validation

3.1. Validation for resonant frequency

In order to verify the correctness of present formula, resonant
frequencies are compared with test result from Ref. [35], in which
the test specimen is a 3 mm-thick aluminum plate with
0.3 � 0.2 m2. The material properties are Young’s modulus
65 GPa, Poisson’s ratio 0.27, mass density 2810 kg m�3 and thermal
expansion coefficient 2.3 � 10�5 K�1, respectively. The measured
initial transverse deflection is 0.16 mm, which is due to the imper-
fection of the test specimen in Ref. [35].

To be more in accord with the actual geometric shape of the
plate, the initial transverse deflections should be added to the pre-
sent theoretical calculation as described below. In formulation of
Section 2, the mid-plane temperature T0 induces thermal expan-
sion or contraction stresses, while initial transverse deflections
are induced by thermal bending moment due to temperature gra-
dient s. Initial transverse deflection is added in a similar way which
is to add the temperature gradient load DTi ¼ siz to the formula-
tion. Because the mid-plane temperature is not included in DTi

and there will not be thermal expansion or contraction stresses,
only initial transverse deflection will be induced.

Assigning the initial transverse deflection to be w0
s ðx; yÞ in Eq.

(3), and then performing the same formulations with Section 2,
resonant frequencies will be obtained by Eq. (19) using variable-
step Runge–Kutta method and FFT (Fast Fourier Transform). It
can be seen from Fig. 2 that the resonant frequencies calculated
in the present work agree well with FEM (Nastran) in Ref. [35].
As mentioned above, initial transverse deflection is added in the
present theoretical calculation for imperfect of the test specimen.
In the finite element analysis, initial imperfection is also to be con-
sidered. Assuming that the node coordinate is X0

i (x,y,z) for a flat
plate, modifying the FEM model of the flat plate, making it with
the initial transverse deflection di(x,y,z), then the flat plate turns
into a curve plate with initial geometrical imperfections, of which
node coordinate turns into X0

i (x,y,z) = X0
i (x,y,z) + di(x,y,z). It is dif-

ferent from the previous flat plate that both geometrical imperfec-
tions and thermal stress are considered in the finite element
analysis [35]. Besides, the deviation in Fig. 2 between the present
work and the experiment results is for two reasons. One is
explained in details in Ref. [35] that the thermal expansion of the
experimental frame will release some of the thermal stresses and
thermal deflection of the test plate. Therefore, in the present theo-
retical calculations, we reduce the thermal stress 10%, 20%, 30%
corresponding to ‘off stress 10%’, ‘off stress 20%’, ‘off stress 30%’
respectively in Fig. 3 to simulate that experimental frame releases
some of the thermal stresses. The result shows that present theo-
retical results get closer to the experiment results with the
decrease of thermal stresses, and thereby support the reason that
the experimental frame releases part of the thermal stresses and
thermal deflection of the test plate. The other reason is supposed
that Young’s modulus is dependent on temperature, which is not
focused in present work. To check whether it is for this,
temperature-dependent Young’s modulus and thermal expansion



Table 1
Temperature-dependent Young’s modulus and thermal expansion coefficient of
aluminum.

Young’s modulus (MPa) Thermal expansion (/K)

65144 + 73.432T � 0.1618T2 2 � 10�5 + 6 � 10�9T + 3 � 10�12T2 + 10�14T3

Fig. 5. Comparison of displacement response, s = 1 �C mm�1.
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coefficient of aluminum are shown in Table 1 [36]. Considering
temperature-dependent and temperature-independent Young’s
modulus in present theoretical calculations, resonant frequencies
are compared with experiment results. It can be seen from Fig. 4
that there is no obvious change in value and tendency for the
results between temperature-dependent and temperature-
independent Young’s modulus compared with experiment results.
It indicates that temperature-dependent Young’s modulus is not a
main cause of the deviation in Fig. 2. Also, for the present temper-
atures range, temperature-dependent Young’s modulus exerts very
little influence on the resonant frequency. Consequently, it’s rea-
sonable and acceptable that present work considers temperature-
independent Young’s modulus.

So far, the present work theoretically explains why the lowest
point (buckling occurring) of the experimental curve of resonant
frequencies for thermal structure is shifting up away from the hor-
izontal axis (see Fig. 2).

3.2. Validation for response

Numerical simulation is performed to validate the dynamic
response of the present study by the finite element software ABA-
QUS. An all-edge clamped rectangular symmetric 3-layer plate is
considered and simulated using 80 � 60 � 7 3D solid elements.
The material properties of the plate with dimensions
0.4 � 0.3 � 0.007 m3 are given in Table 2. A harmonic excitation
with amplitude of 20,000 N and frequency of 50 Hz is applied at
Fig. 4. Comparison of resonant frequency with temperature-dependent and
temperature-independent material properties.

Table 2
Material properties and parameters for each layer.

Density (kg m�3) Young’s modulus (GPa) Poisso

4500 110 0.33
2700 70 0.3
4500 110 0.33

Fig. 6. Comparison of displacement response, s = 4 �C mm�1.
the center of the plate. The mid-plane temperature is 40 �C. The
comparisons of displacement responses at the center of the plate
under different temperature gradients 1 �C mm�1 and 4 �C mm�1

are shown in Figs. 5 and 6, respectively. According to above men-
tioned in Section 3.1, it could be seen that initial thermal deforma-
tion and thermal stress have to be considered together in
simulation of the dynamical response for thermal structure. The
solving processes by ABAQUS consist of two steps: (1) Static Gen-
eral; (2) Dynamic Implicit. Initial thermal deformation and thermal
stress would be induced by exerting temperature gradient to the
finite element model in static analysis process step 1, then taking
the end state of step 1 as the initial state of dynamical analysis pro-
cess step 2, the solutions of responses could be obtained by implicit
reduction method in step 2.

It can be observed the present results match well with the
results calculated by ABAQUS on the whole, although there is a lit-
tle deviation because the selected displacement functions are
n’s ratio Thermal expansion Thickness (m)

1e�5 2e�3
2.3e�5 3e�3
1e�5 2e�3



Fig. 7. Center deflection of plate under different temperature gradients.
Fig. 8. Resonant frequency under different temperature gradients.

Fig. 9. Displacement responses under different temperature gradients.

Fig. 10. Velocity responses under different temperature gradients.
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approximate solutions which are not accurate enough to express
the displacement. The present approach for vibration responses
can still be considered valid.

4. Results and discussions

Some cases are solved to study temperature gradient effect on
the laminated plates. Resonant frequencies, vibrational and acous-
tic responses are calculated with different temperature gradients
and initial deflections. Material properties and dimensions of the
laminated plate are identical with Section 3.2.

4.1. Different temperature gradients

Initial deflections are acquired by solving Eq. (12) using Galer-
kin method and least-squares iteration method. Resonant frequen-
cies are obtained by Eq. (19) using variable-step Runge–Kutta
method and FFT (Fast Fourier Transform). To be closer to the actual
stiffness, the dimensionless amplitude of free vibration is given a
small value 1e�5 as the initial disturbance. It can be observed that
the deflections in Fig. 7 increase as the temperature gradient
increases. This is because thermal bending moment increases with
temperature gradient increasing, which leads to the increasing of
the initial deflections of the laminated plate. Fig. 8 shows that
the resonant frequency increases as the temperature gradient
increases. This is due to that initial deflections caused by temper-
ature gradient intensify the stiffness of the structure. Accordingly,
resonant frequency is enhanced.

In Fig. 8, the mid-plane temperature at which resonant fre-
quency drops to the lowest is defined as critical mid-plane temper-
ature. The resonant frequency at the critical mid-plane
temperature for 0 �C mm�1 is near to 0 Hz for critical mid-plane
temperature is near to critical buckling temperature. However,
the resonant frequencies at the critical mid-plane temperature
for 2 �C mm�1, 4 �C mm�1, 6 �C mm�1 are higher than 0 Hz. This
is because the temperature gradients induce the transverse deflec-
tions which contribute to geometric stiffness.

Also, it is worth noting that the critical mid-plane temperature
moves toward lower temperature as temperature gradient
increases. The reason is before the critical mid-plane temperature,
softening effect on the laminated plate is induced by the thermal
stress due to the mid-plane temperature, and stiffening effect is
induced by deformation due to temperature gradient, softening
effect is greater than stiffening effect, the resonant frequency gets
decreased. At the critical mid-plane temperature, softening effect is
equal to stiffening effect and the resonant frequency reaches the
minimum. After the critical mid-plane temperature, stiffening
effect increases because of post-buckling deflections. Softening
effect is smaller than stiffening effect, the resonant frequency gets
increased. For a greater temperature gradient makes greater stiff-
ening effect, softening effect at lower mid-plane temperature



Fig. 11. Sound pressure level under different temperature gradients.

Fig. 12. Sound Power under different temperature gradients.

Fig. 13. Resonant frequency with different initial deflections.

Fig. 14. Displacement response with different initial deflections.

Fig. 15. Velocity response with different initial deflections.

Fig. 16. Sound pressure level response with different initial deflections.
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reaches balance. The critical mid-plane temperature moves toward
lower temperature as temperature gradient increases.

The Figs. 9–12 show frequency response curves of displace-
ment, velocity, sound pressure level and sound power of the lam-
inated plate under different temperature gradients. The mid-plane
temperature is 110 �C.
The dimensionless amplitude of free vibration is 0.5. The dis-
placement response, velocity response are calculated at the point
(0.12 m, 0.9 m, 0 m) and the sound pressure level response is
calculated at the point (0.12 m, 0.9 m, 0.3 m). It can be seen that
the resonant frequencies move towards high frequencies with



Fig. 17. Sound power with different initial deflections.
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the temperature gradients increasing. Because the temperature
gradient induces the thermal bending moment, which leads to
the deformation of laminated plate. The geometric deformation
makes the stiffness of structures enhanced. Accordingly, the
resonant frequency increases.

4.2. Different initial deflections

From the analysis in the Section 4.1, it can be found that initial
deformation induced by temperature gradient is significant to the
vibration and acoustic characteristics. Besides temperature gradi-
ent, there are many factors contributing to the initial deformation
of plates, such as processing defect.

Initial deflection w0 induced by assuming a temperature load
DTi ¼ siz is added to the Eq. (3) as described in Section 3.1 in
details. Then it is solved by Eq. (12) with Galerkin method and
least-squares iteration method. Vibrational and acoustic responses
are obtained by the formulations in Section 2. The dimensionless
amplitude of free vibration is 0.3. The responses are calculated at
the same points with Section 4.1. As shown in Figs. 13–17, the
effect of initial deflections due to other factors on the vibration
and acoustic characteristics is found similar to that caused by tem-
perature gradient.

5. Conclusion

The effects of temperature gradient on the dynamic characteris-
tics and responses for a laminated plate are studied in this paper.
Based on the first order shear deformation theory and von Karman
nonlinear strain displacement relationship, the governing equa-
tions are established considering the temperature gradient along
the thickness. Semi-analytical solutions of resonant frequency, dis-
placement, velocity response and sound pressure level and sound
power are obtained by using variable-step Runge–Kutta method
and Rayleigh integral. Simple experiment cases are utilized to val-
idate the present solutions, and the present work theoretically
explains why the lowest point (buckling occurring) of the experi-
mental curve of resonant frequencies for thermal structure is shift-
ing up away from the horizontal axis. It also means that initial
thermal deformation and thermal stress have to be considered
together in simulation of the dynamical response for thermal
structure.

According to the results, there is similar influence on vibrational
and acoustic responses of temperature gradients and initial deflec-
tions. As temperature gradient (or initial deflection) increases, the
resonant frequency increases, for temperature gradient (or initial
deflection) leads to stiffening effect on the plate, while the critical
mid-plane temperature moves toward lower mid-plane tempera-
ture; the response peaks move toward higher frequency with the
increase in temperature gradient (or initial deflection).
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Appendix A

d1 ¼A66k
2=A11; d2 ¼ðA12þA66Þk=A11; d3 ¼ðA12þA66Þk2=A11;

d4 ¼�12a3=ðA11h
2Þ; d5 ¼R0a2=A11; d6 ¼A66=½ðA12þA66Þk�;

d7 ¼A22k=ðA12þA66Þ; d8 ¼A66=ðA12þA66Þ; d9 ¼A22k
2=ðA12þA66Þ;

d10 ¼�12a2b=½ðA12þA66Þh2�; d11 ¼R0ab=ðA12þA66Þ;
d12 ¼24

ffiffiffi
3

p
a3A55=ðA11h

3Þ;
d13 ¼12a2A55=ðA11h

2Þ; d14 ¼24
ffiffiffi
3

p
a3A44k=ðA11h

3Þ;
d15 ¼12a2k2A44=ðA11h

2Þ;
d16 ¼1=2; d17 ¼A12k=A11; d18 ¼A12k

2=ð2A11Þ;
d19 ¼�12a2=ðA11h

2Þ; d20 ¼A12k
2=A11; d21 ¼A12k

2=ð2A11Þ;
d22 ¼A22k

3=A11; d23 ¼A22k
4=ð2A11Þ; d24 ¼�12a2k2=ðA11h

2Þ;
d25 ¼2A66k

2=A11; d26 ¼2A66k=A11; d27 ¼�24a2k=ðA11h
2Þ;

d28 ¼A66k=A11; d29 ¼A22k
4=A11; d30 ¼�12a3k=ðA11h

2Þ;
d31 ¼12R0a4=ðA11h

2Þ; d32 ¼D66k
2=D11; d33 ¼ðD12þD66Þk=D11;

d34 ¼�A55a2=D11; d35 ¼�A55ah=ð2
ffiffiffi
3

p
D11Þ; d36 ¼�a2=D11;

d37 ¼R2a2=D11; d38 ¼ðD21þD66Þ=ðD22kÞ; d39 ¼D66=ðD22k
2Þ;

d40 ¼�A44bh=ð2
ffiffiffi
3

p
D22Þ; d41 ¼�A44b

2
=D22; d42 ¼�b2

=D22;

d43 ¼R2b
2
=D22; d44 ¼ d4=a; d45 ¼ d4=b;

d46 ¼ d10=b; d47 ¼ d10=a; d48 ¼ d36=a;

d49 ¼ d36=b; d50 ¼ d42=a; d51 ¼ d42=b
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